summaryrefslogtreecommitdiff
path: root/2741/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2741/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2741/CH5')
-rwxr-xr-x2741/CH5/EX5.1/Chapter5_Example1.sce17
-rwxr-xr-x2741/CH5/EX5.10/Chapter5_Example10.sce20
-rwxr-xr-x2741/CH5/EX5.11/Chapter5_Example11.sce26
-rwxr-xr-x2741/CH5/EX5.12/Chapter5_Example12.sce11
-rwxr-xr-x2741/CH5/EX5.13/Chapter5_Example13.sce11
-rwxr-xr-x2741/CH5/EX5.14/Chapter5_Example14.sce14
-rwxr-xr-x2741/CH5/EX5.15/Chapter5_Example15.sce13
-rwxr-xr-x2741/CH5/EX5.16/Chapter5_Example16.sce13
-rwxr-xr-x2741/CH5/EX5.17/Chapter5_Example17.sce12
-rwxr-xr-x2741/CH5/EX5.18/Chapter5_Example18.sce13
-rwxr-xr-x2741/CH5/EX5.19/Chapter5_Example19.sce13
-rwxr-xr-x2741/CH5/EX5.2/Chapter5_Example2.sce17
-rwxr-xr-x2741/CH5/EX5.20/Chapter5_Example20.sce12
-rwxr-xr-x2741/CH5/EX5.21/Chapter5_Example21.sce19
-rwxr-xr-x2741/CH5/EX5.22/Chapter5_Example22.sce12
-rwxr-xr-x2741/CH5/EX5.23/Chapter5_Example23.sce12
-rwxr-xr-x2741/CH5/EX5.24/Chapter5_Example24.sce17
-rwxr-xr-x2741/CH5/EX5.25/Chapter5_Example25.sce13
-rwxr-xr-x2741/CH5/EX5.3/Chapter5_Example3.sce15
-rwxr-xr-x2741/CH5/EX5.4/Chapter5_Example4.sce15
-rwxr-xr-x2741/CH5/EX5.5/Chapter5_Example5.sce14
-rwxr-xr-x2741/CH5/EX5.6/Chapter5_Example6.sce19
-rwxr-xr-x2741/CH5/EX5.7/Chapter5_Example7.sce19
-rwxr-xr-x2741/CH5/EX5.9/Chapter5_Example9.sce17
24 files changed, 364 insertions, 0 deletions
diff --git a/2741/CH5/EX5.1/Chapter5_Example1.sce b/2741/CH5/EX5.1/Chapter5_Example1.sce
new file mode 100755
index 000000000..8c8808f45
--- /dev/null
+++ b/2741/CH5/EX5.1/Chapter5_Example1.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+v=480;//The velocity of a lead bullet in m/s
+Sp=0.03;//Specific heat of lead cal/g-K
+
+//Calculations
+m=10;//Let us assume the mass of bullet in gms
+V=v*100;//The velocity of the bullet in cm/s
+W=(1/2)*m*(V^2);//The work done in ergs
+J=4.2*10^7;//The mechanical equivalent of heat in ergs/calorie
+H=W/J;//The amount of heat produced in cals
+H1=H/2;//Half of the heat energy is used to raise the temperature of the bullet in cals
+t=H1/(m*Sp);//The rise in the temperature in degree centigrade
+
+//Output
+printf('The rise in the temperature is t = %3.2f degree centigrade ',t)
diff --git a/2741/CH5/EX5.10/Chapter5_Example10.sce b/2741/CH5/EX5.10/Chapter5_Example10.sce
new file mode 100755
index 000000000..d00421ed3
--- /dev/null
+++ b/2741/CH5/EX5.10/Chapter5_Example10.sce
@@ -0,0 +1,20 @@
+clc
+clear
+//Input data
+v=1;//The volume of an ideal gas in litre
+d=13.6;//The density of mercury in g/cm^3
+g=980;//Gravitational constant in gms/s^2
+p=76;//The pressure in cm of Hg
+R=8.31*10^7;//The Universal gas constant in ergs/g mol-K
+N=6.023*10^23;//The Avogadro number
+T=273;//The temperature at N.T.P in K
+t=136.5;//The given temperature in degree centigrade
+p1=3;//The given atmospheric pressure in atm pressure
+
+//Calculations
+T1=T+t;//The given temperature in K
+P=p*g*d;//The given pressure in dynes/cm^2
+x=(p1*P*N*10^3)/(R*T1);//Number of molecules in one litre volume
+
+//Output
+printf('The number of molecules in one litre of an ideal gas volume is x = %3.4g ',x)
