summaryrefslogtreecommitdiff
path: root/2912/CH7
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2912/CH7
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2912/CH7')
-rwxr-xr-x2912/CH7/EX7.1/Ex7_1.sce21
-rwxr-xr-x2912/CH7/EX7.10/Ex7_10.sce18
-rwxr-xr-x2912/CH7/EX7.2/Ex7_2.sce23
-rwxr-xr-x2912/CH7/EX7.3/Ex7_3.sce22
-rwxr-xr-x2912/CH7/EX7.4/Ex7_4.sce21
-rwxr-xr-x2912/CH7/EX7.5/Ex7_5.sce19
-rwxr-xr-x2912/CH7/EX7.6/Ex7_6.sce16
-rwxr-xr-x2912/CH7/EX7.7/Ex7_7.sce17
-rwxr-xr-x2912/CH7/EX7.8/Ex7_8.sce16
-rwxr-xr-x2912/CH7/EX7.9/Ex7_9.sce24
10 files changed, 197 insertions, 0 deletions
diff --git a/2912/CH7/EX7.1/Ex7_1.sce b/2912/CH7/EX7.1/Ex7_1.sce
new file mode 100755
index 000000000..b9ff71808
--- /dev/null
+++ b/2912/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,21 @@
+//chapter 7
+//example 7.1
+//Calculate the capacitance of capacitor and charge on the plates
+//page 187
+clear;
+clc;
+//given
+A=100; // in cm^2 (cross-sectional area)
+d=1; // in cm (seperation between plates)
+Eo=8.85E-12; // in F/m (absolute permittivity)
+V=100; // in V (potential difference)
+//calculate
+A=A*1E-4; // changing unit from cm^2 to m^2
+d=d*1E-2; // changing unit from cm to m
+C=Eo*A/d;// calculation of capacitance
+Q=C*V; // calculation of charge
+printf('\nThe capacitance of capacitor is \t C=%1.2E C',C);
+C=C*1E12; // changing unit of capacitance from F to pF
+printf('\n\t\t\t\t\t =%.2f pF',C);
+printf('\n\nThe charge on the plates is \t\t Q=%1.2E C',Q);
+
diff --git a/2912/CH7/EX7.10/Ex7_10.sce b/2912/CH7/EX7.10/Ex7_10.sce
new file mode 100755
index 000000000..8f02ba733
--- /dev/null
+++ b/2912/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,18 @@
+// chapter 7
+// example 7.10
+// determine the percentage of ionic polarisability in sodium crystal
+// page 191-192
+clear;
+clc;
+// given
+n=1.5; // refractive index
+Er=5.6;// dielectric constant
+//calculate
+// since (Er-1)/(Er+2)=N*(alpha_e+alpha_i)/(3*E0) Clausius-Mossotti equation
+// and (n^2-1)/(n^2+2)=N*alpha_e/(3*E0)
+// from above two equations, we get ((n^2-1)/(n^2+2))*((Er+2)/(Er-1))=alpha_e/(alpha_e+alpha_i)
+// or alpha_i/ (alpha_e+alpha_i)= 1-((n^2-1)/(n^2+2))*((Er+2)/(Er-1))= (say P)
+// where P is fractional ionisational polarisability
+P=1-((n^2-1)/(n^2+2))*((Er+2)/(Er-1)); // calculation of fractional ionisational polarisability
+P=P*100; // calculation of percentage of ionisational polarisability
+printf('\nThe percentage of ionisational polarisability is \t%.1f percent',P);
diff --git a/2912/CH7/EX7.2/Ex7_2.sce b/2912/CH7/EX7.2/Ex7_2.sce
new file mode 100755
index 000000000..7a6efa864
--- /dev/null
+++ b/2912/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,23 @@
+//chapter 7
+//example 7.2
+//Calculate the resultant voltage across the capacitor
+//page 187
+clear;
+clc;
+//given
+A=650; // in mm^2 (cross-sectional area)
+d=4; // in mm (seperation between plates)
+Eo=8.85E-12; // in F/m (absolute permittivity)
+Er=3.5; // di-electric constant of the material
+Q=2E-10; // in C (charge on plates)
+//calculate
+A=A*1E-6; // changing unit from mm^2 to m^2
+d=d*1E-3; // changing unit from mm to m
+C=Er*Eo*A/d;// calculation of capacitance
+V=Q/C; // calculation of charge
+printf('\nThe capacitance of capacitor is \t C=%1.2E C',C);
+C=C*1E12; // changing unit of capacitance from F to pF
+printf('\n\t\t\t\t\t =%.2f pF',C);
+printf('\n\nThe resultant voltage across the capacitor is \t V=%.2f V',V);
+// NOTE: The answer is wrong due to calculation mistake. The mistake is that in the book Value of cross-sectional area and seperation
+// between plates is considered in cm and di-electric constant has not been considered.
