summaryrefslogtreecommitdiff
path: root/2705/CH8
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2705/CH8
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2705/CH8')
-rwxr-xr-x2705/CH8/EX8.1/Ex8_1.sce24
-rwxr-xr-x2705/CH8/EX8.10/Ex8_10.sce44
-rwxr-xr-x2705/CH8/EX8.11/Ex8_11.sce33
-rwxr-xr-x2705/CH8/EX8.12/Ex8_12.sce49
-rwxr-xr-x2705/CH8/EX8.13/Ex8_13.sce46
-rwxr-xr-x2705/CH8/EX8.14/Ex8_14.sce40
-rwxr-xr-x2705/CH8/EX8.15/Ex8_15.sce70
-rwxr-xr-x2705/CH8/EX8.16/Ex8_16.sce40
-rwxr-xr-x2705/CH8/EX8.17/Ex8_17.sce48
-rwxr-xr-x2705/CH8/EX8.18/Ex8_18.sce65
-rwxr-xr-x2705/CH8/EX8.19/Ex8_19.sce51
-rwxr-xr-x2705/CH8/EX8.20/Ex8_20.sce19
-rwxr-xr-x2705/CH8/EX8.22/Ex8_22.sce53
-rwxr-xr-x2705/CH8/EX8.23/Ex8_23.sce54
-rwxr-xr-x2705/CH8/EX8.24/Ex8_24.sce38
-rwxr-xr-x2705/CH8/EX8.3/Ex8_3.sce37
-rwxr-xr-x2705/CH8/EX8.4/Ex8_4.sce25
-rwxr-xr-x2705/CH8/EX8.5/Ex8_5.sce21
-rwxr-xr-x2705/CH8/EX8.6/Ex8_6.sce37
-rwxr-xr-x2705/CH8/EX8.7/Ex8_7.sce25
-rwxr-xr-x2705/CH8/EX8.8/Ex8_8.sce31
-rwxr-xr-x2705/CH8/EX8.9/Ex8_9.sce44
22 files changed, 894 insertions, 0 deletions
diff --git a/2705/CH8/EX8.1/Ex8_1.sce b/2705/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..dc5881db5
--- /dev/null
+++ b/2705/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,24 @@
+
+clear;
+clc;
+disp('Example 8.1');
+
+// aim : To determine
+// the stoichiometric mass of air required to burn 1 kg the fuel
+
+// Given values
+C = .72;// mass fraction of C; [kg/kg]
+H2 = .20;// mass fraction of H2;, [kg/kg]
+O2 = .08;// mass fraction of O2, [kg/kg]
+aO2=.232;// composition of oxygen in air
+
+// solution
+// for 1kg of fuel
+mO2 = 8/3*C+8*H2-O2;// mass of O2, [kg]
+
+// hence stoichiometric mass of O2 required is
+msO2 = mO2/aO2;// [kg]
+
+mprintf('\n The stoichiometric mass of air required to burn 1 kg the fuel should be = %f kg\n',msO2);
+
+// End
diff --git a/2705/CH8/EX8.10/Ex8_10.sce b/2705/CH8/EX8.10/Ex8_10.sce
new file mode 100755
index 000000000..079878869
--- /dev/null
+++ b/2705/CH8/EX8.10/Ex8_10.sce
@@ -0,0 +1,44 @@
+clear;
+clc;
+disp('Example 8.10');
+
+// aim : To determine
+// volumetric composition of the products of combustion
+
+// given values
+C = .86;// mass composition of carbon
+H = .14;// mass composition of hydrogen
+Ea = .20;// excess air for combustion
+O2 = .23;// mass composition of O2 in air
+
+MCO2 = 44;// moleculer mass of CO2
+MH2O = 18;// moleculer mass of H2O
+MO2 = 32;// moleculer mass of O2
+MN2 = 28;// moleculer mass of N2,
+
+
+// solution
+sO2 = (8/3*C+8*H);// stoichiometric O2 required, [kg/kg petrol]
+sair = sO2/O2;// stoichiometric air required, [kg/kg petrol]
+// for one kg petrol
+mCO2 = 11/3*C;// mass of CO2,[kg]
+mH2O = 9*H;// mass of H2O, [kg]
+mO2 = Ea*sO2;// mass of O2, [kg]
+mN2 = 14.84*(1+Ea)*(1-O2);// mass of N2, [kg]
+
+mt = mCO2+mH2O+mO2+mN2;// total mass, [kg]
+// percentage mass composition
+x1 = mCO2/mt*100;// mass composition of CO2
+x2 = mH2O/mt*100;// mass composition of H2O
+x3 = mO2/mt*100;// mass composition of O2
+x4 = mN2/mt*100;// mass composition of N2
+
+vt = x1/MCO2+x2/MH2O+x3/MO2+x4/MN2;// total volume of petrol
