diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /3012/CH9/EX9.2/Ex9_2.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '3012/CH9/EX9.2/Ex9_2.sce')
-rwxr-xr-x | 3012/CH9/EX9.2/Ex9_2.sce | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/3012/CH9/EX9.2/Ex9_2.sce b/3012/CH9/EX9.2/Ex9_2.sce new file mode 100755 index 000000000..7212c3153 --- /dev/null +++ b/3012/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,61 @@ + +// Given :- +clc; +r = 18.00 // compression ratio +T1 = 300.00 // temperature at the beginning of the compression process in kelvin +p1 = 0.1 // pressure at the beginning of the compression process in MPa +rc = 2.00 // cutoff ratio + +// Part(a) +// With T1 = 300 K, Table A-22 gives +u1 = 214.07 // in kj/kg +vr1 = 621.2 +// Interpolating in Table A-22, we get +T2 = 898.3 // in kelvin +h2 = 930.98 // in kj/kg +// From Table A-22, +h3 = 1999.1 // in kj/kg +vr3 = 3.97 + +// Interpolating in Table A-22 with vr4, we get +u4 = 664.3 // in kj/kg +T4 = 887.7 // in kelvin + +// Calculations +// Since Process 2–3 occurs at constant pressure, the ideal gas equation of state gives +T3 = rc*T2 // in kelvin +// With the ideal gas equation of state +p2 = p1*(T2/T1)*(r) // in MPa +p3 = p2 +// For the isentropic compression process 1–2 +vr2 = vr1/r +// For the isentropic expansion process 3–4 +vr4 = (r/rc)*vr3 +// The ideal gas equation of state applied at states 1 and 4 gives +p4 = p1*(T4/T1) // in MPa + +// Results +printf( '\n At state1, the pressure is : %.2f bar.',p1) +printf( '\n At state1, the temperature is %.2f kelvin.' ,T1) +printf( '\n At state2, the pressure in bar is : %.2f bar.',p2) +printf( '\n At state2, the temperature is %.2f kelvin.',T2) +printf( '\n At state3, the pressure in bar is : %.2f bar.',p3) +printf( '\n At state3, the temperature is %.2f kelvin.',T3) +printf( '\n At state4, the pressure is: %.2f MPa.',p4) +printf( '\n At state4, the temperature is %.2f kelvin.',T4) + +// Part(b) +eta = 1- (u4-u1)/(h3-h2) +printf( '\n The thermal efficiency is : %.2f ',eta) + +// Part(c) +R = 8.314 // universal gas constant, in SI units +M = 28.97 // molar mass of air in grams + +// Calculations +wcycle = (h3-h2)-(u4-u1) // The net work of the cycle in kj/kg +v1 = ((R/M)*T1/p1)/10**3 // The specific volume at state 1 in m^3/kg +mep = (wcycle/(v1*(1-1/r)))*10**3*10**-6 // in MPa + +// Results +printf( '\n The mean effective pressure, is : %.2f MPa.',mep) |