diff --git a/2912/CH7/EX7.3/Ex7_3.sce b/2912/CH7/EX7.3/Ex7_3.sce
new file mode 100755
index 000000000..a70949cd1
--- /dev/null
+++ b/2912/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,22 @@
+//chapter 7
+//example 7.3
+//Calculate the radius of electron cloud and dispalcement
+//page 188
+clear;
+clc;
+//given
+N=2.7E25; // in 1/m^3 (density of atoms)
+E=1E6; // in V/m (electric field)
+Z=2; // atomic number of Helium
+Eo=8.85E-12; // in F/m (absolute permittivity)
+Er=1.0000684; // (dielectric constant of the material)
+e=1.6E-19; // in C (charge of electron)
+pi=3.14; // value of pi used in the solution
+//calculate
+// since alpha=Eo*(Er-1)/N=4*pi*Eo*r_0^3
+// Therefore we have r_0^3=(Er-1)/(4*pi*N)
+r_0=((Er-1)/(4*pi*N))^(1/3);// calculation of radius of electron cloud
+printf('\nThe radius of electron cloud is \t r_0=%1.2E m',r_0);
+x=4*pi*Eo*E*r_0/(Z*e); // calculation of dispalcement
+printf('\n\nThe displacement is x=%1.2E m',x);
+// NOTE: The answer is wrong due to calculation mistake.
diff --git a/2912/CH7/EX7.4/Ex7_4.sce b/2912/CH7/EX7.4/Ex7_4.sce
new file mode 100755
index 000000000..8313767f0
--- /dev/null
+++ b/2912/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,21 @@
+//chapter 7
+//example 7.4
+//Calculate the dipole moment induced in each atom and atomic polarisability
+//page 188-189
+clear;
+clc;
+//given
+K=1.000134; // di-elecrtic constant of the neon gas at NTP
+E=90000; // in V/m (electric field)
+Eo=8.85E-12; // in C/N-m^2 (absolute premittivity)
+N_A=6.023E26; // in atoms/Kg-mole (Avogadro's number)
+V=22.4; // in m^3 (volume of gas at NTP
+//calculate
+n=N_A/V; // calculaton of density of atoms
+// Since P=n*p=(k-1)*Eo*E
+// therefore we have
+p=(K-1)*Eo*E/n; // calculation of dipole moment induced
+printf('\nThe dipole moment induced in each atom is \tp=%1.2E C-m',p);
+alpha=p/E; // calculation of atomic polarisability
+printf('\n\nThe atomic polarisability of neon is \t=%1.2E c-m^2/V',alpha);
+// NOTE: The answer of atomic polarisability is wrong due to printing error
diff --git a/2912/CH7/EX7.5/Ex7_5.sce b/2912/CH7/EX7.5/Ex7_5.sce
new file mode 100755
index 000000000..da76ed5b1
--- /dev/null
+++ b/2912/CH7/EX7.5/Ex7_5.sce
@@ -0,0 +1,19 @@
+//chapter 7
+//example 7.5
+//Calculate the electronic polarisability of sulphur
+//page 189
+clear;
+clc;
+//given
+Er=3.75; // di-elecrtic constant of sulphur at 27 degree Celcius
+gama=1/3; // internal field constant
+p=2050; // in Kg/m^3 (density)
+M_A=32; // in amu (atomic weight of sulphur)
+Eo=8.85E-12; // in F/m (absolute permittivity)
+N=6.022E23; // Avogadro's number
+//calculate
+// Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e
+// therefore we have
+alpha_e=((Er-1)/(Er+2))*(M_A/p)*(3*Eo/N); // calculation of electronic polarisability of sulphur
+printf('\nThe electronic polarisability of sulphur is \t=%1.2E Fm^2',alpha_e);
+// NOTE: There is slight variation in the answer due to round off
diff --git a/2912/CH7/EX7.6/Ex7_6.sce b/2912/CH7/EX7.6/Ex7_6.sce
new file mode 100755
index 000000000..ac5dca5bb
--- /dev/null
+++ b/2912/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,16 @@
+//chapter 7
+//example 7.6
+//Calculate the electronic polarisability of Helium atoms
+//page 189-190
+clear;
+clc;
+//given
+Er=1.0000684; // di-elecrtic constant of Helium gas at NTP
+Eo=8.85E-12; // in F/m (absolute permittivity)
+N=2.7E25; // number of atomsper unit volume
+//calculate