+v1 = x1/MCO2/vt*100;// %age composition of CO2 by volume
+v2 = x2/MH2O/vt*100;// %age composition of H2O by volume
+v3 = x3/MO2/vt*100;// %age composition of O2 by volume
+v4 = x4/MN2/vt*100;// %age composition of N2 by volume
+
+mprintf('\nThe percentage composition of CO2 by volume is = %f\n,\nThe percentage composition of H2O by volume is = %f\n,\nThe percentage composition of O2 by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n',v1,v2,v3,v4);
+
+// End
diff --git a/2705/CH8/EX8.11/Ex8_11.sce b/2705/CH8/EX8.11/Ex8_11.sce
new file mode 100755
index 000000000..f9ee92977
--- /dev/null
+++ b/2705/CH8/EX8.11/Ex8_11.sce
@@ -0,0 +1,33 @@
+clear;
+clc;
+disp('Example 8.11');
+
+// aim : To determine
+// the energy carried away by the dry flue gas/kg of fuel burned
+
+// given values
+C = .78;// mass composition of carbon
+H2 = .06;// mass composition of hydrogen
+O2 = .09;// mass composition of oxygen
+Ash = .07;// mass composition of ash
+Ea = .50;// excess air for combustion
+aO2 = .23;// mass composition of O2 in air
+Tb = 273+20;// boiler house temperature, [K]
+Tf = 273+320;// flue gas temperature, [K]
+c = 1.006;// specific heat capacity of dry flue gas, [kJ/kg K]
+
+// solution
+// for one kg of fuel
+sO2 = (8/3*C+8*H2);// stoichiometric O2 required, [kg/kg fuel]
+sO2a = sO2-O2;// stoichiometric O2 required from air, [kg/kg fuel]
+sair = sO2a/aO2;// stoichiometric air required, [kg/kg fuel]
+ma = sair*(1+Ea);// actual air supplied/kg of fuel, [kg]
+// total mass of flue gas/kg fuel is
+mf = ma+1;// [kg]
+mH2 = 9*H2;//H2 produced, [kg]
+// hence, mass of dry flue gas/kg coall is
+m = mf-mH2;// [kg]
+Q = m*c*(Tf-Tb);// energy carried away by flue gas, [kJ]
+mprintf('\n The energy carried away by the dry flue gas/kg is = %f kg\n',Q);
+
+// End
diff --git a/2705/CH8/EX8.12/Ex8_12.sce b/2705/CH8/EX8.12/Ex8_12.sce
new file mode 100755
index 000000000..ec6dd7d76
--- /dev/null
+++ b/2705/CH8/EX8.12/Ex8_12.sce
@@ -0,0 +1,49 @@
+clear;
+clc;
+disp('Example 8.12');
+
+// aim : To determine
+// (a) the stoichiometric volume of air for the complete combustion of 1 m^3
+// (b) the percentage volumetric analysis of the products of combustion
+
+// given values
+N2 = .018;// volumetric composition of N2
+CH4 = .94;// volumetric composition of CH4
+C2H6 = .035;// volumetric composition of C2H6
+C3H8 = .007;// volumetric composition of C3H8
+aO2 = .21;// O2 composition in air
+
+// solution
+// (a)
+// for CH4
+// CH4 +2 O2= CO2 + 2 H2O
+sva1 = 2/aO2;// stoichiometric volume of air, [m^3/m^3 CH4]
+svn1 = sva1*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 CH4]
+
+// for C2H6
+// 2 C2H6 +7 O2= 4 CO2 + 6 H2O
+sva2 = 7/2/aO2;// stoichiometric volume of air, [m^3/m^3 C2H6]
+svn2 = sva2*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C2H6]
+
+// for C3H8
+// C3H8 +5 O2=3 CO2 + 4 H2O
+sva3 = 5/aO2;// stoichiometric volume of air, [m^3/m^3 C3H8]
+svn3 = sva3*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C3H8]
+
+Sva = CH4*sva1+C2H6*sva2+C3H8*sva3;// stoichiometric volume of air required, [m^3/m^3 gas]
+mprintf('\n (a) The stoichiometric volume of air for the complete combustion = %f m^3m^3 gas\n',Sva);
