summaryrefslogtreecommitdiff
path: root/278/CH14
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:38:01 +0530
committerprashantsinalkar2017-10-10 12:38:01 +0530
commitf35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch)
treeeb72842d800ac1233e9d890e020eac5fd41b0b1b /278/CH14
parent7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff)
downloadScilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip
updated the code
Diffstat (limited to '278/CH14')
-rwxr-xr-x278/CH14/EX14.1/ex_14_1.sce22
-rwxr-xr-x278/CH14/EX14.10/ex_14_10.sce130
-rwxr-xr-x278/CH14/EX14.11/ex_14_11.sce99
-rwxr-xr-x278/CH14/EX14.12/ex_14_12.sce69
-rwxr-xr-x278/CH14/EX14.13/ex_14_13.sce60
-rwxr-xr-x278/CH14/EX14.2/ex_14_2.sce28
-rwxr-xr-x278/CH14/EX14.3/ex_14_3.sce40
-rwxr-xr-x278/CH14/EX14.4/ex_14_4.sce26
-rwxr-xr-x278/CH14/EX14.5/ex_14_5.sce42
-rwxr-xr-x278/CH14/EX14.6/ex_14_6.sce40
-rwxr-xr-x278/CH14/EX14.7/ex_14_7.sce30
-rwxr-xr-x278/CH14/EX14.9/ex_14_9.sce38
12 files changed, 323 insertions, 301 deletions
diff --git a/278/CH14/EX14.1/ex_14_1.sce b/278/CH14/EX14.1/ex_14_1.sce
index 076a13d5a..d77df8c3e 100755
--- a/278/CH14/EX14.1/ex_14_1.sce
+++ b/278/CH14/EX14.1/ex_14_1.sce
@@ -1,12 +1,12 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-N=200//rpm
-P=20*10^3//W
-t=42//N/mm^2
-//let d be dia
-T=P*60000/(2*%pi*200)//N-mm
-//T=(%pi/16)*t*d^3=8.25*d^3
-d=(T/8.25)^(1/3)//mm
+
+clc
+//solution
+//given
+N=200//rpm
+P=20*10^3//W
+t=42//N/mm^2
+//let d be dia
+T=P*60000/(2*%pi*200)//N-mm
+//T=(%pi/16)*t*d^3=8.25*d^3
+d=(T/8.25)^(1/3)//mm
printf("the dia of shaft is,%f mm",d) \ No newline at end of file
diff --git a/278/CH14/EX14.10/ex_14_10.sce b/278/CH14/EX14.10/ex_14_10.sce
index f7c33c4d3..a6d74f9b3 100755
--- a/278/CH14/EX14.10/ex_14_10.sce
+++ b/278/CH14/EX14.10/ex_14_10.sce
@@ -1,53 +1,77 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.6
-AB=800//mm
-a=(%pi/180)*20
-Dc=600//mm
-Rc=300//mm
-AC=200//mm
-Dd=700//mm
-Rd=350//mm
-DB=250//mm
-W=2000//N
-T1=3000//N
-T2=T1/3//N
-t=40//n/mm^2
-T=(T1-T2)*Rd//N-mm
-Ftc=(T/Rc)//N//tangential force acting oon gear C
-//Wc=Ftc/cos(a)//N
-Wc=Ftc/0.9397
-//Wcv=Wc*cos(a)//veritcal comp
-Wcv=Wc*0.9397
-//Wch=Wc*sin(a)//hori com
-Wcv=Wc*0.342//N
-//RAv + RBv=2333+2000
-//RAv + RBv=4333//N
-RBv=[2000(800-250)+(2333*200)]/800//N
-RAv=4333-RBv//N
-printf("the value of RAv is,%f N\n",RAv)
-//moment due to veritcal component
-MAv=0
-MBv=0
-MCv=RAv*200//N-mm
-MDv=RBv*250//N-mm
-//RAh + RBh=4849
-RBh=[4000*(800-250)+ (849*200)]/800//N
-RAh=4849-RBh//N
-//moment due to horizontal component
-MAh=0
-MBh=0
-MCh=RAh*200//N-mm
-MDh=RBh*250//N-mm
-Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
-Md=sqrt(MDv^2 + MDh^2)//net moment abt D
-printf("the moment acting abt D is,%f N-mm\n",Md)
-//M=Md//N-mm//max moment
-//printf("the moment acting is,%f N-mm\n",M)
-//let d be dia
-Te=sqrt(Md^2 + T^2)/N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/7.86)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+clc
+//solution
+//given
+//ref fig 14.6
+AB=800//mm
+a=(%pi/180)*20
+Dc=600//mm
+Rc=300//mm
+AC=200//mm
+Dd=700//mm
+Rd=350//mm
+DB=250//mm
+W=2000//N
+T1=3000//N
+T2=T1/3//N
+
+t=40//n/mm^2
+T=(T1-T2)*Rd//N-mm
+Ftc=(T/Rc)//N//tangential force acting oon gear C
+//Wc=Ftc/cos(a)//N
+Wc=Ftc/0.9397
+//Wcv=Wc*cos(a)//veritcal comp
+Wcv=Wc*0.9397
+//Wch=Wc*sin(a)//hori com
+Wcv=Wc*0.342//N
+//RAv + RBv=2333+2000
+//RAv + RBv=4333//N
+RBv=[2000*(800-250)+(2333*200)]/800//N
+RAv=4333-RBv//N
+printf('the value of RAv is,%f N\n',RAv)
+//moment due to veritcal component
+MAv=0
+MBv=0
+MCv=RAv*200//N-mm
+MDv=RBv*250//N-mm
+//RAh + RBh=4849
+RBh=[4000*(800-250)+ (849*200)]/800//N
+RAh=4849-RBh//N
+//moment due to horizontal component
+MAh=0
+MBh=0
+MCh=RAh*200//N-mm
+MDh=RBh*250//N-mm
+Mc=sqrt(MCv.^2 + MCh.^2)//net moment abt C
+Md=sqrt(MDv.^2 + MDh.^2)//net moment abt D
+printf("the moment acting abt D is,%f N-mm\n",Md)
+//M=Md//N-mm//max moment
+//printf("the moment acting is,%f N-mm\n",M)
+//let d be dia
+Te=sqrt(Md.^2 + T.^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te./7.86).^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
+
+//moment due to veritcal component
+MAv=0
+MBv=0
+MCv=RAv*200//N-mm
+MDv=RBv*250//N-mm
+//RAh + RBh=4849
+RBh=[4000*(800-250)+ (849*200)]/800//N
+RAh=4849-RBh//N
+//moment due to horizontal component
+MAh=0
+MBh=0
+MCh=RAh*200//N-mm
+MDh=RBh*250//N-mm
+Mc=sqrt(MCv.^2 + MCh.^2)//net moment abt C
+Md=sqrt(MDv.^2 + MDh.^2)//net moment abt D
+printf("the moment acting abt D is,%f N-mm\n",Md)
+//M=Md//N-mm//max moment
+//printf("the moment acting is,%f N-mm\n",M)
+//let d be dia
+Te=sqrt(Md.^2 + T.^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d) \ No newline at end of file
diff --git a/278/CH14/EX14.11/ex_14_11.sce b/278/CH14/EX14.11/ex_14_11.sce
index d60f20a31..a4053ae9e 100755
--- a/278/CH14/EX14.11/ex_14_11.sce
+++ b/278/CH14/EX14.11/ex_14_11.sce
@@ -1,50 +1,49 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.6
-AB=800//mm
-a=(%pi/180)*20//rad
-Dc=600//mm
-Rc=300//mm
-AC=200//mm
-Dd=700//mm
-Rd=350//mm
-DB=250//mm
-W=2000//N
-T1=3000//N
-T2=T1/3//N
-t=40//n/mm^2
-T=(T1-T2)*Rd//N-mm
-Ftc=T/Rc//N//tangential force acting oon gear C
-Wc=Ftc/cos(a)//N
-Wcv=Wc*cos(a)//veritcal comp
-Wch=Wc*sin(a)//hori com