diff --git a/2741/CH5/EX5.11/Chapter5_Example11.sce b/2741/CH5/EX5.11/Chapter5_Example11.sce
new file mode 100755
index 000000000..875eb5cf3
--- /dev/null
+++ b/2741/CH5/EX5.11/Chapter5_Example11.sce
@@ -0,0 +1,26 @@
+clc
+clear
+//Input data
+v=1;//The volume of a gas in cc
+d=13.6;//The density of mercury in g/cm^3
+p2=10^-7;//The pressure in cm of Hg
+g=980;//Gravitational constant in gms/s^2
+p1=76;//The pressure in cm of Hg
+R=8.31*10^7;//The Universal gas constant in ergs/g mol-K
+N=6.023*10^23;//The Avogadro number
+T=273;//The temperature at N.T.P in K
+n1=2.7*10^19;//The number of molecules per cc of gas at N.T.P
+t2=0;//The given temperature in degree centigrade
+t3=39;//The given temperature in degree centigrade
+
+//Calculations
+P1=p1*g*d;//The given pressure in dynes/cm^2
+P2=p2*g*d;//The given pressure in dynes/cm^2
+n2=n1*(P2/P1);//The number of molecules per cc of the gas at 0 degree centigrade
+T2=t2+273;//The given temperature in K
+T3=t3+273;//The given temperature in K
+n3=n2*(T2/T3);//The number of molecules per cc of the gas at 398 degree centigrade
+
+//Output
+printf('The number of molecules per cc of the gas , \n (1)at 0 degree centigrade and 10^-6 mm pressure of mercury is n2 = %3.4g \n (2)at 39 degree centigrade and 10^-6 mm pressure of mercury is n3 = %3.4g',n2,n3)
+
diff --git a/2741/CH5/EX5.12/Chapter5_Example12.sce b/2741/CH5/EX5.12/Chapter5_Example12.sce
new file mode 100755
index 000000000..44c6411b3
--- /dev/null
+++ b/2741/CH5/EX5.12/Chapter5_Example12.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+T=300;//The given temperature in K
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+
+//Calculations
+E=((3/2)*(R*T))/10^7;//The total random kinetic energy per gram -molecule of oxygen in joules
+
+//Output
+printf('The total random kinetic energy of one gm-molecule of oxygen at 300 K is K.E = %3.0f joules',E)
diff --git a/2741/CH5/EX5.13/Chapter5_Example13.sce b/2741/CH5/EX5.13/Chapter5_Example13.sce
new file mode 100755
index 000000000..6ae29c6a5
--- /dev/null
+++ b/2741/CH5/EX5.13/Chapter5_Example13.sce
@@ -0,0 +1,11 @@
+clc
+clear
+//Input data
+T=300;//The given temperature in K
+k=1.38*10^-16;//Boltzmann constant in erg/molecule-deg
+
+//Calculations
+E=(3/2)*k*T;//The average Kinetic energy of a molecule in ergs
+
+//Output
+printf('The Average Kinetic energy of a molecule of a gas at 300 K is K.E = %3.4g ergs ',E)
diff --git a/2741/CH5/EX5.14/Chapter5_Example14.sce b/2741/CH5/EX5.14/Chapter5_Example14.sce
new file mode 100755
index 000000000..2c8ee6c02
--- /dev/null
+++ b/2741/CH5/EX5.14/Chapter5_Example14.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+R=8.32;//Universal gas constant in joules/mole-K
+t=727;//The given temperature in degree centigrade
+N=6.06*10^23;//The Avogadro number
+
+//Calculations
+T=273+t;//The given temperature in K
+k=R/N;//Boltzmann constant in joules/mol-K
+E=(3/2)*k*T;//Mean translational kinetic energy per molecule in joules
+
+//Output
+printf('The mean translational kinetic energy per molecule is K.E = %3.4g joule ',E)
diff --git a/2741/CH5/EX5.15/Chapter5_Example15.sce b/2741/CH5/EX5.15/Chapter5_Example15.sce
new file mode 100755
index 000000000..21fd2ead4
--- /dev/null
