diff options
author | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:38:01 +0530 |
commit | f35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch) | |
tree | eb72842d800ac1233e9d890e020eac5fd41b0b1b /278/CH14 | |
parent | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff) | |
download | Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2 Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip |
updated the code
Diffstat (limited to '278/CH14')
-rwxr-xr-x | 278/CH14/EX14.1/ex_14_1.sce | 22 | ||||
-rwxr-xr-x | 278/CH14/EX14.10/ex_14_10.sce | 130 | ||||
-rwxr-xr-x | 278/CH14/EX14.11/ex_14_11.sce | 99 | ||||
-rwxr-xr-x | 278/CH14/EX14.12/ex_14_12.sce | 69 | ||||
-rwxr-xr-x | 278/CH14/EX14.13/ex_14_13.sce | 60 | ||||
-rwxr-xr-x | 278/CH14/EX14.2/ex_14_2.sce | 28 | ||||
-rwxr-xr-x | 278/CH14/EX14.3/ex_14_3.sce | 40 | ||||
-rwxr-xr-x | 278/CH14/EX14.4/ex_14_4.sce | 26 | ||||
-rwxr-xr-x | 278/CH14/EX14.5/ex_14_5.sce | 42 | ||||
-rwxr-xr-x | 278/CH14/EX14.6/ex_14_6.sce | 40 | ||||
-rwxr-xr-x | 278/CH14/EX14.7/ex_14_7.sce | 30 | ||||
-rwxr-xr-x | 278/CH14/EX14.9/ex_14_9.sce | 38 |
12 files changed, 323 insertions, 301 deletions
diff --git a/278/CH14/EX14.1/ex_14_1.sce b/278/CH14/EX14.1/ex_14_1.sce index 076a13d5a..d77df8c3e 100755 --- a/278/CH14/EX14.1/ex_14_1.sce +++ b/278/CH14/EX14.1/ex_14_1.sce @@ -1,12 +1,12 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-N=200//rpm
-P=20*10^3//W
-t=42//N/mm^2
-//let d be dia
-T=P*60000/(2*%pi*200)//N-mm
-//T=(%pi/16)*t*d^3=8.25*d^3
-d=(T/8.25)^(1/3)//mm
+ +clc +//solution +//given +N=200//rpm +P=20*10^3//W +t=42//N/mm^2 +//let d be dia +T=P*60000/(2*%pi*200)//N-mm +//T=(%pi/16)*t*d^3=8.25*d^3 +d=(T/8.25)^(1/3)//mm printf("the dia of shaft is,%f mm",d)
\ No newline at end of file diff --git a/278/CH14/EX14.10/ex_14_10.sce b/278/CH14/EX14.10/ex_14_10.sce index f7c33c4d3..a6d74f9b3 100755 --- a/278/CH14/EX14.10/ex_14_10.sce +++ b/278/CH14/EX14.10/ex_14_10.sce @@ -1,53 +1,77 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.6
-AB=800//mm
-a=(%pi/180)*20
-Dc=600//mm
-Rc=300//mm
-AC=200//mm
-Dd=700//mm
-Rd=350//mm
-DB=250//mm
-W=2000//N
-T1=3000//N
-T2=T1/3//N
-t=40//n/mm^2
-T=(T1-T2)*Rd//N-mm
-Ftc=(T/Rc)//N//tangential force acting oon gear C
-//Wc=Ftc/cos(a)//N
-Wc=Ftc/0.9397
-//Wcv=Wc*cos(a)//veritcal comp
-Wcv=Wc*0.9397
-//Wch=Wc*sin(a)//hori com
-Wcv=Wc*0.342//N
-//RAv + RBv=2333+2000
-//RAv + RBv=4333//N
-RBv=[2000(800-250)+(2333*200)]/800//N
-RAv=4333-RBv//N
-printf("the value of RAv is,%f N\n",RAv)
-//moment due to veritcal component
-MAv=0
-MBv=0
-MCv=RAv*200//N-mm
-MDv=RBv*250//N-mm
-//RAh + RBh=4849
-RBh=[4000*(800-250)+ (849*200)]/800//N
-RAh=4849-RBh//N
-//moment due to horizontal component
-MAh=0
-MBh=0