+
+// (b)
+// for one m^3 of natural gas
+vCO2 = CH4*1+C2H6*2+C3H8*3;// volume of CO2 produced, [m^3]
+vH2O = CH4*2+C2H6*3+C3H8*4;// volume of H2O produced, [m^3]
+vN2 = CH4*svn1+C2H6*svn2+C3H8*svn3+N2;// volume of N2 produced, [m^3]
+
+vg = vCO2+vH2O+vN2;// total volume of gas, [m^3]
+x1 = vCO2/vg*100;// volume percentage of CO2 produced
+x2 = vH2O/vg*100;// volume percentage of H2O produced
+x3 = vN2/vg*100;// volume percentage of N2 produced
+
+mprintf('\n (b) The percentage volumetric composition of CO2 in produced is = %f\n,\n The percentage volumetric composition of H2O in produced is = %f\n,\n The percentage volumetric composition of N2 in produced is = %f\n',x1,x2,x3);
+
+// End
diff --git a/2705/CH8/EX8.13/Ex8_13.sce b/2705/CH8/EX8.13/Ex8_13.sce
new file mode 100755
index 000000000..87f8573ec
--- /dev/null
+++ b/2705/CH8/EX8.13/Ex8_13.sce
@@ -0,0 +1,46 @@
+clear;
+clc;
+disp('Example 8.13');
+
+// aim : To determine
+// (a) the volume of air taken by the fan
+// (b) the percentage composition of dry flue gas
+
+// gien values
+C = .82;// mass composition of carbon
+H = .08;// mass composition of hydrogen
+ O = .03;// mass composition of oxygen
+ A = .07;// mass composition of ash
+mc = .19;// coal uses, [kg/s]
+ ea = .3;// percentage excess air of oxygen in the air required for combustion
+Oa = .23;// percentage of oxygen by mass in the air
+
+ // solution
+ // (a)
+ P = 100;// air pressure, [kN/m^2]
+ T = 18+273;// air temperature, [K]
+ R = .287;// [kJ/kg K]
+ // basis one kg coal
+ sO2 = 8/3*C+8*H;// stoichiometric O2 required, [kg]
+ aO2 = sO2-.03;// actual O2 required, [kg]
+tO2 = aO2/Oa;// theoretical O2 required, [kg]
+Aa = tO2*(1+ea);// actual air supplied, [kg]
+m = Aa*mc;// Air supplied, [kg/s]
+
+// now using P*V=m*R*T
+V = m*R*T/P;// volume of air taken ,[m^3/s]
+mprintf('\n (a) Volume of air taken by fan is = %f m^3/s\n',V);
+
+// (b)
+mCO2 = 11/3*C;// mass of CO2 produced, [kg]
+mO2 = aO2*.3;// mass of O2 produces, [kg]
+mN2 = Aa*.77;// mass of N2 produced, [[kg]
+mt = mCO2+mO2+mN2;// total mass, [kg]
+
+mprintf('\n (b) Percentage mass composition of CO2 is = %f percent \n',mCO2/mt*100);
+mprintf('\n Percentage mass composition of O2 is = %f percent\n',mO2/mt*100)
+mprintf('\n Percentage mass composition of N2 is = %f percent \n',mN2/mt*100)
+
+
+
+// End
diff --git a/2705/CH8/EX8.14/Ex8_14.sce b/2705/CH8/EX8.14/Ex8_14.sce
new file mode 100755
index 000000000..a93839efd
--- /dev/null
+++ b/2705/CH8/EX8.14/Ex8_14.sce
@@ -0,0 +1,40 @@
+clear;
+clc;
+disp('Example 8.14');
+
+// aim : To determine
+// (a) the mass of fuel used per cycle
+// (b) the actual mass of air taken in per cycle
+// (c) the volume of air taken in per cycle
+
+// given values
+W = 15;// work done, [kJ/s]
+N = 5;// speed, [rev/s]
+C = .84;// mass composition of carbon
+H = .16;// mass composition of hydrogen
+ea = 1;// percentage excess air supplied
+CV = 45000;// calorificvalue of fuel, [kJ/kg]
+n_the = .3;// thermal efficiency
+P = 100;// pressuer, [kN/m^2]
+T = 273+15;// temperature, [K]
+R = .29;// gas constant, [kJ/kg K]
+
+// solution
+// (a)
