summaryrefslogtreecommitdiff
path: root/2795/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2795/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2795/CH5')
-rwxr-xr-x2795/CH5/EX5.1/Ex5_01.sce15
-rwxr-xr-x2795/CH5/EX5.10/Ex5_10.sce15
-rwxr-xr-x2795/CH5/EX5.12/Ex5_12.sce18
-rwxr-xr-x2795/CH5/EX5.13/Ex5_13.sce14
-rwxr-xr-x2795/CH5/EX5.2/Ex5_02.sce20
-rwxr-xr-x2795/CH5/EX5.3/Ex5_03.sce12
-rwxr-xr-x2795/CH5/EX5.4/Ex5_04.sce16
-rwxr-xr-x2795/CH5/EX5.7/Ex5_07.sce22
-rwxr-xr-x2795/CH5/EX5.8/Ex5_08.sce13
-rwxr-xr-x2795/CH5/EX5.9/Ex5_09.sce11
10 files changed, 156 insertions, 0 deletions
diff --git a/2795/CH5/EX5.1/Ex5_01.sce b/2795/CH5/EX5.1/Ex5_01.sce
new file mode 100755
index 000000000..8aabd9f86
--- /dev/null
+++ b/2795/CH5/EX5.1/Ex5_01.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex5.1 :Page-167 (2013)
+clc; clear;
+N_A = 6.022e+23; // Avogdaro's No., per mole
+n = 1; // Order of diffraction
+M = 58.5; // Molecular mass of NaCl, g/mol
+rho = 2.16; // Density of rock salt, g/cc
+two_theta = 20; // Scattering angle, degree
+theta = two_theta/2; // Diffraction angle, degree
+N = N_A*rho*2/(M*1e-006); // Number of atoms per unit volume, per metre cube
+d = (1/N)^(1/3); // Interplanar spacing of NaCl crystal, m
+lambda = 2*d*sind(theta)/n ; // Wavelength of X-rays using Bragg's law, m
+printf("\nThe wavelength of the incident X rays = %5.3f nm", lambda/1e-009);
+
+// Result
+// The wavelength of the incident X rays = 0.098 nm
diff --git a/2795/CH5/EX5.10/Ex5_10.sce b/2795/CH5/EX5.10/Ex5_10.sce
new file mode 100755
index 000000000..ee8c6de2d
--- /dev/null
+++ b/2795/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,15 @@
+// Scilab Code 5.10: : Page-190 (2013)
+clc; clear;
+dx = 6e-015; // The uncertainty in position of the electron, m
+h_bar = 1.054e-034; // PReduced Planck's constant, Js
+e = 1.602e-019; // Energy equivalnet of 1 eV, J/eV
+c = 3e+008; // Speed of light, m/s
+E0 = 0.511e+006; // Rest mass energy of the electron, J
+dp = h_bar*c/(2*dx*e); // Minimum electron momentum, eV/c
+p = dp; // Momentum of the electron at least equal to the uncertainty in momentum, eV/c
+E = sqrt(p^2+E0^2)/1e+006; // Relativistic energy of the electron, MeV
+K = E - E0/1e+006; // Minimum kinetic energy of the electron, MeV
+printf("\nThe minimum kinetic energy of the electron = %4.1f MeV", K);
+
+// Result
+// The minimum kinetic energy of the electron = 15.9 MeV
diff --git a/2795/CH5/EX5.12/Ex5_12.sce b/2795/CH5/EX5.12/Ex5_12.sce
new file mode 100755
index 000000000..6068e164a
--- /dev/null
+++ b/2795/CH5/EX5.12/Ex5_12.sce
@@ -0,0 +1,18 @@
+// Scilab Code Ex5.12 : Page-190 (2014)
+clc; clear;
+c = 3e+8; // Speed of light, m/s
+dt = 1e-08; // Relaxation time of atom, s
+h = 6.6e-34; // Planck's constant, Js
+dE = h/(4*%pi*dt); // Energy width of excited state of atom, J
+lambda = 300e-009; // Wavelegth of emitted photon, m
+f = c/lambda; // Frequency of emitted photon, per sec
+printf("\nThe energy width of excited state of the atom = %3.1e eV", dE/1.6e-019);
+df = dE/h; // Uncertainty in frequency, per sec
+printf("\nThe uncertainty ratio of the frequency = %1.0e", df/f);
+
+// Result
+// The energy width of excited state of the atom = 3.3e-008 eV
