summaryrefslogtreecommitdiff
path: root/3012/CH11
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /3012/CH11
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '3012/CH11')
-rwxr-xr-x3012/CH11/EX11.1/Ex11_1.sce50
-rwxr-xr-x3012/CH11/EX11.10/Ex11_10.sce67
-rwxr-xr-x3012/CH11/EX11.3/Ex11_3.sce32
-rwxr-xr-x3012/CH11/EX11.4/Ex11_4.sce35
-rwxr-xr-x3012/CH11/EX11.6/Ex11_6.sce21
-rwxr-xr-x3012/CH11/EX11.8/Ex11_8.sce27
-rwxr-xr-x3012/CH11/EX11.9/Ex11_9.sce35
7 files changed, 267 insertions, 0 deletions
diff --git a/3012/CH11/EX11.1/Ex11_1.sce b/3012/CH11/EX11.1/Ex11_1.sce
new file mode 100755
index 000000000..b03e76e53
--- /dev/null
+++ b/3012/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,50 @@
+// Given:-
+m = 4.00 // mass of carbon monoxide in kg
+T = 223.00 // temperature of carbon monoxide in kelvin
+D = 0.2 // inner diameter of cylinder in meter
+L = 1.00 // length of the cylinder in meter
+pi=3.14
+// Analysis
+M = 28.00 // molar mass in kg/kmol
+
+// Calculations
+V = (pi*D**2.00/4.00)*L // volume occupied by the gas in m^3
+vbar = M*(V/m) // The molar specific volume in m^3/kmol
+
+// Part(a)
+// From Table A-1 for CO
+Tc = 133 // in kelvin
+Pc = 35 // in bar
+Tr = T/Tc // reduced temperature
+Rbar = 8314 // universal gas constant in N.m/kmol.K
+Z = 0.9
+// Calculations
+vrdash = (vbar*Pc*10**5)/(Rbar*Tc) // pseudoreduced specific volume
+p = (Z*Rbar*T/vbar)*10**-5 // in bar
+// Result
+printf( '\n part(a)the pressure in bar is: %.2f bar',p)
+
+// Part(b)
+// The ideal gas equation of state gives
+// Calculations
+p = (Rbar*T/vbar)/10**5 // in bar
+// Result
+printf( '\n Part(b)the pressure in bar is: %.2f bar',p)
+
+// Part(c)
+// For carbon monoxide, the van der Waals constants a and b can be read directly from Table A-24
+a = 1.474 // in (m^3/kmol)^2
+b = 0.0395 // in m^3/kmol
+// Calculations
+p = (Rbar*T/(vbar-b))/10**5 - a/vbar**2
+// Result
+printf( '\n Part(c)the pressure in bars is: %.2f bar',p)
+
+// Part(d)
+// For carbon monoxide, the Redlich–Kwong constants can be read directly from Table A-24
+a = 17.22 // in m^6*K^.5/kmol^2
+b = 0.02737 // in m^3/kmol
+// Calculations
+p = (Rbar*T/(vbar-b))/10**5 - a/(vbar*(vbar+b)*T**.5)
+// Result
+printf( '\n Part(d)the pressure in bar is: %.2f bar', p)
diff --git a/3012/CH11/EX11.10/Ex11_10.sce b/3012/CH11/EX11.10/Ex11_10.sce
new file mode 100755
index 000000000..8b1a2eb83
--- /dev/null
+++ b/3012/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,67 @@
+
+// Given:-
+// Analysis
+V = 0.241 // volume of the mixture in m^3
+T = 511.00 // temperature of the mixture in kelvin
+n1 = 0.18 // number of moles of methane in kmol
+n2 = 0.274 // number of moles of butane in kmol
+Rbar = 8314 // universal gas constant in (N.m)/(kmol.K)
+
+// Calculations
+n = n1 + n2 // The total number of moles of mixture
+y1 = n1/n // mole fraction of methane
+y2 = n2/n // mole fraction of butane
+vbar = V/(n) // The specific volume of the mixture on a molar basis in m^3/kmol
+
+// Part(a)
+p = (Rbar*T/vbar)*10**-5 // in bar
+// Result
+printf( ' The pressure in bar obtained using ideal gas equation is: %.2f',p)
+
+// Part(b)
+// From table A-1
+Tc1 = 191.00 // critical temperature for methane in kelvin
+Pc1 = 46.4 // critical pressure for methane in bar
+Tc2 = 425.00 // critical temperature for butane in kelvin
+Pc2 = 38.00 // critical pressure for butane in bar
+Z = 0.88
+
+
+// Calculations
+Tc = y1*Tc1 + y2*Tc2 // critical temperature in kelvin
+Pc = y1*Pc1 + y2*Pc2 // critical pressure in bar