+E = W*2/N/n_the;// energy supplied, [kJ/cycle]
+mf = E/CV;// mass of fuell used, [kg]
+mprintf('\n (a) Mass of fuel used per cycle is = %f g\n',mf*10^3);
+
+// (b)
+// basis 1 kg fuel
+mO2 = C*8/3+8*H;// mass of O2 requirea, [kg]
+smO2 = mO2/.23;// stoichiometric mass of air, [kg]
+ma = smO2*(1+ea);// actual mass of air supplied, [kg]
+m = ma*mf;// mass of air supplied, [kg/cycle]
+mprintf('\n (b) The mass of air supplied per cycle is = %f kg\n',m);
+
+// (c)
+V = m*R*T/P;// volume of air, [m^3]
+mprintf('\n (c) The volume of air taken in per cycle is = %f m^3\n',V);
+
+// End
diff --git a/2705/CH8/EX8.15/Ex8_15.sce b/2705/CH8/EX8.15/Ex8_15.sce
new file mode 100755
index 000000000..a4adab52d
--- /dev/null
+++ b/2705/CH8/EX8.15/Ex8_15.sce
@@ -0,0 +1,70 @@
+clear;
+clc;
+disp('Example 8.15');
+
+// aim : To determine
+// (a) the mass of coal used per hour
+// (b) the mass of air used per hour
+// (c) the percentage analysis of the flue gases by mass
+
+// given values
+m = 900;// mass of steam boiler generate/h, [kg]
+x = .96;// steam dryness fraction
+P = 1400;// steam pressure, [kN/m^2]
+Tf = 52;// feed water temperature, [C]
+BE = .71;// boiler efficiency
+CV = 33000;// calorific value of coal, [kJkg[
+ea = .22;// excess air supply
+aO2 = .23;// oxygen composition in air
+c = 4.187;// specific heat capacity of water, [kJ/kg K]
+
+// coal composition
+C = .83;// mass composition of carbon
+H2 = .05;// mass composition of hydrogen
+O2 = .03;// mass composition of oxygen
+ash = .09;// mass composition of ash
+
+// solution
+// from steam table at pressure P
+hf = 830.1;// specific enthalpy, [kJ/kg]
+hfg = 1957.1;// specific enthalpy, [kJ/kg]
+hg = 2728.8;// specific enthalpy, [kJ/kg]
+
+// (a)
+h = hf+x*hfg;// specific enthalpy of steam generated by boiler, [kJ/kg]
+hfw = c*Tf;// specific enthalpy of feed water, [kJ/kg]
+Q = m*(h-hfw);// energy to steam/h, [kJ]
+Qf = Q/BE;// energy required from fuel/h, [kJ]
+mc = Qf/CV;// mass of coal/h,[kg]
+mprintf('\n (a) The mass of coal used per hour is = %f kg\n',mc);
+
+// (b)
+// for one kg coal
+mO2 = 8/3*C+8*H2+-O2;// actual mass of O2 required, [kg]
+mta = mO2/aO2;// theoretical mass of air, [kg]
+ma = mta*(1+ea);// mass of air supplied, [kg]
+mas = ma*mc;// mass of air supplied/h, [kg]
+mprintf('\n (b) The mass of air supplied per hour is = %f kg\n',mas);
+
+
+// (c)
+// for one kg coal
+mCO2 = 11/3*C;// mass of CO2 produced, [kg]
+mH2O = 9*H2;// mass of H2O produced, [kg]
+mO2 = mO2*ea;// mass of excess O2 in flue gas, [kg]
+mN2 = ma*(1-aO2);// mass of N2 in flue gas, [kg]
+
+mt = mCO2+mH2O+mO2+mN2;// total mass of gas
+x1 = mCO2/mt*100;// mass percentage composition of CO2
+x2 = mH2O/mt*100;// mass percentage composition of H2O
+x3 = mO2/mt*100;// mass percentage composition of O2
+x4 = mN2/mt*100;// mass percentage composition of N2
+
+mprintf('\n (c) The mass percentage composition of CO2 = %f,\n The mass percentage composition of H2O = %f,\n The mass percentage composition of O2 = %f,\n The mass percentage composition of N2 = %f',x1,x2,x3,x4);
+
+// mass of coal taken in part (b) is wrong so answer is not matching
+