-//RAv + RBv=2333+2000
-//RAv + RBv=4333//N
-RBv=[2000(800-250)+(2333*200)]/800//N
-RAv=4333-RBv//N
-printf("the value of RAv is,%f N\n",RAv)
-//moment due to veritcal component
-MAv=0
-MBv=0
-MCv=RAv*200//N-mm
-MDv=RBv*250//N-mm
-//RAh + RBh=4849
-RBh=[4000*(800-250)+ (849*200)]/800//N
-RAh=4849-RBh//N
-//moment due to horizontal component
-MAh=0
-MBh=0
-MCh=RAh*200//N-mm
-MDh=RBh*250//N-mm
-Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
-Md=sqrt(MDv^2 + MDh^2)//net moment abt D
-printf("the moment acting abt D is,%f N-mm\n",Md)
-//M=Md//N-mm
-//printf("the moment acting is,%f N-mm\n",M)
-//let d eb dia
-Te=sqrt(Md^2 + T^2)/N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/7.86)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+clc
+//solution
+//given
+//ref fig 14.6
+AB=800//mm
+a=(%pi/180)*20//rad
+Dc=600//mm
+Rc=300//mm
+AC=200//mm
+Dd=700//mm
+Rd=350//mm
+DB=250//mm
+W=2000//N
+T1=3000//N
+T2=T1/3//N
+t=40//n/mm^2
+T=(T1-T2)*Rd//N-mm
+Ftc=T/Rc//N//tangential force acting oon gear C
+Wc=Ftc/cos(a)//N
+Wcv=Wc*cos(a)//veritcal comp
+Wch=Wc*sin(a)//hori com
+//RAv + RBv=2333+2000
+//RAv + RBv=4333//N
+RBv=[2000*(800-250)+(2333*200)]/800//N
+RAv=4333-RBv//N
+printf("the value of RAv is,%f N\n",RAv)
+//moment due to veritcal component
+MAv=0
+MBv=0
+MCv=RAv*200//N-mm
+MDv=RBv*250//N-mm
+//RAh + RBh=4849
+RBh=[4000*(800-250)+ (849*200)]/800//N
+RAh=4849-RBh//N
+//moment due to horizontal component
+MAh=0
+MBh=0
+MCh=RAh*200//N-mm
+MDh=RBh*250//N-mm
+Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
+Md=sqrt(MDv^2 + MDh^2)//net moment abt D
+printf("the moment acting abt D is,%f N-mm\n",Md)
+//M=Md//N-mm
+//printf("the moment acting is,%f N-mm\n",M)
+//let d eb dia
+Te=sqrt(Md^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/7.86)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d) \ No newline at end of file
diff --git a/278/CH14/EX14.12/ex_14_12.sce b/278/CH14/EX14.12/ex_14_12.sce
index 13ffb2c24..ebf3d3d4c 100755
--- a/278/CH14/EX14.12/ex_14_12.sce
+++ b/278/CH14/EX14.12/ex_14_12.sce
@@ -1,35 +1,34 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-P=20000//W
-N=200//rpm
-W=900//N
-L=2500//mm
-t=42//N/mm^2
-fb=56//N/mm^2
-T=P*60000/(2*%pi*200)//N-mm
-M=W*L/4//N-mm//max monet
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d1)
-Me=0.5[M + sqrt(M^2 + T^2)]//N-mm
-//Me=(%pi/32)*fb*d2^3
-d2=(Me/5.5)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=55 mm in consideration\n")
-//dia by applying gradually applied load
-//using table 14.2
-Km=1.5
-Kl=1
-Te1=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te1/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d1)
