summaryrefslogtreecommitdiff
path: root/2873/CH12/EX12.1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2873/CH12/EX12.1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2873/CH12/EX12.1')
-rwxr-xr-x2873/CH12/EX12.1/Ex12_1.jpgbin0 -> 206646 bytes
-rwxr-xr-x2873/CH12/EX12.1/Ex12_1.sce34
2 files changed, 34 insertions, 0 deletions
diff --git a/2873/CH12/EX12.1/Ex12_1.jpg b/2873/CH12/EX12.1/Ex12_1.jpg
new file mode 100755
index 000000000..7d543d5a1
--- /dev/null
+++ b/2873/CH12/EX12.1/Ex12_1.jpg
Binary files differ
diff --git a/2873/CH12/EX12.1/Ex12_1.sce b/2873/CH12/EX12.1/Ex12_1.sce
new file mode 100755
index 000000000..cac416db8
--- /dev/null
+++ b/2873/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,34 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh Chapter 12 Example 1")
+h1=30;//heat transfer coefficient on side of 50 oc in W/m^2 K
+h5=10;//heat transfer coefficient on side of 20 oc in W/m^2 K
+k_brick=0.9;//conductivity of brick in W/m K
+k_wood=0.15;//conductivity of wood in W/m K
+T1=50;//temperature of air on one side of wall in degree celcius
+T5=20;//temperature of air on other side of wall in degree celcius
+A=100;//surface area in m^2
+deltax_brick=1.5*10^-2;//length of brick in m
+deltax_wood=2*10^-2;//length of wood in m
+disp("here for one dimentional heat transfer across the wall the heat transfer circuit shall comprises of thermal resistance due to convection between air & brick(R1),conduction in brick wall(R2),conduction in wood(R3),and convection between wood and air(R4).Let temperature at outer brick wall be T2 K,brick-wood interface be T3 K,outer wood wall be T4 K")
+disp("overall heat transfer coefficient for steady state heat transfer(U)in W/m^2 K")
+disp("(1/U)=(1/h1)+(deltax_brick/k_brick)+(deltax_wood/k_wood)+(1/h5)")
+disp("so U=1/((1/h1)+(deltax_brick/k_brick)+(deltax_wood/k_wood)+(1/h5))")
+U=1/((1/h1)+(deltax_brick/k_brick)+(deltax_wood/k_wood)+(1/h5))
+U=3.53;//approx.
+disp("rate of heat transfer,Q=U*A*(T1-T5)in W")
+Q=U*A*(T1-T5)
+disp("so rate of heat transfer=10590 W")
+disp("heat transfer across states 1 and 3(at interface).")
+disp("overall heat transfer coefficient between 1 and 3")
+disp("(1/U1)=(1/h1)+(deltax_brick/k_brick)")
+disp("so U1=1/((1/h1)+(deltax_brick/k_brick))in W/m^2 K")
+U1=1/((1/h1)+(deltax_brick/k_brick))
+disp("Q=U1*A*(T1-T3)")
+disp("so T3=T1-(Q/(U1*A))in degree celcius")
+T3=T1-(Q/(U1*A))
+disp("so temperature at interface of brick and wood =44.71 degree celcius")