+TR = T/Tc // reduced temperature of the mixture
+vRdash= vbar*Pc/(Rbar*Tc)
+p = ((Z*Rbar*T)/vbar)*10**-5 // mixture pressure in bar
+// Result
+printf( ' Pressure obtained using Kay’s rule together with the generalized compressibility chart, is: %.2f ',p)
+
+// Part(c)
+// Table A-24 gives the following van der Waals constants values for methane
+a1 = 2.293 // in (m^3/kmol)^2
+b1 = 0.0428 // in m^3/kmol
+// Table A-24 gives the following van der Waals constants values for butane
+a2 = 13.86 // in (m^3/kmol)^2
+b2 = 0.1162 // in m^3/kmol
+
+a = (y1*a1**.5 + y2*a2**.5)**2 // in bar*(m^3/kmol)^2
+b = y1*b1+y2*b2 // in m^3/kmol
+// From van der Waals equation
+p = ((Rbar*T)/(vbar-b))*10**-5 - a/(vbar**2)
+printf( ' The pressure in bar from van der Waals equation is: %.2f',p)
+
+// Part(d)
+// For methane
+TR1 = T/Tc1
+vR1dash = (.241/.18)*10**5*Pc1/(Rbar*Tc1)
+Z1 = 1.00
+// For butane
+TR2 = T/Tc2
+vR2dash = (.88*10**5*Pc2)/(Rbar*Tc2)
+Z2 = 0.8
+Z = y1*Z1 + y2*Z2
+// Accordingly, the same value for pressure as determined in part (b) using Kay’s rule results:
+p = 70.4
+
+// Result
+printf( ' The pressure in bar obtained using the rule of additive pressures employing the generalized compressibility chart is: %.2f',p)
diff --git a/3012/CH11/EX11.3/Ex11_3.sce b/3012/CH11/EX11.3/Ex11_3.sce
new file mode 100755
index 000000000..119bc0631
--- /dev/null
+++ b/3012/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,32 @@
+// Given:-
+// Part(a)
+v = 0.4646 // specific volume in in m^3/kg
+M = 18.02 // molar mass of water in kg/kmol
+// At the specified state, the temperature is 513 K and the specific volume on a molar basis is
+vbar = v*M // in m^3/kmol
+// From Table A-24
+a = 142.59 // (m^3/kmol)^2 * K^.5
+b = 0.0211 // in m^3/kmol
+
+Rbar = 8314.0 // universal gas constant in N.m/kmol.K
+T = 513.0 // in kelvin
+delpbydelT = (Rbar/(vbar-b) + a/(2*vbar*(vbar+b)*T**1.5)*10**5)/10**3 // in kj/(m^3*K)
+
+// By The Maxwell relation
+delsbydelv = delpbydelT
+// Result
+printf( ' The value of delpbydelT in kj/(m^3*K) is: %.2f',delpbydelT);
+
+// Part(b)
+// A value for (dels/delv)T can be estimated using a graphical approach with steam table data, as follows: At 240C, Table A-4 provides the values for specific entropy s and specific volume v tabulated below
+T = 240.0 // in degree celcius
+// At p =1, 1.5, 3, 5, 7, 10 bar respectively
+y = [7.994, 7.805, 7.477, 7.230, 7.064, 6.882]
+x = [2.359, 1.570, 0.781, 0.4646, 0.3292, 0.2275]
+plot(x,y)
+xlabel("Specific volume")
+ylabel("Specific entropy")
+
+// The pressure at the desired state is 5 bar.The corresponding slope is
+delsbydelv = 1 // in kj/m^3.K
+printf( ' From the data of the table,delsbydelv = %.2f',delsbydelv);
diff --git a/3012/CH11/EX11.4/Ex11_4.sce b/3012/CH11/EX11.4/Ex11_4.sce
new file mode 100755
index 000000000..0d233d37f
--- /dev/null
+++ b/3012/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,35 @@
+// Given:-
+// Analysis
+// For comparison, Table A-2 gives at 100C,
+hgf =2257.00 // in kj/kg
+ugf = 2087.6 // in kj/kg
+sgf = 6.048 // in kj/kg.K
+// Values
+printf( ' From table, hg-hf = %.2f',hgf);
+printf( ' From table, ug-uf = %.2f',ugf);
+printf( ' From table, sg-sf = %.2f',sgf);
+
+// Part(a)
+T = 373.15 // in kelvin
+// If we plot a graph between temperature and saturation pressure using saturation pressure–temperature data from the steam tables, the desired slope is:
+delpbydelT = 3570.00 // in N/(m^2.K)
+vg = 1.673 // in m^3/kg
+vf = 1.0435e-3 // in m^3/kg
+// Calculations
+// From the Clapeyron equation
