summaryrefslogtreecommitdiff
path: root/2762/CH1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2762/CH1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2762/CH1')
-rwxr-xr-x2762/CH1/EX1.4.1/1_4_1.sce20
-rwxr-xr-x2762/CH1/EX1.4.2/1_4_2.sce23
-rwxr-xr-x2762/CH1/EX1.5.1/1_5_1.sce10
-rwxr-xr-x2762/CH1/EX1.5.2/1_5_2.sce19
-rwxr-xr-x2762/CH1/EX1.5.3/1_5_3.sce36
-rwxr-xr-x2762/CH1/EX1.6.1/1_6_1.sce17
-rwxr-xr-x2762/CH1/EX1.6.2/1_6_2.sce12
-rwxr-xr-x2762/CH1/EX1.6.3/1_6_3.sce28
-rwxr-xr-x2762/CH1/EX1.6.4/1_6_4.sce13
-rwxr-xr-x2762/CH1/EX1.6.5/1_6_5.sce11
-rwxr-xr-x2762/CH1/EX1.7.1/1_7_1.sce23
-rwxr-xr-x2762/CH1/EX1.7.2/1_7_2.sce26
-rwxr-xr-x2762/CH1/EX1.7.3/1_7_3.sce18
13 files changed, 256 insertions, 0 deletions
diff --git a/2762/CH1/EX1.4.1/1_4_1.sce b/2762/CH1/EX1.4.1/1_4_1.sce
new file mode 100755
index 000000000..c8952e7eb
--- /dev/null
+++ b/2762/CH1/EX1.4.1/1_4_1.sce
@@ -0,0 +1,20 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.4-1
+//Introduction to engineering principles and units
+//given data
+//calculation of gas constant R
+//Assuming standard conditions
+p=14.7; //atmospheric pressure in psia
+v=359;//volume in feet cube
+n=1;//number of moles in lb mol
+t=492;//temp in degree R
+r=(p*v)/(n*t);//gas constant unit: (feet*feet*feet*psia)/(lb mol*degree R)
+mprintf("the gas constant in given units %f (ft3.psia/lb mol deg R)",r);
+//calculation in SI units
+P=101325;//pressure in pascals
+V=22.414;//volume in meter cube
+N=1;//moles in kg mol
+T=273.15;//temperature in kelvin
+R=(P*V)/(N*T);//gas constant unit:
+mprintf(" the gas constant in SI units %f (m3*Pa)/(kg mol K)",R);
diff --git a/2762/CH1/EX1.4.2/1_4_2.sce b/2762/CH1/EX1.4.2/1_4_2.sce
new file mode 100755
index 000000000..631027402
--- /dev/null
+++ b/2762/CH1/EX1.4.2/1_4_2.sce
@@ -0,0 +1,23 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.4-2
+//Introduction to engineering principles and units
+//given data
+//Pressure and composition calculation
+//A:carbon dioxide, B: carbon monoxide, C: Nitrogen gas, D: Oxygen gas
+pA=75;
+pB=50;
+pC=595;
+pD=26;
+//above are the patial pressures of the given gases respectively in mm Hg
+P=pA+pB+pC+pD; //total pressure of the mixture
+mprintf("the total pressure in mm Hg is %d", P);//
+xA=pA/P;
+xB=pB/P;
+xC=pC/P;
+xD=pD/P;
+//above are the patial pressures of the given gases respectively
+mprintf(" the mole fractions of the carbon dioxide %f",xA);
+mprintf(" the mole fractions of the carbon monoxide %f",xB);
+mprintf(" the mole fractions of the nitrogen %f",xC);
+mprintf(" the mole fractions of the oxygen %f",xD);
diff --git a/2762/CH1/EX1.5.1/1_5_1.sce b/2762/CH1/EX1.5.1/1_5_1.sce
new file mode 100755
index 000000000..d4dbfa23d
--- /dev/null
+++ b/2762/CH1/EX1.5.1/1_5_1.sce
@@ -0,0 +1,10 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.5-1
+//Applying materal balance, input=output+accumulation => 1000= W+C
+//Applying material balance for solids, 1000*xf= W(0)+ C*xc =>C= 1000*xf/xc
+C= (1000*7.08)/58;
+W=1000-C;
+mprintf("The flow rate of water=%f kg/h",W);
+mprintf("the flow rate of concentrated juice=%f kg/h",C);
+//end\
diff --git a/2762/CH1/EX1.5.2/1_5_2.sce b/2762/CH1/EX1.5.2/1_5_2.sce
new file mode 100755
index 000000000..aa35a11af