+// End
+
+
+
diff --git a/2705/CH8/EX8.16/Ex8_16.sce b/2705/CH8/EX8.16/Ex8_16.sce
new file mode 100755
index 000000000..5e1808b5d
--- /dev/null
+++ b/2705/CH8/EX8.16/Ex8_16.sce
@@ -0,0 +1,40 @@
+clear;
+clc;
+disp('Example 8.16');
+
+// aim : To determine
+// (a) volume of gas
+// (b) (1) the average molecular mass of air
+// (2) the value of R
+// (3) the mass of 1 m^3 of air at STP
+
+// given values
+n = 1;// moles of gas, [kmol]
+P = 101.32;// standard pressure, [kN/m^2]
+T = 273;// gas tempearture, [K]
+
+O2 = 21;// percentage volume composition of oxygen in air
+N2 = 79;// percentage volume composition of nitrogen in air
+R = 8.3143;// molar gas constant, [kJ/kg K]
+mO2 = 32;// moleculer mass of O2
+mN2 = 28;// moleculer mass of N2
+
+// solution
+// (a)
+V = n*R*T/P;// volume of gas, [m^3]
+mprintf('\n (a) The volume of the gas is = %f m^3\n',V);
+
+// (b)
+//(1)
+Mav = (O2*mO2+N2*mN2)/(O2+N2);// average moleculer mass of air
+mprintf('\n (b)(1) The average moleculer mass of air is = %f g/mol\n',Mav);
+
+// (2)
+Rav = R/Mav;// characteristic gas constant, [kJ/kg k]
+mprintf('\n (2) The value of R is = %f kJ/kg K\n',Rav);
+
+// (3)
+rho = Mav/V;// density of air, [kg/m^3]
+mprintf('\n (3) The mass of one cubic metre of air at STP is = %f kg/m^3\n',rho);
+
+// End
diff --git a/2705/CH8/EX8.17/Ex8_17.sce b/2705/CH8/EX8.17/Ex8_17.sce
new file mode 100755
index 000000000..d1099ee95
--- /dev/null
+++ b/2705/CH8/EX8.17/Ex8_17.sce
@@ -0,0 +1,48 @@
+clear;
+clc;
+disp('Example 8.17');
+
+// aim : To determine
+// (a) the partial pressure of each gas in the vessel
+// (b) the volume of the vessel
+// (c) the total pressure in the gas when temperature is raised to228 C
+
+// given values
+MO2 = 8;// mass of O2, [kg]
+MN2 = 7;// mass of N2, [kg]
+MCO2 = 22;// mass of CO2, [kg]
+
+P = 416;// total pressure in the vessel, [kN/m^2]
+T = 273+60;// vessel temperature, [K]
+R = 8.3143;// gas constant, [kJ/kmol K]
+
+mO2 = 32;// molculer mass of O2
+mN2 = 28;// molculer mass of N2
+mCO2 = 44;// molculer mass of CO2
+
+// solution
+// (a)
+n1 = MO2/mO2;// moles of O2, [kmol]
+n2 = MN2/mN2;// moles of N2, [kmol]
+n3 = MCO2/mCO2;// moles of CO2, [kmol]
+
+n = n1+n2+n3;// total moles in the vessel, [kmol]
+// since,Partial pressure is proportinal, so
+P1 = n1*P/n;// partial pressure of O2, [kN/m^2]
+P2 = n2*P/n;// partial pressure of N2, [kN/m^2]
+P3 = n3*P/n;// partial pressure of CO2, [kN/m^2]
+
+mprintf('\n (a)The partial pressure of O2 is = %f kN/m^2,\n, The partial pressure of N2 is = %f kN/m^2,\n The partial pressure of CO2 is = %f kN/m^2,\n',P1,P2,P3);
+
+// (b)
+// assuming ideal gas
+V = n*R*T/P;// volume of the container, [m^3]
+mprintf('\n (b) The volume of the container is = %f m^3\n',V);
+
+// (c)
+T2 = 273+228;// raised vessel temperature, [K]
+// so volume of vessel will constant , P/T=constant
+P2 = P*T2/T;// new pressure in the vessel , [kn/m62]
+mprintf('\n (c) The new total pressure in the vessel is = %f kN/m^2\n',P2);
+
+// End
diff --git a/2705/CH8/EX8.18/Ex8_18.sce b/2705/CH8/EX8.18/Ex8_18.sce
new file mode 100755
index 000000000..c0961970a
--- /dev/null