+// The uncertainty ratio of the frequency = 8e-009
+
+
+
diff --git a/2795/CH5/EX5.13/Ex5_13.sce b/2795/CH5/EX5.13/Ex5_13.sce
new file mode 100755
index 000000000..9436642c3
--- /dev/null
+++ b/2795/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex5.13 : Page-195 (2014)
+clc; clear;
+n = [1 2 3]; // First three energy levels
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+c = 3e008; // Speed of light, m/s
+h = 6.63e-034; // Planck's constant, Js
+m = 9.1e-031; // Mass of the proton, kg
+l = 0.1; // Length of one-dimensional box, nm
+E_n = n^2*(h*c/(e*1e-009))^2/(8*m*c^2/e*l^2); // Energy of nth level, eV
+printf("\nThe first three energy level are:\nE1 = %2.0f eV, E2 = %3.0f eV and E3 = %3.0f eV", E_n(1), E_n(2), E_n(3));
+
+// Result
+// The first three energy level are:
+// E1 = 38 eV, E2 = 151 eV and E3 = 340 eV \ No newline at end of file
diff --git a/2795/CH5/EX5.2/Ex5_02.sce b/2795/CH5/EX5.2/Ex5_02.sce
new file mode 100755
index 000000000..b12083183
--- /dev/null
+++ b/2795/CH5/EX5.2/Ex5_02.sce
@@ -0,0 +1,20 @@
+// Scilab Code Ex5.2 : Page-168 (2013)
+clc; clear;
+h = 6.63e-034; // Planck's constant, Js
+c = 3e+008; // Speed of light, m/s
+// For a moving ball
+m = 0.057; // Mass of the ball, kg
+v = 25; // Velocity of ball, m/s
+p = m*v; // Momentum of the ball, kgm/s
+lambda = h/p; // Lambda is the wavelength of ball, nm
+printf("\nThe wavelength of ball = %3.1e m", lambda);
+// For a moving electron
+m = 0.511e+006; // Rest mass of an electron, eV
+K = 50; // Kinetic energy of the electron, eV
+p = sqrt(2*m*K); // Momentum of the electron, kgm/s
+lambda = h*c/(1.602e-019*p*1e-009); // Wavelength of the electron, nm
+printf("\nThe wavelength of the electron = %4.2f nm", lambda);
+
+// Result
+// The wavelength of ball = 4.7e-034 m
+// The wavelength of the electron = 0.17 nm
diff --git a/2795/CH5/EX5.3/Ex5_03.sce b/2795/CH5/EX5.3/Ex5_03.sce
new file mode 100755
index 000000000..e689f340c
--- /dev/null
+++ b/2795/CH5/EX5.3/Ex5_03.sce
@@ -0,0 +1,12 @@
+// Scilab Code Ex5.3 : Page-173 (2013)
+clc; clear;
+m = 9.1e-31; // Mass of the electron, kg
+h = 6.63e-34; // Planck's constant, Js
+c = 3e+008; // Speed of light, m/s
+e = 1.6e-19; // Energy equivalent of 1 eV, J/eV
+V0 = 54; // Potential difference between electrodes, V
+lambda = h*c/(sqrt(2*m*c^2/e*V0)*e*1e-009); // de Broglie wavelength of the electron, nm
+printf("\nThe de Broglie wavelength of the electron used by Davisson and Germer = %5.3f nm", lambda);
+
+// Result
+// The de Broglie wavelength of the electron used by Davisson and Germer = 0.167 nm
diff --git a/2795/CH5/EX5.4/Ex5_04.sce b/2795/CH5/EX5.4/Ex5_04.sce
new file mode 100755
index 000000000..4b7e72d65
--- /dev/null
+++ b/2795/CH5/EX5.4/Ex5_04.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex5.4 : Page-174 (2013)
+clc; clear;
+h = 6.63e-34; // Planck's constant, Js
+c = 3e+008; // Speed of light, m/s
+e = 1.6e-19; // Energy equivalent of 1 eV, J/eV
+m = 1.67e-27; // Mass of a neutron, kg
+k = 1.38e-23; // Boltzmann constant, J/mol/K
+T = [300 77]; // Temperatures, K
+lambda = h*c/(sqrt(3*m*c^2/e*k/e*T(1))*e); // The wavelength of the neutron at 300 K, nm