-MCh=RAh*200//N-mm
-MDh=RBh*250//N-mm
-Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
-Md=sqrt(MDv^2 + MDh^2)//net moment abt D
-printf("the moment acting abt D is,%f N-mm\n",Md)
-//M=Md//N-mm//max moment
-//printf("the moment acting is,%f N-mm\n",M)
-//let d be dia
-Te=sqrt(Md^2 + T^2)/N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/7.86)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+clc +//solution +//given +//ref fig 14.6 +AB=800//mm +a=(%pi/180)*20 +Dc=600//mm +Rc=300//mm +AC=200//mm +Dd=700//mm +Rd=350//mm +DB=250//mm +W=2000//N +T1=3000//N +T2=T1/3//N + +t=40//n/mm^2 +T=(T1-T2)*Rd//N-mm +Ftc=(T/Rc)//N//tangential force acting oon gear C +//Wc=Ftc/cos(a)//N +Wc=Ftc/0.9397 +//Wcv=Wc*cos(a)//veritcal comp +Wcv=Wc*0.9397 +//Wch=Wc*sin(a)//hori com +Wcv=Wc*0.342//N +//RAv + RBv=2333+2000 +//RAv + RBv=4333//N +RBv=[2000*(800-250)+(2333*200)]/800//N +RAv=4333-RBv//N +printf('the value of RAv is,%f N\n',RAv) +//moment due to veritcal component +MAv=0 +MBv=0 +MCv=RAv*200//N-mm +MDv=RBv*250//N-mm +//RAh + RBh=4849 +RBh=[4000*(800-250)+ (849*200)]/800//N +RAh=4849-RBh//N +//moment due to horizontal component +MAh=0 +MBh=0 +MCh=RAh*200//N-mm +MDh=RBh*250//N-mm +Mc=sqrt(MCv.^2 + MCh.^2)//net moment abt C +Md=sqrt(MDv.^2 + MDh.^2)//net moment abt D +printf("the moment acting abt D is,%f N-mm\n",Md) +//M=Md//N-mm//max moment +//printf("the moment acting is,%f N-mm\n",M) +//let d be dia +Te=sqrt(Md.^2 + T.^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te./7.86).^(1/3)//mm +printf("the dia of shaft is,%f mm",d) + +//moment due to veritcal component +MAv=0 +MBv=0 +MCv=RAv*200//N-mm +MDv=RBv*250//N-mm +//RAh + RBh=4849 +RBh=[4000*(800-250)+ (849*200)]/800//N +RAh=4849-RBh//N +//moment due to horizontal component +MAh=0 +MBh=0 +MCh=RAh*200//N-mm +MDh=RBh*250//N-mm +Mc=sqrt(MCv.^2 + MCh.^2)//net moment abt C +Md=sqrt(MDv.^2 + MDh.^2)//net moment abt D +printf("the moment acting abt D is,%f N-mm\n",Md) +//M=Md//N-mm//max moment +//printf("the moment acting is,%f N-mm\n",M) +//let d be dia +Te=sqrt(Md.^2 + T.^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/7.86)^(1/3)//mm +printf("the dia of shaft is,%f mm",d)
\ No newline at end of file diff --git a/278/CH14/EX14.11/ex_14_11.sce b/278/CH14/EX14.11/ex_14_11.sce index d60f20a31..a4053ae9e 100755 --- a/278/CH14/EX14.11/ex_14_11.sce +++ b/278/CH14/EX14.11/ex_14_11.sce @@ -1,50 +1,49 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.6
-AB=800//mm
-a=(%pi/180)*20//rad
-Dc=600//mm
-Rc=300//mm
-AC=200//mm
-Dd=700//mm
-Rd=350//mm
-DB=250//mm
-W=2000//N
-T1=3000//N
-T2=T1/3//N
-t=40//n/mm^2
-T=(T1-T2)*Rd//N-mm
-Ftc=T/Rc//N//tangential force acting oon gear C
-Wc=Ftc/cos(a)//N
-Wcv=Wc*cos(a)//veritcal comp