+++ b/2741/CH5/EX5.15/Chapter5_Example15.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+T=300;//The given temperature in K
+M=28;//Molecular weight of nitrogen in g
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+
+//Calculations
+E=(3/2)*R*T;//The total random kinetic energy of nitrogen in ergs
+E1=E/(M*10^7);//The total random kinetic energy of one gram of nitrogen at 300 K in joule
+
+//Output
+printf('The total random kinetic energy of one gram of nitrogen at 300 K is K.E = %3.1f joule ',E1)
diff --git a/2741/CH5/EX5.16/Chapter5_Example16.sce b/2741/CH5/EX5.16/Chapter5_Example16.sce
new file mode 100755
index 000000000..906e5084e
--- /dev/null
+++ b/2741/CH5/EX5.16/Chapter5_Example16.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+T=200;//The given temperature in K
+m=2;//Given mass of Helium in g
+M=4;//Molecular weight of helium in g
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+
+//Calculations
+E=(m*(3/2)*(R*T)/(M))/10^7;//The energy for 2 g of helium in joules
+
+//Output
+printf('The total random kinetic energy of 2 g of helium at 200 K is K.E = %3.0f joules',E)
diff --git a/2741/CH5/EX5.17/Chapter5_Example17.sce b/2741/CH5/EX5.17/Chapter5_Example17.sce
new file mode 100755
index 000000000..329b57a4b
--- /dev/null
+++ b/2741/CH5/EX5.17/Chapter5_Example17.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+T=300;//The given temperature in K
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+M=221;//The molecular weight of mercury
+
+//Calculations
+C=((3*R*T)/(M))^(1/2);//The root mean square velocity of a molecule of mercury vapour at 300 K in cm/s
+
+//Output
+printf('The root mean square velocity of a molecule of mercury vapour at 300 K is C = %3.4g cm/s ',C)
diff --git a/2741/CH5/EX5.18/Chapter5_Example18.sce b/2741/CH5/EX5.18/Chapter5_Example18.sce
new file mode 100755
index 000000000..0a4ec8a04
--- /dev/null
+++ b/2741/CH5/EX5.18/Chapter5_Example18.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+T=300;//The given temperature in K
+M=32;//Molecular weight of oxygen
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+
+//Calculations
+E=(3/2)*R*T;//Total random kinetic energy of 1 g molecule of oxygen in ergs
+v=((E)*(2/M))^(1/2);//The required speed of one gram molecule of oxygen in cm/s
+
+//Output
+printf('The required speed of one gram molecule of oxygen is v = %3.2g cm/s ',v)
diff --git a/2741/CH5/EX5.19/Chapter5_Example19.sce b/2741/CH5/EX5.19/Chapter5_Example19.sce
new file mode 100755
index 000000000..e3f1cf328
--- /dev/null
+++ b/2741/CH5/EX5.19/Chapter5_Example19.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+v=8;//The speed of the earths first satellite in km/s
+R=8.3*10^7;//The Universal gas constant in ergs/g mol-K
+M=2;//Molecular weight of hydrogen
+
+//Calculations
+V=v*10^5;//The speed of the earths first satellite in cm/s
+T=(M*V^2)/(3*R);//The temperature at which it becomes equal in K
+
+//Output
+printf('The temperature at which the r.m.s velocity of a hydrogen molecule \n will be equal to the speed of earths first satellite is T = %3.4g K',T)
diff --git a/2741/CH5/EX5.2/Chapter5_Example2.sce b/2741/CH5/EX5.2/Chapter5_Example2.sce
new file mode 100755
index 000000000..e2d7271f5