+printf("\nThe wavelength of the neutron at %d K = %5.3f nm", T(1), lambda/1e-09);
+lambda = h*c/(sqrt(3*m*c^2/e*k/e*T(2))*e); // The wavelength of the neutron at 77 K, nm
+printf("\nThe wavelength of the neutron at %d K = %5.3f nm", T(2), lambda/1e-09);
+
+// Result
+// The wavelength of the neutron at 300 K = 0.146 nm
+// The wavelength of the neutron at 77 K = 0.287 nm
diff --git a/2795/CH5/EX5.7/Ex5_07.sce b/2795/CH5/EX5.7/Ex5_07.sce
new file mode 100755
index 000000000..04c4c12d6
--- /dev/null
+++ b/2795/CH5/EX5.7/Ex5_07.sce
@@ -0,0 +1,22 @@
+// Scilab Code Ex5.7 :Page-184 (2013)
+clc; clear;
+h = 6.626e-34; // Planck's constant, Js
+c = 3e+008; // Speed of light, m/s
+e = 1.602e-019; // Energy equivalent of 1 eV, J/ev
+d = 2000; // Distance between slit centres, nm
+K = 50e+003; // Kinetic energy of electrons, eV
+l = 350e+006; // Distance of screen from the slits, nm
+lambda = 1.226/sqrt(K); // Non-relativistic value of de Broglie wavelength of the electrons, nm
+E0 = 0.511e+006; // Rest energy of the electron, J
+E = K + E0; // Total energy of the electron, J
+p_c = sqrt(E^2 - E0^2); // Relativistic mass energy relation, eV
+lambda_r = h*c/(p_c*e*1e-009); // Relativistic value of de Broglie wavelength, nm
+percent_d = (lambda - lambda_r)/lambda*100; // Percentage decrease in relativistic value relative to non-relavistic value
+sin_theta = lambda_r/d; // Bragg's law
+y = l*sin_theta; // The distance of first maximum from the screen, nm
+printf("\nThe percentage decrease in relativistic value relative to non-relavistic value = %1.0f percent", percent_d);
+printf("\nThe distance between first two maxima = %3.0f nm", y);
+
+// Result
+// The percentage decrease in relativistic value relative to non-relavistic value = 2 percent
+// The distance between first two maxima = 938 nm
diff --git a/2795/CH5/EX5.8/Ex5_08.sce b/2795/CH5/EX5.8/Ex5_08.sce
new file mode 100755
index 000000000..f96c093e3
--- /dev/null
+++ b/2795/CH5/EX5.8/Ex5_08.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex5.8 : Page-187 (2013)
+clc; clear;
+dx = 17.5; // The uncertainty in position, m
+h = 1.05e-034; // Reduced Planck's constant, Js
+dp_x = h/(2*dx); // The uncertainty in momentum, kgm/s
+printf("\nThe unecrtainty in momentum of the ball = %1.0e kg-m/s", dp_x);
+dx = 0.529e-010; // The uncertainty in position, m
+dp_x = h/(2*dx); // The uncertainty in momentum, kgm/s
+printf("\nThe uncertainty in momentum of the electron = %1.0e kg-m/s", dp_x);
+
+// Result
+// The unecrtainty in momentum of the ball = 3e-036 kg-m/s
+// The uncertainty in momentum of the electron = 1e-024 kg-m/s
diff --git a/2795/CH5/EX5.9/Ex5_09.sce b/2795/CH5/EX5.9/Ex5_09.sce
new file mode 100755
index 000000000..1d226b023
--- /dev/null
+++ b/2795/CH5/EX5.9/Ex5_09.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex5.9 : Page-188 (2013)
+clc; clear;
+a_0 = 5.29e-11; // Radius of H-atom, m
+l = 2*a_0; // Length, m
+h = 6.63e-34; // Planck's constant, Js
+m = 9.1e-31; // Mass of electron, kg
+K_min = h^2/(8*(%pi)^2*m*l^2); // Minimum kinetic energy possesed, J
+printf("\nThe minimum kinetic energy of the electron = %3.1f eV", K_min/1.6e-19);
+
+// Result
+// The minimum kinetic energy of the electron = 3.4 eV