-Me1=0.5[M*Km + sqrt((Km*M)^2 + (Kl*T)^2)]//N-mm
-//Me1=(%pi/32)*fb*d2^3
-d2=(Me1/5.5)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=60 mm in consideration\n")
-
+//determine dia of the shaft
+clc
+//solution
+//given
+P=20000//W
+N=200//rpm
+W=900//N
+L=2500//mm
+t=42//N/mm^2
+fb=56//N/mm^2
+T=P*60000/(2*%pi*200)//N-mm
+M=W*L/4//N-mm//max monet
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d1)
+Me=0.5*[M + sqrt(M^2 + T^2)]//N-mm
+//Me=(%pi/32)*fb*d2^3
+d2=(Me/5.5)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=55 mm in consideration\n")
+//dia by applying gradually applied load
+//using table 14.2
+Km=1.5
+Kl=1
+Te1=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te1/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d1)
+Me1=0.5*[M*Km + sqrt((Km*M)^2 + (Kl*T)^2)]//N-mm
+//Me1=(%pi/32)*fb*d2^3
+d2=(Me1/5.5)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=60 mm in consideration\n") \ No newline at end of file
diff --git a/278/CH14/EX14.13/ex_14_13.sce b/278/CH14/EX14.13/ex_14_13.sce
index 327b5a0b5..c35214043 100755
--- a/278/CH14/EX14.13/ex_14_13.sce
+++ b/278/CH14/EX14.13/ex_14_13.sce
@@ -1,30 +1,30 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.9
-W=200//N
-L=300//mm
-D=200//mm
-R=100//mm
-P=1000//W
-N=120//rpm
-u=0.3
-Km=1.5
-Kl=2
-T=79.6*1000
-t=35//N/mm^2
-//T=(T1-T2)*R
-//T1-T2=796.....eq 1
-//log(T1/T2)*2.3=u*%pi
-//T1/T2=2.57.....eq 2
-//from 1 and 2
-T1=1303//N
-T2=507//N
-Wt=T1+T2+W//N
-M=Wt*L//N-mm
-Te=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/6.87)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
-
+
+clc
+//solution
+//given
+//ref fig 14.9
+W=200//N
+L=300//mm
+D=200//mm
+R=100//mm
+P=1000//W
+N=120//rpm
+u=0.3
+Km=1.5
+Kl=2
+T=79.6*1000
+t=35//N/mm^2
+//T=(T1-T2)*R
+//T1-T2=796.....eq 1
+//log(T1/T2)*2.3=u*%pi
+//T1/T2=2.57.....eq 2
+//from 1 and 2
+T1=1303//N
+T2=507//N
+Wt=T1+T2+W//N
+M=Wt*L//N-mm
+Te=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/6.87)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
+
diff --git a/278/CH14/EX14.2/ex_14_2.sce b/278/CH14/EX14.2/ex_14_2.sce
index d98fbd30b..c65e9872e 100755
--- a/278/CH14/EX14.2/ex_14_2.sce
+++ b/278/CH14/EX14.2/ex_14_2.sce
@@ -1,14 +1,14 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-P=10^6//W
-N=2400//rpm
-//Tmax=1.2*Tmean
-t=60//N/mm^2
-//let d be dia of shaft
-Tmean=(P*60000)/(2*%pi*N)//N-mm
-Tmax=12.*Tmean
-//Tmax=(%pi/16)*t*d^3=8.25*d^3
-d=(Tmax/11.78)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+
+clc
+//solution
+//given
+P=10^6//W
+N=2400//rpm
+//Tmax=1.2*Tmean
+t=60//N/mm^2
+//let d be dia of shaft
+Tmean=(P*60000)/(2*%pi*N)//N-mm