+++ b/2705/CH8/EX8.18/Ex8_18.sce
@@ -0,0 +1,65 @@
+clear;
+clc;
+disp('Example 8.18');
+
+// aim : To determine
+// the actual mass of air supplied/kg coal
+// the velocity of flue gas
+
+// given values
+mc = 635;// mass of coal burn/h, [kg]
+ea = .25;// excess air required
+C = .84;// mass composition of carbon
+H2 = .04;// mass composition of hydrogen
+O2 = .05;// mass composition of oxygen
+ash = 1-(C+H2+O2);// mass composition of ash
+
+P1 = 101.3;// pressure, [kJn/m^2]
+T1 = 273;// temperature, [K]
+V1 = 22.4;// volume, [m^3]
+
+T2 = 273+344;// gas temperature, [K]
+P2 = 100;// gas pressure, [kN/m^2]
+A = 1.1;// cross section area, [m^2]
+aO2 = .23;// composition of O2 in air
+
+mCO2 = 44;// moleculer mass of carbon
+mH2O = 18;// molecular mass of hydrogen
+mO2 = 32;// moleculer mas of oxygen
+mN2 = 28;// moleculer mass of nitrogen
+
+// solution
+mtO2 = 8/3*C+8*H2-O2;// theoretical O2 required/kg coal, [kg]
+msa= mtO2/aO2;// stoichiometric mass of air supplied/kg coal, [kg]
+mas = msa*(1+ea);// actual mass of air supplied/kg coal, [kg]
+
+m1 = 11/3*C;// mass of CO2/kg coal produced, [kg]
+m2 = 9*H2;// mass of H2/kg coal produced, [kg]
+m3 = mtO2*ea;// mass of O2/kg coal produced, [kg]
+m4 = mas*(1-aO2);// mass of N2/kg coal produced, [kg]
+
+mt = m1+m2+m3+m4;// total mass, [kg]
+x1 = m1/mt*100;// %age mass composition of CO2 produced
+x2 = m2/mt*100;// %age mass composition of H2O produced
+x3 = m3/mt*100;// %age mass composition of O2 produced
+x4 = m4/mt*100;// %age mass composition of N2 produced
+
+vt = x1/mCO2+x2/mH2O+x3/mO2+x4/mN2;// total volume
+v1 = x1/mCO2/vt*100;// %age volume composition of CO2
+v2 = x2/mH2O/vt*100;// %age volume composition of H2O
+v3 = x3/mO2/vt*100;// %age volume composition of O2
+v4 = x4/mN2/vt*100;// %age volume composition of N2
+
+Mav = (v1*mCO2+v2*mH2O+v3*mO2+v4*mN2)/(v1+v2+v3+v4);// average moleculer mass, [kg/kmol]
+// since no of moles is constant so PV/T=constant
+V2 = P1*V1*T2/(P2*T1);//volume, [m^3]
+
+mp = mt*mc/3600;// mass of product of combustion/s, [kg]
+
+V = V2*mp/Mav;// volume of flowing gas /s,[m^3]
+
+v = V/A;// velocity of flue gas, [m/s]
+mprintf('\n The actual mass of air supplied is = %f kg/kg coal\n',mas);
+mprintf('\n The velocity of flue gas is = %f m/s\n',v);
+
+// End
diff --git a/2705/CH8/EX8.19/Ex8_19.sce b/2705/CH8/EX8.19/Ex8_19.sce
new file mode 100755
index 000000000..30bfc9211
--- /dev/null
+++ b/2705/CH8/EX8.19/Ex8_19.sce
@@ -0,0 +1,51 @@
+clear;
+clc;
+disp('Example 8.19');
+
+// aim : To determine
+// (a) the temperature of the gas after compression
+// (b) the density of the air-gas mixture
+
+// given values
+CO = 26;// %age volume composition of CO
+H2 = 16;// %age volume composition of H2
+CH4 = 7;// %age volume composition of CH4
+N2 = 51;// %age volume composition of N2
+
+P1 = 103;// gas pressure, [kN/m^2]
+T1 = 273+21;// gas temperature, [K]
+rv = 7;// volume ratio
+
+aO2 = 21;// %age volume composition of O2 in the air
+c = 21;// specific heat capacity of diatomic gas, [kJ/kg K]
+cCH4 = 36;// specific heat capacity of CH4, [kJ/kg K]
+R = 8.3143;// gas constant, [kJ/kg K]
+