--- /dev/null
+++ b/2762/CH1/EX1.5.2/1_5_2.sce
@@ -0,0 +1,19 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.5-2
+//Introduction to engineering principles and units
+//given data
+//Basis: feed stream is 1000 kg/h
+//component balance for Pottasium Nitrate: 1000(20/100)=W(0)+P(96/100)
+P=1000*(0.2)*(100/96);//P is the outlet rate of KNO3 crystals
+
+//overall balance for a crystallizer: S-R=P
+//KNO3 balance on crystallizer: S(50/100)-R(37.5/100)=P(96/100)
+//solving 2 equations using matrix operations
+A=[1 -1;0.5 -0.375];
+B=[P;0.96*P];
+x=inv(A)*B;
+S=x(1,1);
+R=x(2,1);
+mprintf(" the recycle R %f kg/h",R)
+mprintf("the rate of crystals getting out of crystallizer %f kg/h",S)
diff --git a/2762/CH1/EX1.5.3/1_5_3.sce b/2762/CH1/EX1.5.3/1_5_3.sce
new file mode 100755
index 000000000..6dc819d35
--- /dev/null
+++ b/2762/CH1/EX1.5.3/1_5_3.sce
@@ -0,0 +1,36 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.5-3
+//Introduction to engineering principles and units
+//given data
+//Let A be the moles of air and f be the moles of flue gas
+//Basis 100 kgmol of flue gas
+//Reacttions: CO+0.5O2 -> CO2 ; H2 + 0.5O2 -> H2O
+//moles of O2 = 0.5*27.2(CO)+5.6(CO2)+(0.5)O2
+O=0.5*27.2+5.6+0.5;
+//for all H2 to be completely burnt we need: (3.1/2) moles of O2.Also for completely burning CO we need (27.2*0.5)
+//0.5 moles of O2 used up in fuel gas
+//calculating amount of O2 reqd theoretically
+Otheo=(3.1/2)+(27.2/2)-0.5;
+//for 20% excess we add:
+Oact=1.2*Otheo;
+//the amt of N2 added:
+N=(79/21)*Oact;
+//amt of unburnt CO (98% combustion)
+COun=0.02*27.2;
+//total carbon balance:
+C=27.2+5.6;
+//free CO2
+CO2=C-COun;
+//calculating inlet and outlet moles of o2
+Oin=Oact+O;
+//Oout=(3.1/2 in H2O)+(COun/2)(in CO)+CO2+ free O2(Ofree)
+Ofree=Oin-(3.1/2)-(COun/2)-CO2;
+//Nitrogen Balance in outlet(Nt): N in air + N in flue gas
+Nt=N+63.6;
+mprintf(" moles of H20=3.10 mol")
+mprintf(" moles of N2 %f mol",Nt)
+mprintf(" moles of CO %f mol",COun)
+mprintf(" moles of N2 %f mol",Nt)
+mprintf(" moles of CO2 %f mol",CO2)
+mprintf(" moles of free O2 %f mol",Ofree)
diff --git a/2762/CH1/EX1.6.1/1_6_1.sce b/2762/CH1/EX1.6.1/1_6_1.sce
new file mode 100755
index 000000000..566072dee
--- /dev/null
+++ b/2762/CH1/EX1.6.1/1_6_1.sce
@@ -0,0 +1,17 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.6-1
+//Introduction to engineering principles and units
+//given data
+//heat reqd= mCp)(delta T)
+//a) 298-673K
+m=3;//m is given as 3 g mol
+H1= m*29.68*(673-298);//for N2 at 673K Cp=29.68 J/g mol K
+//b) 298-1123K
+H2=m*31*(1123-298);//for N2 at 1123 K Cp=31.00 J/g mol K by linear interpolation
+//c) 673-1123K : As there id no mean Cp we subtract a) from b)
+H3=H2-H1;
+mprintf("the heat reqd in a) : %f joules",H1)
+mprintf(" the heat reqd in b): %f joules",H2)
+mprintf(" the heat reqd in c): %f joules",H3)
+
diff --git a/2762/CH1/EX1.6.2/1_6_2.sce b/2762/CH1/EX1.6.2/1_6_2.sce
new file mode 100755
index 000000000..b5a315da6
--- /dev/null
+++ b/2762/CH1/EX1.6.2/1_6_2.sce
@@ -0,0 +1,12 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.6-2
+//Introduction to engineering principles and units
+//given data
+//Avg Cp of cows milk is 3.85 kJ/kg K
+//heat reqd= mCp)(delta T)