--- /dev/null
+++ b/2741/CH5/EX5.2/Chapter5_Example2.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+t=1;//The increase in the temperature of a piece of aluminium in degree centigrade
+a=6*10^23;//The number of atoms present in 27 g of aluminium in atoms
+Sp=0.22;//The specific heat of aluminium in cal/g-K
+m=27;//The amount of aluminium in g
+J=4.2*10^7;//The mechanical equivalent of heat in ergs/calorie
+
+//Calculations
+H=m*Sp*t;//Heat required to raise the temperature of 27 gms of aluminium by 1 degree centigrade in cals
+E=m*Sp*J;//Energy gained by atoms of aluminium in ergs
+E1=E/a;//Increase in energy per atom of aluminium in ergs
+
+//Output
+printf('The increase in energy per atom of aluminium is %3.4g ergs ',E1)
+
diff --git a/2741/CH5/EX5.20/Chapter5_Example20.sce b/2741/CH5/EX5.20/Chapter5_Example20.sce
new file mode 100755
index 000000000..131e7debe
--- /dev/null
+++ b/2741/CH5/EX5.20/Chapter5_Example20.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+t1=0;//The given temperature in degree centigrade
+
+//Calculations
+T1=t1+273;//The given temperature in K
+T2=(1/2)^2*T1;//The temperature at which the r.m.s velocity of a gas be half its value at 0 degree centigrade in K
+T21=T2-273;//The required temperature in degree centigrade
+
+//Output
+printf('The required temperature is T2 = %3.2f K (or) %3.2f degree centigrade ',T2,T21)
diff --git a/2741/CH5/EX5.21/Chapter5_Example21.sce b/2741/CH5/EX5.21/Chapter5_Example21.sce
new file mode 100755
index 000000000..3ec882135
--- /dev/null
+++ b/2741/CH5/EX5.21/Chapter5_Example21.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//Input data
+n=1.66*10^-4;//The viscosity of the gas in dynes/cm^2
+C=4.5*10^4;//The R.M.S velocity of the molecules in cm/s
+d=1.25*10^-3;//The density of the gas in g/cc
+N=6.023*10^23;//The Avogadro number
+V=22400;//The volume of a gas at N.T.P in cc
+pi=3.142;//The mathematical constant of pi
+
+//Calculations
+L=(3*n)/(d*C);//The mean free path of the molecules of the gas in cm
+F=(C/L);//The frequency collision in per sec
+n=N/V;//Number of molecules per cc
+D=1/((1.414*pi*n*L)^(1/2));//Molecular diameter of the gas molecules in cm
+
+//Output
+printf('(1)The mean free path of the molecules of the gas is %3.0g cm \n (2)The frequency of collision is N = %3.0g /sec \n (3)Molecular diameter of the gas molecules is d = %3.0g cm ',L,F,D)
+
diff --git a/2741/CH5/EX5.22/Chapter5_Example22.sce b/2741/CH5/EX5.22/Chapter5_Example22.sce
new file mode 100755
index 000000000..cdf65f829
--- /dev/null
+++ b/2741/CH5/EX5.22/Chapter5_Example22.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+n=2.25*10^-4;//The viscosity of the gas in dynes/cm^2
+C=4.5*10^4;//The RMS velocity of the molecules in cm/s
+d=10^-3;//The density of the gas in g/cc
+
+//Calculations
+L=(3*n)/(d*C);//The mean free path of the molecules in cm
+
+//Output
+printf('The mean free path of the molecules is %3g cm ',L)
diff --git a/2741/CH5/EX5.23/Chapter5_Example23.sce b/2741/CH5/EX5.23/Chapter5_Example23.sce
new file mode 100755
index 000000000..b42d9daf9
--- /dev/null
+++ b/2741/CH5/EX5.23/Chapter5_Example23.sce
@@ -0,0 +1,12 @@
+clc
+clear
+//Input data