-Wch=Wc*sin(a)//hori com
-//RAv + RBv=2333+2000
-//RAv + RBv=4333//N
-RBv=[2000(800-250)+(2333*200)]/800//N
-RAv=4333-RBv//N
-printf("the value of RAv is,%f N\n",RAv)
-//moment due to veritcal component
-MAv=0
-MBv=0
-MCv=RAv*200//N-mm
-MDv=RBv*250//N-mm
-//RAh + RBh=4849
-RBh=[4000*(800-250)+ (849*200)]/800//N
-RAh=4849-RBh//N
-//moment due to horizontal component
-MAh=0
-MBh=0
-MCh=RAh*200//N-mm
-MDh=RBh*250//N-mm
-Mc=sqrt(MCv^2 + MCh^2)//net moment abt C
-Md=sqrt(MDv^2 + MDh^2)//net moment abt D
-printf("the moment acting abt D is,%f N-mm\n",Md)
-//M=Md//N-mm
-//printf("the moment acting is,%f N-mm\n",M)
-//let d eb dia
-Te=sqrt(Md^2 + T^2)/N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/7.86)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+clc +//solution +//given +//ref fig 14.6 +AB=800//mm +a=(%pi/180)*20//rad +Dc=600//mm +Rc=300//mm +AC=200//mm +Dd=700//mm +Rd=350//mm +DB=250//mm +W=2000//N +T1=3000//N +T2=T1/3//N +t=40//n/mm^2 +T=(T1-T2)*Rd//N-mm +Ftc=T/Rc//N//tangential force acting oon gear C +Wc=Ftc/cos(a)//N +Wcv=Wc*cos(a)//veritcal comp +Wch=Wc*sin(a)//hori com +//RAv + RBv=2333+2000 +//RAv + RBv=4333//N +RBv=[2000*(800-250)+(2333*200)]/800//N +RAv=4333-RBv//N +printf("the value of RAv is,%f N\n",RAv) +//moment due to veritcal component +MAv=0 +MBv=0 +MCv=RAv*200//N-mm +MDv=RBv*250//N-mm +//RAh + RBh=4849 +RBh=[4000*(800-250)+ (849*200)]/800//N +RAh=4849-RBh//N +//moment due to horizontal component +MAh=0 +MBh=0 +MCh=RAh*200//N-mm +MDh=RBh*250//N-mm +Mc=sqrt(MCv^2 + MCh^2)//net moment abt C +Md=sqrt(MDv^2 + MDh^2)//net moment abt D +printf("the moment acting abt D is,%f N-mm\n",Md) +//M=Md//N-mm +//printf("the moment acting is,%f N-mm\n",M) +//let d eb dia +Te=sqrt(Md^2 + T^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/7.86)^(1/3)//mm +printf("the dia of shaft is,%f mm",d)
\ No newline at end of file diff --git a/278/CH14/EX14.12/ex_14_12.sce b/278/CH14/EX14.12/ex_14_12.sce index 13ffb2c24..ebf3d3d4c 100755 --- a/278/CH14/EX14.12/ex_14_12.sce +++ b/278/CH14/EX14.12/ex_14_12.sce @@ -1,35 +1,34 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-P=20000//W
-N=200//rpm
-W=900//N
-L=2500//mm
-t=42//N/mm^2
-fb=56//N/mm^2
-T=P*60000/(2*%pi*200)//N-mm
-M=W*L/4//N-mm//max monet
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d1)
-Me=0.5[M + sqrt(M^2 + T^2)]//N-mm
-//Me=(%pi/32)*fb*d2^3
-d2=(Me/5.5)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=55 mm in consideration\n")
-//dia by applying gradually applied load
-//using table 14.2
-Km=1.5
-Kl=1
-Te1=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te1/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d1)
-Me1=0.5[M*Km + sqrt((Km*M)^2 + (Kl*T)^2)]//N-mm
-//Me1=(%pi/32)*fb*d2^3