+m=4536; //in kg/h
+delT=54.4-4.4;//Temp diff
+Cp=3.85;
+H=(m*Cp*delT)/3600;//heat reqd in kW
+mprintf("heat reqd for heating the milk is %f kW",H)
diff --git a/2762/CH1/EX1.6.3/1_6_3.sce b/2762/CH1/EX1.6.3/1_6_3.sce
new file mode 100755
index 000000000..926a15b34
--- /dev/null
+++ b/2762/CH1/EX1.6.3/1_6_3.sce
@@ -0,0 +1,28 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.6-3
+//Introduction to engineering principles and units
+//given data
+//a)at 101.325 kPa
+
+H1=88.60;// enthalpy of water in kJ/kg at 21.11 degree celcius
+H2=251.13;// enthalpy of water kJ/kg at 60 degree celcius
+delH1=H2-H1;//change in enthalpy in SI units
+//enthalpy change in English units
+h1=38.09;//enthalpy of water in btu/lb at 70 degree F
+h2=107.96;//enthalpy of water in btu/lb at 140 degree F
+delh1=h2-h1;//change in enthalpy in English units
+mprintf("change in enthalpy in SI and English units :%f kJ/kg and %f btu/lb respectively",delH1,delh1);
+//b)Enthalpy change 172.2 kPa
+H3=2699.9;// enthalpy of water kJ/kg at 115.6 degree celcius
+delH2=H3-H1;
+h3=1160.7; //enthalpy of water in btu/lb
+delh2=h3-h1;//change in enthalpy in English units
+mprintf("change in enthalpy in SI and English units :%f kJ/kg and %f btu/lb respectively",delH2,delh2);
+//c)Enthalpy change at 172.2 kPa
+H4=484.9;//enthalpy of water in kJ/kg at 115.6 degree C
+delH3=H3-H4; //enthalpy change in SI units
+h4=208.4;//enthalpy of water in btu/lb at 240 degree F
+delh3=h3-h4;//change in enthalpy in English units
+mprintf("change in enthalpy in SI and English units :%f kJ/kg and %f btu/lb respectively",delH3,delh3);
+//end
diff --git a/2762/CH1/EX1.6.4/1_6_4.sce b/2762/CH1/EX1.6.4/1_6_4.sce
new file mode 100755
index 000000000..89ec7e124
--- /dev/null
+++ b/2762/CH1/EX1.6.4/1_6_4.sce
@@ -0,0 +1,13 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.6-4
+//Introduction to engineering principles and units
+//given data
+//heat of combustion for carbon to carbon dioxide is -393x10^3 kJ/kg mol or -94.0518 kCal/g mol
+//heat of combustion for carbon to carbon monoxide is -110x10^3 kJ/kg mol or -26.4157 kCal/g mol
+//basis: 10 g bol of carbon where 90% converts to carbon dioxide and rest to carbon monoxide
+HkJ=(90/100)*10*(-393.513)+(10/100)*10*(-110.523);//change in enthalpy= sum of heat of combustion of products(as reactant is a plain element)
+HkCal=(90/100)*10*(-94.0518)+(10/100)*10*(-26.4157);
+mprintf("change in enthalpy %f kJ",HkJ)
+mprintf("change in enthalpy %f kCal",HkCal)
+//end
diff --git a/2762/CH1/EX1.6.5/1_6_5.sce b/2762/CH1/EX1.6.5/1_6_5.sce
new file mode 100755
index 000000000..5cea8b264
--- /dev/null
+++ b/2762/CH1/EX1.6.5/1_6_5.sce
@@ -0,0 +1,11 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.6-5
+//Introduction to engineering principles and units
+//given data
+//heat of formation at 298K for methane is -74.848x10^3 kJ/kg mol, water is 285.840x10^3 kJ/kg mol ,CO is -110.523x10^3 kJ/kg mol,H2 is 0x10^3 kJ/kg mol
+//basis: 1 kg mol of methane at 101.325 kPa and 298K: CH4 + H20 -> CO+ H2
+//std heat of reaction=(sum of heat of formation of pdts)-(sum of heat of formation of pdts)
+H=(-110.523*10^3-3*0)-(-74.848*10^3-285.840*10^3);
+mprintf("the std heat of reaction in is %f kJ/kgmol",H)