+d=2*10^-8;//The molecular diameter in cm
+n=3*10^19;//The number of molecules per cc
+pi=3.14;//Mathematical constant of pi
+
+//Calculations
+L=1/((pi*(d)^2*n));//The mean free path of a gas molecule in cm
+
+//Output
+printf('The mean free path of a gas molecule is %3.0g cm ',L)
diff --git a/2741/CH5/EX5.24/Chapter5_Example24.sce b/2741/CH5/EX5.24/Chapter5_Example24.sce
new file mode 100755
index 000000000..ec0bf9e08
--- /dev/null
+++ b/2741/CH5/EX5.24/Chapter5_Example24.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+p=760;//The given pressure in mm of Hg
+T=273;//The temperature of the chamber in K
+V=22400;//The volume of the gas at N.T.P in cc
+p1=10^-6;//The pressure in the chamber in mm of mercury pressure
+N=6.023*10^23;//The Avogadro number
+d=2*10^-8;//Molecular diameter in cm
+pi=3.14;//Mathematical constant of pi
+
+//Calculations
+n=(N*p1)/(V*p);//The number of molecules per cm^3 in the chamber in molecules/cm^3
+L=1/(pi*(d)^2*n);//The mean free path of the gas molecules in the chamber in cm
+
+//Output
+printf('The mean free path of gas molecules in a chamber is %3.4g cm ',L)
diff --git a/2741/CH5/EX5.25/Chapter5_Example25.sce b/2741/CH5/EX5.25/Chapter5_Example25.sce
new file mode 100755
index 000000000..7dbb20de0
--- /dev/null
+++ b/2741/CH5/EX5.25/Chapter5_Example25.sce
@@ -0,0 +1,13 @@
+clc
+clear
+//Input data
+Tc=132;//The given temperature in K
+Pc=37.2;//The given pressure in atms
+R=82.07;//Universal gas constant in cm^3 atoms K^-1
+
+//Calculations
+a=(27/64)*((R)^2*(Tc)^2)/Pc;//Vander Waals constant in atoms cm^6
+b=((R*Tc)/(8*Pc));//Vander Waals constant in cm^3
+
+//Output
+printf('The Van der Waals constants are , \n (1) a = %3.4g atoms cm^6 \n (2) b = %3.2f cm^3 ',a,b)
diff --git a/2741/CH5/EX5.3/Chapter5_Example3.sce b/2741/CH5/EX5.3/Chapter5_Example3.sce
new file mode 100755
index 000000000..9d0e442bb
--- /dev/null
+++ b/2741/CH5/EX5.3/Chapter5_Example3.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+h=50;//The height from which water falls in metres
+m=100;//Let us assume the mass of the water in gms
+g=980;//Gravitational constant in gms/s^2
+J=4.2*10^7;//The mechanical equivalent of heat in ergs/calorie
+
+//Calculations
+h1=h*100;//The height from which water falls in cm
+W=m*g*h1;//The work done in ergs
+t=W/(J*m);//The rise in temperature of water in degree centigrade
+
+//Output
+printf('The rise in temperature of water is t = %3.3f degree centigrade ',t)
diff --git a/2741/CH5/EX5.4/Chapter5_Example4.sce b/2741/CH5/EX5.4/Chapter5_Example4.sce
new file mode 100755
index 000000000..7119f2a02
--- /dev/null
+++ b/2741/CH5/EX5.4/Chapter5_Example4.sce
@@ -0,0 +1,15 @@
+clc
+clear
+//Input data
+v=1;//The volume of oxygen at N.T.P in cm^3
+d=13.6;//The density of mercury in g/cm^3
+r=4.62*10^4;//The R.M.S velocity of oxygen molecules at 0 degree centigrade in cm/s
+m=52.8*10^-24;//Mass of one molecule of oxygen in g
+g=980;//Gravitational constant in gms/s^2
+
+//Calculations
+P=76*g*d;//The pressure in dynes/cm^2
+n=((3*P)/(m*r^2));//Number of molecules in 1 cc of oxygen at N.T.P
+
+//Output
+printf('The number of molecules in 1 c.c of oxygen at N.T.P is n = %3.4g ',n)
diff --git a/2741/CH5/EX5.5/Chapter5_Example5.sce b/2741/CH5/EX5.5/Chapter5_Example5.sce