+Tmax=12.*Tmean
+//Tmax=(%pi/16)*t*d^3=8.25*d^3
+d=(Tmax/11.78)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.3/ex_14_3.sce b/278/CH14/EX14.3/ex_14_3.sce
index 466c887d1..30876c4dd 100755
--- a/278/CH14/EX14.3/ex_14_3.sce
+++ b/278/CH14/EX14.3/ex_14_3.sce
@@ -1,21 +1,21 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-P=20*1000//W
-N=200//rpm
-tu=360//N/mm^2
-Fs=8
-k=0.5//k=di/do
-t=tu/Fs//N/mm^2
-T=P*60000/(2*%pi*200)//N-mm
-//T=(%pi/16)*t*d^3=8.25*d^3
-d=(T/8.25)^(1/3)//mm
-printf("the dia of solid shaft is,%f mm\n",d)
-//elt di and do be inside and do be outer dia
-//T=(%pi/16)*t*do^3*(1-k^4)
-//T=(%pi/16)*t*do^3[1-0.5^4]
-//T=8.3*do^3
-do=(T/8.3)^(1/3)//mm
-di=0.5*do//mm
+
+clc
+//solution
+//given
+P=20*1000//W
+N=200//rpm
+tu=360//N/mm^2
+Fs=8
+k=0.5//k=di/do
+t=tu/Fs//N/mm^2
+T=P*60000/(2*%pi*200)//N-mm
+//T=(%pi/16)*t*d^3=8.25*d^3
+d=(T/8.25)^(1/3)//mm
+printf("the dia of solid shaft is,%f mm\n",d)
+//elt di and do be inside and do be outer dia
+//T=(%pi/16)*t*do^3*(1-k^4)
+//T=(%pi/16)*t*do^3[1-0.5^4]
+//T=8.3*do^3
+do=(T/8.3)^(1/3)//mm
+di=0.5*do//mm
printf("the inner and outer dia is,%f mm\n,%f mm\n",di,do) \ No newline at end of file
diff --git a/278/CH14/EX14.4/ex_14_4.sce b/278/CH14/EX14.4/ex_14_4.sce
index 1cec6f9b0..1099a8e1a 100755
--- a/278/CH14/EX14.4/ex_14_4.sce
+++ b/278/CH14/EX14.4/ex_14_4.sce
@@ -1,14 +1,14 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.1
-W=50*10^3//N
-L=100//mm
-x=1.4//m
-fb=100//N/mm^2
-M=W*L//N-mm
-//let d eb dia
-//M=(%pi/32)*fb*d^3
-d=(M/9.82)^(1/3)//mm
+
+clc
+//solution
+//given
+//ref fig 14.1
+W=50*10^3//N
+L=100//mm
+x=1.4//m
+fb=100//N/mm^2
+M=W*L//N-mm
+//let d eb dia
+//M=(%pi/32)*fb*d^3
+d=(M/9.82)^(1/3)//mm
printf("the dia of axle is,%f mm\n",d) \ No newline at end of file
diff --git a/278/CH14/EX14.5/ex_14_5.sce b/278/CH14/EX14.5/ex_14_5.sce
index 58a2bf99f..91ccc04d7 100755
--- a/278/CH14/EX14.5/ex_14_5.sce
+++ b/278/CH14/EX14.5/ex_14_5.sce
@@ -1,21 +1,21 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-M=3000*1000//N-mm
-T=10000*1000//N-mm
-ftu=700//N/mm^2
-tu=500//N/mm^2
-Fs=6
-ft=ftu/Fs//N/mm^2
-t=tu/Fs//N/mm^2
-//let d eb dia of shaft
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te/16.36)^(1/3)//mm
-printf("the dia of axle is,%f mm\n",d1)
-Me=0.5*[M+ sqrt(M^2 + T^2)]//N-mm
-//Me=(%pi/32)*fb*d2^3
-d2=(Me/11.46)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=90 mm in consideration")
+
+clc
+//solution
+//given
+M=3000*1000//N-mm
+T=10000*1000//N-mm
+ftu=700//N/mm^2
+tu=500//N/mm^2
+Fs=6
+ft=ftu/Fs//N/mm^2
+t=tu/Fs//N/mm^2
+//let d eb dia of shaft