+mCO = 28;// moleculer mass of carbon
+mH2 = 2;// molecular mass of hydrogen
+mCH4 = 16;// moleculer mas of methane
+mN2 = 28;// moleculer mass of nitrogen
+mO2 = 32;// moleculer mass of oxygen
+
+// solution
+// (a)
+Cav = (CO*c+H2*c+CH4*cCH4+N2*c+100*2*c)/(100+200);// heat capacity, [kJ/kg K]
+
+Gama = (Cav+R)/Cav;// heat capacity ratio
+// rv = V1/V2
+// process is polytropic, so
+T2 = T1*(rv)^(Gama-1);// final tempearture, [K]
+mprintf('\n (a) The temperature of the gas after compression is = %f C\n',T2-273);
+
+// (b)
+
+Mav = (CO*mCO+H2*mH2+CH4*mCH4+N2*mN2+42*mO2+158*mN2)/(100+200)
+
+// for 1 kmol of gas
+V = R*T1/P1;// volume of one kmol of gas, [m^3]
+// hence
+rho = Mav/V;// density of gas, [kg/m^3]
+
+mprintf('\n (b) The density of air-gas mixture is = %f kg/m^3\n',rho);
+
+// End
diff --git a/2705/CH8/EX8.20/Ex8_20.sce b/2705/CH8/EX8.20/Ex8_20.sce
new file mode 100755
index 000000000..51e9a6f72
--- /dev/null
+++ b/2705/CH8/EX8.20/Ex8_20.sce
@@ -0,0 +1,19 @@
+clear;
+clc;
+disp('Example 8.20');
+
+// aim : to determine
+// stoichiometric equation for combustion of hydrogen
+
+// solution
+// equation with algebric coefficient is
+// H2+aO2+79/21*aN2=bH2O+79/21*aN2
+// by equating coefficients
+b = 1;
+a = b/2;
+// so equation becomes
+// 2 H2+ O2+3.76 N2=2 H2O+3.76 N2
+disp('The required stoichiometric equation is = ');
+disp('2 H2+ O2+3.76 N2 = 2 H2O+3.76 N2');
+
+// End
diff --git a/2705/CH8/EX8.22/Ex8_22.sce b/2705/CH8/EX8.22/Ex8_22.sce
new file mode 100755
index 000000000..9e5bddbd5
--- /dev/null
+++ b/2705/CH8/EX8.22/Ex8_22.sce
@@ -0,0 +1,53 @@
+clear;
+clc;
+disp('Example 8.22');
+
+// aim : To determine
+// the percentage gravimetric analysis of the total products of combustion
+
+// given values
+CO = 12;// %age volume composition of CO
+H2 = 41;// %age volume composition of H2
+CH4 = 27;// %age volume composition of CH4
+O2 = 2;// %age volume composition of O2
+CO2 = 3;// %age volume composition of CO2
+N2 = 15;// %age volume composition of N2
+
+mCO2 = 44;// moleculer mass of CO2,[kg/kmol]
+mH2O = 18;// moleculer mass of H2O, [kg/kmol]
+mO2 = 32;// moleculer mass of O2, [kg/kmol]
+mN2 = 28;// moleculer mass of N2, [kg/kmol]
+
+ea = 15;// %age excess air required
+aO2 = 21;// %age air composition in the air
+
+// solution
+// combustion equation by no. of moles
+// 12CO + 41H2 + 27CH4 + 2O2 + 3CO2 + 15N2 + aO2+79/21*aN2 = bCO2 + dH2O + eO2 + 15N2 +79/21*aN2
+// equating C coefficient
+b = 12+27+3;// [mol]
+// equatimg H2 coefficient
+d = 41+2*27;// [mol]
+// O2 required is 15 % extra,so
+// e/(e-a)=.15 so e=.13a
+// equating O2 coefficient
+// 2+3+a=b+d/2 +e
+
+a = (b+d/2-5)/(1-.13);
+e = .13*a;// [mol]
+
+// gravimetric analysis of product
+v1 = b*mCO2;// gravimetric volume of CO2
+v2 = d*mH2O ;// gravimetric volume of H2O
+v3 = e*mO2;// gravimetric volume of O2
+v4 = 15*mN2 +79/21*a*mN2;// gravimetric volume of N2
+
+vt = v1+v2+v3+v4;// total
+x1 = v1/vt*100;// percentage gravimetric of CO2
+x2 = v2/vt*100;// percentage gravimetric of H2O
+x3 = v3/vt*100;// percentage gravimetric of O2
+x4 = v4/vt*100;// percentage gravimetric of N2
+