-d2=(Me1/5.5)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=60 mm in consideration\n")
-
+//determine dia of the shaft +clc +//solution +//given +P=20000//W +N=200//rpm +W=900//N +L=2500//mm +t=42//N/mm^2 +fb=56//N/mm^2 +T=P*60000/(2*%pi*200)//N-mm +M=W*L/4//N-mm//max monet +Te=sqrt(T^2 + M^2)//N-mm +//Te=(%pi/16)*t*d^3 +d1=(Te/8.25)^(1/3)//mm +printf("the dia of shaft is,%f mm",d1) +Me=0.5*[M + sqrt(M^2 + T^2)]//N-mm +//Me=(%pi/32)*fb*d2^3 +d2=(Me/5.5)^(1/3)//mm +printf("the dia oif shaft is,%f mm\n",d2) +printf("taking large value i.e d=d1=55 mm in consideration\n") +//dia by applying gradually applied load +//using table 14.2 +Km=1.5 +Kl=1 +Te1=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm +//Te=(%pi/16)*t*d^3 +d1=(Te1/8.25)^(1/3)//mm +printf("the dia of shaft is,%f mm",d1) +Me1=0.5*[M*Km + sqrt((Km*M)^2 + (Kl*T)^2)]//N-mm +//Me1=(%pi/32)*fb*d2^3 +d2=(Me1/5.5)^(1/3)//mm +printf("the dia oif shaft is,%f mm\n",d2) +printf("taking large value i.e d=d1=60 mm in consideration\n")
\ No newline at end of file diff --git a/278/CH14/EX14.13/ex_14_13.sce b/278/CH14/EX14.13/ex_14_13.sce index 327b5a0b5..c35214043 100755 --- a/278/CH14/EX14.13/ex_14_13.sce +++ b/278/CH14/EX14.13/ex_14_13.sce @@ -1,30 +1,30 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.9
-W=200//N
-L=300//mm
-D=200//mm
-R=100//mm
-P=1000//W
-N=120//rpm
-u=0.3
-Km=1.5
-Kl=2
-T=79.6*1000
-t=35//N/mm^2
-//T=(T1-T2)*R
-//T1-T2=796.....eq 1
-//log(T1/T2)*2.3=u*%pi
-//T1/T2=2.57.....eq 2
-//from 1 and 2
-T1=1303//N
-T2=507//N
-Wt=T1+T2+W//N
-M=Wt*L//N-mm
-Te=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/6.87)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
-
+ +clc +//solution +//given +//ref fig 14.9 +W=200//N +L=300//mm +D=200//mm +R=100//mm +P=1000//W +N=120//rpm +u=0.3 +Km=1.5 +Kl=2 +T=79.6*1000 +t=35//N/mm^2 +//T=(T1-T2)*R +//T1-T2=796.....eq 1 +//log(T1/T2)*2.3=u*%pi +//T1/T2=2.57.....eq 2 +//from 1 and 2 +T1=1303//N +T2=507//N +Wt=T1+T2+W//N +M=Wt*L//N-mm +Te=sqrt((Km*M)^2 + (Kl*T)^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/6.87)^(1/3)//mm +printf("the dia of shaft is,%f mm",d) + diff --git a/278/CH14/EX14.2/ex_14_2.sce b/278/CH14/EX14.2/ex_14_2.sce index d98fbd30b..c65e9872e 100755 --- a/278/CH14/EX14.2/ex_14_2.sce +++ b/278/CH14/EX14.2/ex_14_2.sce @@ -1,14 +1,14 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-P=10^6//W
-N=2400//rpm
-//Tmax=1.2*Tmean
-t=60//N/mm^2
-//let d be dia of shaft
-Tmean=(P*60000)/(2*%pi*N)//N-mm
-Tmax=12.*Tmean
-//Tmax=(%pi/16)*t*d^3=8.25*d^3