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d1=(Te/16.36)^(1/3)//mm
+printf("the dia of axle is,%f mm\n",d1)
+Me=0.5*[M+ sqrt(M^2 + T^2)]//N-mm
+//Me=(%pi/32)*fb*d2^3
+d2=(Me/11.46)^(1/3)//mm
+printf("the dia oif shaft is,%f mm\n",d2)
+printf("taking large value i.e d=d1=90 mm in consideration")
diff --git a/278/CH14/EX14.6/ex_14_6.sce b/278/CH14/EX14.6/ex_14_6.sce
index f9a6d088b..c51a0736e 100755
--- a/278/CH14/EX14.6/ex_14_6.sce
+++ b/278/CH14/EX14.6/ex_14_6.sce
@@ -1,20 +1,20 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-P=7.5*10^3//W
-N=300//rpm
-D=150//mm
-L=200//mm
-t=45//N/mm^2
-a=(%pi/180)*20//rad
-//reff fig 14.2
-T=P*60000/(2*%pi*200)//N-mm
-Ft=2*T/D//N
-W=Ft/(cos(a))//N
-M=W*L/4//N-mm
-//let d be dia
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/8.84)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+
+clc
+//solution
+//given
+P=7.5*10^3//W
+N=300//rpm
+D=150//mm
+L=200//mm
+t=45//N/mm^2
+a=(%pi/180)*20//rad
+//reff fig 14.2
+T=P*60000/(2*%pi*200)//N-mm
+Ft=2*T/D//N
+W=Ft/(cos(a))//N
+M=W*L/4//N-mm
+//let d be dia
+Te=sqrt(T^2 + M^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/8.84)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.7/ex_14_7.sce b/278/CH14/EX14.7/ex_14_7.sce
index a13753355..eae76e33f 100755
--- a/278/CH14/EX14.7/ex_14_7.sce
+++ b/278/CH14/EX14.7/ex_14_7.sce
@@ -1,15 +1,15 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.3
-P=100000//W
-N=300//rpm
-L=3000//mm
-W=1500//N
-T=P*60000/(2*%pi*200)//N-mm
-M=1500*1000//N-mm
-Te=sqrt(M^2 + T^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/11.8)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+
+clc
+//solution
+//given
+//ref fig 14.3
+P=100000//W
+N=300//rpm
+L=3000//mm
+W=1500//N
+T=P*60000/(2*%pi*200)//N-mm
+M=1500*1000//N-mm
+Te=sqrt(M^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/11.8)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)
diff --git a/278/CH14/EX14.9/ex_14_9.sce b/278/CH14/EX14.9/ex_14_9.sce
index e1b58901c..4f649349d 100755
--- a/278/CH14/EX14.9/ex_14_9.sce
+++ b/278/CH14/EX14.9/ex_14_9.sce
@@ -1,19 +1,19 @@
-//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.4
-D=1500//mm
-R=750//mm
-T1=5400//N
-T2=1800//N
-L=400//mm
-t=42//N/mm^2
-T=(T1-T2)*R//N-mm
-W=T1+T2//N
-M=W*L//N-mm
-//let d be dia of shaft
-Te=sqrt(M^2 + T^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+
+clc
+//solution
+//given
+//ref fig 14.4
+D=1500//mm
+R=750//mm
+T1=5400//N
+T2=1800//N
+L=400//mm
+t=42//N/mm^2
+T=(T1-T2)*R//N-mm
+W=T1+T2//N
+M=W*L//N-mm
+//let d be dia of shaft
+Te=sqrt(M^2 + T^2)//N-mm
+//Te=(%pi/16)*t*d^3
+d=(Te/8.25)^(1/3)//mm
+printf("the dia of shaft is,%f mm",d)