+// Since Er-1=(N/Eo)*alpha_e
+// therefore we have
+alpha_e=Eo*(Er-1)/N; // calculation of electronic polarisability of Helium
+printf('\nThe electronic polarisability of Helium gas is \t=%1.2E Fm^2',alpha_e);
+// NOTE: There is slight variation in the answer due to round off
diff --git a/2912/CH7/EX7.7/Ex7_7.sce b/2912/CH7/EX7.7/Ex7_7.sce
new file mode 100755
index 000000000..474407ad6
--- /dev/null
+++ b/2912/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,17 @@
+//chapter 7
+//example 7.7
+//Calculate the dielectric constant of the material
+//page 190
+clear;
+clc;
+//given
+N=3E28; // in atoms/m^3 (density of atoms)
+alpha_e=1E-40; // in F-m^2 (electronic polarisability)
+Eo=8.85E-12; // in F/m (absolute permittivity)
+//calculate
+// Since (Er-1)/(Er+2)=N*alpha_e/(3*Eo)
+// therefore we have
+Er=(2*(N*alpha_e/(3*Eo))+1)/(1-(N*alpha_e/(3*Eo)));
+ // calculation of dielectric constant of the material
+printf('\nThe dielectric constant of the material is \tEr=%.3f F/m',Er);
+// NOTE: The answer in the book is wrong due to calculation mistake
diff --git a/2912/CH7/EX7.8/Ex7_8.sce b/2912/CH7/EX7.8/Ex7_8.sce
new file mode 100755
index 000000000..94a3be024
--- /dev/null
+++ b/2912/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,16 @@
+//chapter 7
+//example 7.8
+//Calculate the atomic polarisability of sulphur
+//page 190
+clear;
+clc;
+//given
+Er=4; // relative permittivity of sulphur
+Eo=8.85E-12; // in F/m (absolute permittivity)
+NA=2.08E3; // in Kg/m^3 (density of atoms in sulphur)
+//calculate
+// Since ((Er-1)/(Er+2))*(M_A/p)=(N/(3*Eo))*alpha_e
+// therefore we have
+alpha_e=((Er-1)/(Er+2))*(3*Eo/NA); // calculation of electronic polarisability of sulphur
+printf('\nThe electronic polarisability of sulphur is \t=%1.2E Fm^2',alpha_e);
+// NOTE: The answer in the book is wrong due to calculation mistake. Also one point to be mentioned is that wrong formula has been used in the solution but i have used the formula as used in the solution.
diff --git a/2912/CH7/EX7.9/Ex7_9.sce b/2912/CH7/EX7.9/Ex7_9.sce
new file mode 100755
index 000000000..611ecfb4a
--- /dev/null
+++ b/2912/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,24 @@
+// chapter 7
+// example 7.9
+// calculate polarisability due to permanent dipole moment and due to deformation of the molecules
+// page 190-191
+clear;
+clc;
+// given
+alpha1=2.5E-39; // in C^2-m/N (dielectric constant at 300K)
+alpha2=2.0E-39; // in C^2-m/N (dielectric constant at 400K)
+T1=300; // in K(first temperature)
+T2=400; // in K(second temperature)
+//calculate
+// since alpha=alpha_d+alpha0 and alpha0=Beta/T
+// therefore alpha=alpha_d+(Beta/T)
+// since alpha1=alpha_d+(Beta/T1) and alpha2=alpha_d+(Beta/T2)
+// therefore alpha1-apha2=Beta*((1/T1)-(1/T2))
+// or Beta= (alpha1-apha2)/ ((1/T1)-(1/T2))
+Beta= (alpha1-alpha2)/ ((1/T1)-(1/T2)); // calculation of Beta
+alpha_d=alpha1-(Beta/T1); // calculation of polarisability due to defromation
+alpha0_1=Beta/T1; // calculation of polarisability due to permanent dipole moment at 300K
+alpha0_2=Beta/T2; // calculation of polarisability due to permanent dipole moment at 400K
+printf('\nThe polarisability due to permanent dipole moment at 300K is \t %1.2E C^2-m/N',alpha0_1);
+printf('\nThe polarisability due to permanent dipole moment at 400K is \t %1.2E C^2-m/N',alpha0_2);
+printf('\n\nThe polarisability due to deformation of the molecules is \t %1.2E C^2-m/N',alpha_d);