new file mode 100755
index 000000000..6b89f96e7
--- /dev/null
+++ b/2741/CH5/EX5.5/Chapter5_Example5.sce
@@ -0,0 +1,14 @@
+clc
+clear
+//Input data
+t=-100;//The given temperature in degree centigrade
+
+//Calculations
+T1=t+273;//The given temperature in K
+m1=1;//number of hydrogen molecules
+m2=16;//number of oxygen molecules
+m=m2/m1;//Number of oxygen molecules to the hydrogen molecules
+T2=(T1*m)-273;//The temperature in degree centigrade
+
+//Output
+printf('The temperature at which the oxygen molecules have the same root mean square velocity \n as that of hydrogen molecules is T2 = %3.0f degree centigrade ',T2)
diff --git a/2741/CH5/EX5.6/Chapter5_Example6.sce b/2741/CH5/EX5.6/Chapter5_Example6.sce
new file mode 100755
index 000000000..37af6fe55
--- /dev/null
+++ b/2741/CH5/EX5.6/Chapter5_Example6.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//Input data
+t=27;//The given temperature in degree centigrade
+d=13.6;//The density of mercury in g/cm^3
+g=980;//Gravitational constant in gms/s^2
+m1=16;//number of oxygen molecules
+D=0.000089;//The density of hydrogen at N.T.P in g/cc
+T=273;//The temperature at N.T.P in K
+
+//Calculations
+P=76*g*d;//The pressure in dynes/cm^2
+p=m1*D;//The density of oxygen at N.T.P in g/cc
+C=((3*P)/(p))^(1/2);//The RMS velocity of oxygen molecule in cm/s
+T1=t+T;//The given temperature in K
+C1=C*(T1/T)^(1/2);//The RMS velocity of the molecules at 27 degree centigrade in cm/s
+
+//Output
+printf('The RMS velocity of the oxygen molecules at 27 degree centigrade is C1 = %3.4g cm/s ',C1)
diff --git a/2741/CH5/EX5.7/Chapter5_Example7.sce b/2741/CH5/EX5.7/Chapter5_Example7.sce
new file mode 100755
index 000000000..61eec1a93
--- /dev/null
+++ b/2741/CH5/EX5.7/Chapter5_Example7.sce
@@ -0,0 +1,19 @@
+clc
+clear
+//Input data
+d=13.6;//The density of mercury in g/cm^3
+g=980;//Gravitational constant in gms/s^2
+m=3.2;//Mass of oxygen in gms
+t=27;//The given temperature in degree centigrade
+p=76;//The pressure in cm of Hg
+R=8.31*10^7;//The Universal gas constant in ergs/g mol-K
+
+//Calculations
+P=p*g*d;//The given pressure in dynes/cm^2
+T=t+273;//The given temperature in K
+V=(T*R)/P;//Volume per g mol of oxygen in cc per g mol
+m1=32;//Molecular weight of Oxygen
+V1=V*(m/m1);//Volume of 3.2 g of oxygen in cc
+
+//Output
+printf('The Volume occupied by 3.2 gms of Oxygen is V = %3.0f cc ',V1)
diff --git a/2741/CH5/EX5.9/Chapter5_Example9.sce b/2741/CH5/EX5.9/Chapter5_Example9.sce
new file mode 100755
index 000000000..d5bfaf9dd
--- /dev/null
+++ b/2741/CH5/EX5.9/Chapter5_Example9.sce
@@ -0,0 +1,17 @@
+clc
+clear
+//Input data
+v=1;//The volume of an Ideal gas at N.T.P in m^3
+d=13.6;//The density of mercury in g/cm^3
+g=980;//Gravitational constant in gms/s^2
+p=76;//The pressure in cm of Hg
+R=8.31*10^7;//The Universal gas constant in ergs/g mol-K
+N=6.023*10^23;//The Avogadro number
+T=273;//The temperature at N.T.P in K
+
+//Calculations
+P=p*g*d;//The given pressure in dynes/cm^2
+x=(P*N*10^6)/(R*T);//Number of molecules in one cubic metre volume
+
+//Output
+printf('The number of molecules in one cubic metre of an ideal gas at N.T.P is x = %3.4g ',x)