+hgf = T*(vg-vf)*delpbydelT*10**-3 // in kj/kg
+// Result
+printf( '\n Part(a)using Clapeyron equation, hg-hf = %.2f KJ/kg', hgf);
+
+// Part(b)
+psat = 1.014e5 // in N/m^2
+hgf = 2256.00 // can be obtained using IT software in kj/kg
+// Calculations
+ugf = hgf - psat*(vg-vf)/10**3 // in kj/kg
+// Result
+printf( '\n Part(b)ug-uf = %.2f KJ/kg',ugf)
+// Part(c)
+// Calculation
+sgf =hgf/T // in kj/kg.K
+// Result
+printf( '\n Part(c)sg-sf = %.2f KJ/kg. k',sgf)
diff --git a/3012/CH11/EX11.6/Ex11_6.sce b/3012/CH11/EX11.6/Ex11_6.sce
new file mode 100755
index 000000000..acc0b5c1f
--- /dev/null
+++ b/3012/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,21 @@
+// Given:-
+// Part(a)
+v = 1.00/998.21 // specific volume of water in m^3/kg
+T = 293.00 // given temperature in kelvin
+beta = 206.6e-6 // volume expansivity in /K
+k = 45.90e-6 // isothermal compressibility in /bar
+// Interpolating in Table A-19
+cp = 4.188 // in kj/kg.k
+// Calculations
+cpv = (v*T*beta**2.00/k)*10**2 // in kj/kg.k
+cv = cp-cpv // in kj/kg.k
+errorPercentage = 100*(cp-cv)/cv
+// Result
+printf( ' The percentage error is: %.2f',errorPercentage)
+
+// Part(b)
+// Calculations
+K = cp/cv // specific heat ratio
+c = ((K*v/k)*10**5)**0.5 // velocity of sound in m/s
+// Result
+printf( ' The velocity of sound is: %.2f m/s',c)
diff --git a/3012/CH11/EX11.8/Ex11_8.sce b/3012/CH11/EX11.8/Ex11_8.sce
new file mode 100755
index 000000000..91eb2d0d9
--- /dev/null
+++ b/3012/CH11/EX11.8/Ex11_8.sce
@@ -0,0 +1,27 @@
+// Given:-
+p1 = 100.00 // in bar
+T1 = 300.00 // in kelvin
+p2 = 40.00 // in bar
+T2 = 245.00 // in kelvin
+
+
+// From table A-23
+h1starbar = 8723.00 // in kj/kmol
+h2starbar = 7121.00 // in kj/kmol
+// From Tables A-1
+Tc = 126.00 // critical temperature in kelvin
+pc = 33.9 // critical pressure in bar
+M = 28.00 // molar mass in kg/kmol
+Rbar = 8.314 // universal gas constant in kj/(kmol.K)
+Term1 = 0.5
+Term2 = 0.31
+
+// Calculations
+TR1 = T1/Tc // reduced temperature at the inlet
+PR1 = p1/pc // reduced pressure at the inlet
+TR2 = T2/Tc // reduced temperature at the exit
+PR2 = p2/pc // reduced pressure at the exit
+wcvdot = (1.00/M)*(h1starbar-h2starbar-Rbar*Tc*(Term1-Term2)) // in kj/kg
+
+// Result
+printf( ' The work developed, in kJ per kg of nitrogen flowing is : %.2f',wcvdot)
diff --git a/3012/CH11/EX11.9/Ex11_9.sce b/3012/CH11/EX11.9/Ex11_9.sce
new file mode 100755
index 000000000..7c8b4f92e
--- /dev/null
+++ b/3012/CH11/EX11.9/Ex11_9.sce
@@ -0,0 +1,35 @@
+
+// Given:-
+// Part(a)
+// With values from Table A-23
+sT2bar = 185.775 // in kj/(kmol.K)
+sT1bar = 191.682 // in kj/(kmol.K)
+Rbar = 8.314 // universal gas constant
+M = 28.00 // molar mass in kg/kmol
+p2 = 40.00 // in bar
+p1 = 100.00 // in bar
+Term1 = 0.21
+Term2 = 0.14
+
+// Calculations
+
+S2StarBarMinusS1StarBar = sT2bar-sT1bar-Rbar*log(p2/p1) // The change in specific entropy in kj/(kmol.K)
+sigmacvdot = (1.00/M)*(S2StarBarMinusS1StarBar-Rbar*(Term2-Term1))
+// Result
+printf( ' the rate of entropy production in kj/kg.K is: %.2f', sigmacvdot)
+
+// Part(b)
+// From Table A-23,
+h2starbar = 6654.00 // in kj/kmol
+h1starbar = 8723.00 // in kj/kmol
+Tc = 126.00 // critical temperature in kelvin
+Term2 = 0.36
+Term1 = 0.5
+wcvdot = 50.1 // from example 11.8
+
+// Calculations
+wcvdots = (1.00/M)*(h1starbar-h2starbar-Rbar*Tc*(Term1-Term2)) // isentropic work in kj/kg
+etat = wcvdot/wcvdots // turbine efficiency
+
+// Result
+printf( ' The isentropic turbine efficiency is: %.2f', etat)