-d=(Tmax/11.78)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+ +clc +//solution +//given +P=10^6//W +N=2400//rpm +//Tmax=1.2*Tmean +t=60//N/mm^2 +//let d be dia of shaft +Tmean=(P*60000)/(2*%pi*N)//N-mm +Tmax=12.*Tmean +//Tmax=(%pi/16)*t*d^3=8.25*d^3 +d=(Tmax/11.78)^(1/3)//mm +printf("the dia of shaft is,%f mm",d) diff --git a/278/CH14/EX14.3/ex_14_3.sce b/278/CH14/EX14.3/ex_14_3.sce index 466c887d1..30876c4dd 100755 --- a/278/CH14/EX14.3/ex_14_3.sce +++ b/278/CH14/EX14.3/ex_14_3.sce @@ -1,21 +1,21 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-P=20*1000//W
-N=200//rpm
-tu=360//N/mm^2
-Fs=8
-k=0.5//k=di/do
-t=tu/Fs//N/mm^2
-T=P*60000/(2*%pi*200)//N-mm
-//T=(%pi/16)*t*d^3=8.25*d^3
-d=(T/8.25)^(1/3)//mm
-printf("the dia of solid shaft is,%f mm\n",d)
-//elt di and do be inside and do be outer dia
-//T=(%pi/16)*t*do^3*(1-k^4)
-//T=(%pi/16)*t*do^3[1-0.5^4]
-//T=8.3*do^3
-do=(T/8.3)^(1/3)//mm
-di=0.5*do//mm
+ +clc +//solution +//given +P=20*1000//W +N=200//rpm +tu=360//N/mm^2 +Fs=8 +k=0.5//k=di/do +t=tu/Fs//N/mm^2 +T=P*60000/(2*%pi*200)//N-mm +//T=(%pi/16)*t*d^3=8.25*d^3 +d=(T/8.25)^(1/3)//mm +printf("the dia of solid shaft is,%f mm\n",d) +//elt di and do be inside and do be outer dia +//T=(%pi/16)*t*do^3*(1-k^4) +//T=(%pi/16)*t*do^3[1-0.5^4] +//T=8.3*do^3 +do=(T/8.3)^(1/3)//mm +di=0.5*do//mm printf("the inner and outer dia is,%f mm\n,%f mm\n",di,do)
\ No newline at end of file diff --git a/278/CH14/EX14.4/ex_14_4.sce b/278/CH14/EX14.4/ex_14_4.sce index 1cec6f9b0..1099a8e1a 100755 --- a/278/CH14/EX14.4/ex_14_4.sce +++ b/278/CH14/EX14.4/ex_14_4.sce @@ -1,14 +1,14 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.1
-W=50*10^3//N
-L=100//mm
-x=1.4//m
-fb=100//N/mm^2
-M=W*L//N-mm
-//let d eb dia
-//M=(%pi/32)*fb*d^3
-d=(M/9.82)^(1/3)//mm
+ +clc +//solution +//given +//ref fig 14.1 +W=50*10^3//N +L=100//mm +x=1.4//m +fb=100//N/mm^2 +M=W*L//N-mm +//let d eb dia +//M=(%pi/32)*fb*d^3 +d=(M/9.82)^(1/3)//mm printf("the dia of axle is,%f mm\n",d)
\ No newline at end of file diff --git a/278/CH14/EX14.5/ex_14_5.sce b/278/CH14/EX14.5/ex_14_5.sce index 58a2bf99f..91ccc04d7 100755 --- a/278/CH14/EX14.5/ex_14_5.sce +++ b/278/CH14/EX14.5/ex_14_5.sce @@ -1,21 +1,21 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-M=3000*1000//N-mm
-T=10000*1000//N-mm
-ftu=700//N/mm^2
-tu=500//N/mm^2
-Fs=6
-ft=ftu/Fs//N/mm^2
-t=tu/Fs//N/mm^2
-//let d eb dia of shaft
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d1=(Te/16.36)^(1/3)//mm
-printf("the dia of axle is,%f mm\n",d1)
-Me=0.5*[M+ sqrt(M^2 + T^2)]//N-mm
-//Me=(%pi/32)*fb*d2^3
-d2=(Me/11.46)^(1/3)//mm
-printf("the dia oif shaft is,%f mm\n",d2)
-printf("taking large value i.e d=d1=90 mm in consideration")