+//end
diff --git a/2762/CH1/EX1.7.1/1_7_1.sce b/2762/CH1/EX1.7.1/1_7_1.sce
new file mode 100755
index 000000000..ff666cb28
--- /dev/null
+++ b/2762/CH1/EX1.7.1/1_7_1.sce
@@ -0,0 +1,23 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.7-1
+//Introduction to engineering principles and units
+//given data
+//Hf data at 298K
+//Input items: sum of the enthalpies of two streams relative to 298K
+//calculating H of liq
+Hil=2000*4.06*(30-25);//inlet mass flow rate of the liquid=2000 kg/h,Cp= 4.06 kJ/kg K, final temp-initial temp= 30 deg C - 25 deg C
+//Hiw(enthalpy at inlet of water)=W(4.21)(95-25) where W in kg/h Cp of water is 4.21 kJ/kg K, 95-25 is the temp diff
+//Output items
+Hol=2000*4.06*(70-25);//outlet mass flow rate of liquid is 2000 kg/h, Cp= 4.06 kJ/kg K 70-25: temp diff
+//How= W(4.21)(85-25)
+//energy at inlet = energy at outlet
+//4.060*10^4 + 2.947*10^2 W= 3.654*10^5 + 2.526*10^2 W
+// solving these equations:
+W= ((4.060*10^4)-(3.654*10^5))/((2.526*10^2)-(2.947*10^2))
+mprintf("the outlet feed rate in kg/h is %f",W)
+//calculating enthalpy change of liquid:
+delH= Hol-Hil;
+mprintf(" change in enthalpy in kw in kJ/h is %f",delH)
+//end
+//s=all the calculations performed are correct but there may be certein deviations.
diff --git a/2762/CH1/EX1.7.2/1_7_2.sce b/2762/CH1/EX1.7.2/1_7_2.sce
new file mode 100755
index 000000000..553bb09a0
--- /dev/null
+++ b/2762/CH1/EX1.7.2/1_7_2.sce
@@ -0,0 +1,26 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.7-2
+//Introduction to engineering principles and units
+//given data: CO + 0.5O2 -> CO2
+//del H (298K)=-282.989*10^3 kJ/kg mol
+//inlet flow rate= 1 kg mol/h=i
+i=1;
+it=0.5*i;// moles of O2 theorettically reqd
+oa=it*(1.9);//moles of O2 actually added
+n=oa*(0.79/0.21);//moles of N2 added
+air=oa+n;
+oout=oa-it;
+// CO2 in outlet flue gas is 1 kg/h and N2 in outlet flue gas=n
+//calculating input enthalpy of diff components from formula H= m*Cp*(delta T) and Cp evaluated from data tables
+Hico=1*29.38*(473-298);
+Hiair=4.520*29.29*(373-298);
+Histd=-(-282.989*(10^3))*(1);
+//calculating output enthalpy of diff components from formula H= m*Cp*(delta T) and Cp evaluated from data tables
+HoCO2=1*49.91*(1273-298);
+HoO2=oout*33.25*(1273-298);
+HN2=n*31.43*(1273-298);
+//Energy in=Energy out ; Hico+Hiair+q(heat added)+Histd=HoCO2+HoO2+HN2
+q=HoCO2+HoO2+HN2-(Hico+Hiair+Histd);
+mprintf("the heat removed in is %f kJ/h",q)
+//end
diff --git a/2762/CH1/EX1.7.3/1_7_3.sce b/2762/CH1/EX1.7.3/1_7_3.sce
new file mode 100755
index 000000000..f7bf09212
--- /dev/null
+++ b/2762/CH1/EX1.7.3/1_7_3.sce
@@ -0,0 +1,18 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 1
+//Example 1.7-3
+//Introduction to engineering principles and units
+//given data
+//datum temp= 25 deg C
+//input and output enthalpies are calculated: m*Cp*delT Cp obtained from data tables
+delT=37-25;//temp diff
+Hil=342.3*1.20*delT ;
+HiO2=12*29.38*delT
+Hrxn=(-5648.8*10^3);//heat of reaction given
+//output items
+HoH2O=11*18.02*4.18*delT;
+HoCO2=12*37.45*delT;
+//Energy in= Energy out: Hil+HiO2-Hrxn=HoH2O+HoCO2-H310K
+H310K=HoH2O+HoCO2-(Hil+HiO2-Hrxn);
+mprintf("the heat reqd for complete oxidation is %f J/mol",H310K)
+//end