summaryrefslogtreecommitdiff
path: root/3012/CH9/EX9.2/Ex9_2.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3012/CH9/EX9.2/Ex9_2.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3012/CH9/EX9.2/Ex9_2.sce')
-rwxr-xr-x3012/CH9/EX9.2/Ex9_2.sce61
1 files changed, 61 insertions, 0 deletions
diff --git a/3012/CH9/EX9.2/Ex9_2.sce b/3012/CH9/EX9.2/Ex9_2.sce
new file mode 100755
index 000000000..7212c3153
--- /dev/null
+++ b/3012/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,61 @@
+
+// Given :-
+clc;
+r = 18.00 // compression ratio
+T1 = 300.00 // temperature at the beginning of the compression process in kelvin
+p1 = 0.1 // pressure at the beginning of the compression process in MPa
+rc = 2.00 // cutoff ratio
+
+// Part(a)
+// With T1 = 300 K, Table A-22 gives
+u1 = 214.07 // in kj/kg
+vr1 = 621.2
+// Interpolating in Table A-22, we get
+T2 = 898.3 // in kelvin
+h2 = 930.98 // in kj/kg
+// From Table A-22,
+h3 = 1999.1 // in kj/kg
+vr3 = 3.97
+
+// Interpolating in Table A-22 with vr4, we get
+u4 = 664.3 // in kj/kg
+T4 = 887.7 // in kelvin
+
+// Calculations
+// Since Process 2–3 occurs at constant pressure, the ideal gas equation of state gives
+T3 = rc*T2 // in kelvin
+// With the ideal gas equation of state
+p2 = p1*(T2/T1)*(r) // in MPa
+p3 = p2
+// For the isentropic compression process 1–2
+vr2 = vr1/r
+// For the isentropic expansion process 3–4
+vr4 = (r/rc)*vr3
+// The ideal gas equation of state applied at states 1 and 4 gives
+p4 = p1*(T4/T1) // in MPa
+
+// Results
+printf( '\n At state1, the pressure is : %.2f bar.',p1)
+printf( '\n At state1, the temperature is %.2f kelvin.' ,T1)
+printf( '\n At state2, the pressure in bar is : %.2f bar.',p2)
+printf( '\n At state2, the temperature is %.2f kelvin.',T2)
+printf( '\n At state3, the pressure in bar is : %.2f bar.',p3)
+printf( '\n At state3, the temperature is %.2f kelvin.',T3)
+printf( '\n At state4, the pressure is: %.2f MPa.',p4)
+printf( '\n At state4, the temperature is %.2f kelvin.',T4)
+
+// Part(b)
+eta = 1- (u4-u1)/(h3-h2)
+printf( '\n The thermal efficiency is : %.2f ',eta)
+
+// Part(c)
+R = 8.314 // universal gas constant, in SI units
+M = 28.97 // molar mass of air in grams
+
+// Calculations
+wcycle = (h3-h2)-(u4-u1) // The net work of the cycle in kj/kg
+v1 = ((R/M)*T1/p1)/10**3 // The specific volume at state 1 in m^3/kg
+mep = (wcycle/(v1*(1-1/r)))*10**3*10**-6 // in MPa
+
+// Results
+printf( '\n The mean effective pressure, is : %.2f MPa.',mep)