+ +clc +//solution +//given +M=3000*1000//N-mm +T=10000*1000//N-mm +ftu=700//N/mm^2 +tu=500//N/mm^2 +Fs=6 +ft=ftu/Fs//N/mm^2 +t=tu/Fs//N/mm^2 +//let d eb dia of shaft +Te=sqrt(T^2 + M^2)//N-mm +//Te=(%pi/16)*t*d^3 +d1=(Te/16.36)^(1/3)//mm +printf("the dia of axle is,%f mm\n",d1) +Me=0.5*[M+ sqrt(M^2 + T^2)]//N-mm +//Me=(%pi/32)*fb*d2^3 +d2=(Me/11.46)^(1/3)//mm +printf("the dia oif shaft is,%f mm\n",d2) +printf("taking large value i.e d=d1=90 mm in consideration") diff --git a/278/CH14/EX14.6/ex_14_6.sce b/278/CH14/EX14.6/ex_14_6.sce index f9a6d088b..c51a0736e 100755 --- a/278/CH14/EX14.6/ex_14_6.sce +++ b/278/CH14/EX14.6/ex_14_6.sce @@ -1,20 +1,20 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-P=7.5*10^3//W
-N=300//rpm
-D=150//mm
-L=200//mm
-t=45//N/mm^2
-a=(%pi/180)*20//rad
-//reff fig 14.2
-T=P*60000/(2*%pi*200)//N-mm
-Ft=2*T/D//N
-W=Ft/(cos(a))//N
-M=W*L/4//N-mm
-//let d be dia
-Te=sqrt(T^2 + M^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/8.84)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+ +clc +//solution +//given +P=7.5*10^3//W +N=300//rpm +D=150//mm +L=200//mm +t=45//N/mm^2 +a=(%pi/180)*20//rad +//reff fig 14.2 +T=P*60000/(2*%pi*200)//N-mm +Ft=2*T/D//N +W=Ft/(cos(a))//N +M=W*L/4//N-mm +//let d be dia +Te=sqrt(T^2 + M^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/8.84)^(1/3)//mm +printf("the dia of shaft is,%f mm",d) diff --git a/278/CH14/EX14.7/ex_14_7.sce b/278/CH14/EX14.7/ex_14_7.sce index a13753355..eae76e33f 100755 --- a/278/CH14/EX14.7/ex_14_7.sce +++ b/278/CH14/EX14.7/ex_14_7.sce @@ -1,15 +1,15 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.3
-P=100000//W
-N=300//rpm
-L=3000//mm
-W=1500//N
-T=P*60000/(2*%pi*200)//N-mm
-M=1500*1000//N-mm
-Te=sqrt(M^2 + T^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/11.8)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+ +clc +//solution +//given +//ref fig 14.3 +P=100000//W +N=300//rpm +L=3000//mm +W=1500//N +T=P*60000/(2*%pi*200)//N-mm +M=1500*1000//N-mm +Te=sqrt(M^2 + T^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/11.8)^(1/3)//mm +printf("the dia of shaft is,%f mm",d) diff --git a/278/CH14/EX14.9/ex_14_9.sce b/278/CH14/EX14.9/ex_14_9.sce index e1b58901c..4f649349d 100755 --- a/278/CH14/EX14.9/ex_14_9.sce +++ b/278/CH14/EX14.9/ex_14_9.sce @@ -1,19 +1,19 @@ -//determine dia of the shaft
-clc
-//solution
-//given
-//ref fig 14.4
-D=1500//mm
-R=750//mm
-T1=5400//N
-T2=1800//N
-L=400//mm
-t=42//N/mm^2
-T=(T1-T2)*R//N-mm
-W=T1+T2//N
-M=W*L//N-mm
-//let d be dia of shaft
-Te=sqrt(M^2 + T^2)//N-mm
-//Te=(%pi/16)*t*d^3
-d=(Te/8.25)^(1/3)//mm
-printf("the dia of shaft is,%f mm",d)
+ +clc +//solution +//given +//ref fig 14.4 +D=1500//mm +R=750//mm +T1=5400//N +T2=1800//N +L=400//mm +t=42//N/mm^2 +T=(T1-T2)*R//N-mm +W=T1+T2//N +M=W*L//N-mm +//let d be dia of shaft +Te=sqrt(M^2 + T^2)//N-mm +//Te=(%pi/16)*t*d^3 +d=(Te/8.25)^(1/3)//mm +printf("the dia of shaft is,%f mm",d) |