+mprintf('\n Percentage gravimetric composition of CO2 = %f\n ,\n Percentage gravimetric composition of H2O = %f\n\n Percentage gravimetric composition of O2 = %f\n\n Percentage gravimetric composition of N2 = %f\n',x1,x2,x3,x4);
+
+// End
diff --git a/2705/CH8/EX8.23/Ex8_23.sce b/2705/CH8/EX8.23/Ex8_23.sce
new file mode 100755
index 000000000..6a5a20ce2
--- /dev/null
+++ b/2705/CH8/EX8.23/Ex8_23.sce
@@ -0,0 +1,54 @@
+clear;
+clc;
+disp('Example 8.23');
+
+// aim : To determine
+// (a) the actual quantity of air supplied/kg of fuel
+// (b) the volumetric efficiency of the engine
+
+// given values
+d = 300*10^-3;// bore,[m]
+L = 460*10^-3;// stroke,[m]
+N = 200;// engine speed, [rev/min]
+
+C = 87;// %age mass composition of Carbon in the fuel
+H2 = 13;// %age mass composition of H2 in the fuel
+
+mc = 6.75;// fuel consumption, [kg/h]
+
+CO2 = 7;// %age composition of CO2 by volume
+O2 = 10.5;// %age composition of O2 by volume
+N2 = 7;// %age composition of N2 by volume
+
+mC = 12;// moleculer mass of CO2,[kg/kmol]
+mH2 = 2;// moleculer mass of H2, [kg/kmol]
+mO2 = 32;// moleculer mass of O2, [kg/kmol]
+mN2 = 28;// moleculer mass of N2, [kg/kmol]
+
+T = 273+17;// atmospheric temperature, [K]
+P = 100;// atmospheric pressure, [kn/m^2]
+R =.287;// gas constant, [kJ/kg k]
+
+// solution
+// (a)
+// combustion equation by no. of moles
+// 87/12 C + 13/2 H2 + a O2+79/21*a N2 = b CO2 + d H2O + eO2 + f N2
+// equating coefficient
+b = 87/12;// [mol]
+a = 22.7;// [mol]
+e = 10.875;// [mol]
+f = 11.8*b;// [mol]
+// so fuel side combustion equation is
+// 87/12 C + 13/2 H2 +22.7 O2 +85.5 N2
+mair = ( 22.7*mO2 +85.5*mN2)/100;// mass of air/kg fuel, [kg]
+mprintf('\n (a) The mass of actual air supplied per kg of fuel is = %f kg\n',mair);
+
+// (b)
+m = mair*mc/60;// mass of air/min, [kg]
+V = m*R*T/P;// volumetric flow of air/min, [m^3]
+SV = %pi/4*d^2*L*N/2;// swept volume/min, [m^3]
+
+VE = V/SV;// volumetric efficiency
+mprintf('\n (b) The volumetric efficiency of the engine is = %fpercent\n',VE*100);
+
+// End
diff --git a/2705/CH8/EX8.24/Ex8_24.sce b/2705/CH8/EX8.24/Ex8_24.sce
new file mode 100755
index 000000000..42ac180f3
--- /dev/null
+++ b/2705/CH8/EX8.24/Ex8_24.sce
@@ -0,0 +1,38 @@
+clear;
+clc;
+disp('Example 8.24');
+
+// aim : To determine
+// the mass of air supplied/kg of fuel burnt
+
+// given values
+// gas composition in the fuel
+C = 84;// %age mass composition of Carbon in the fuel
+H2 = 14;// %age mass composition of H2 in the fuel
+O2f = 2;// %age mass composition of O2 in the fuel
+
+// exhaust gas composition
+CO2 = 8.85;// %age composition of CO2 by volume
+CO = 1.2// %age composition of CO by volume
+O2 = 6.8;// %age composition of O2 by volume
+N2 = 83.15;// %age composition of N2 by volume
+
+mC = 12;// moleculer mass of CO2,[kg/kmol]
+mH2 = 2;// moleculer mass of H2, [kg/kmol]
+mO2 = 32;// moleculer mass of O2, [kg/kmol]
+mN2 = 28;// moleculer mass of N2, [kg/kmol]
+
+// solution
+// combustion equation by no. of moles
+// 84/12 C + 14/2 H2 +2/32 O2 + a O2+79.3/20.7*a N2 = b CO2 + d CO2+ eO2 + f N2 +g H2
+// equating coefficient and given condition
+b = 6.16;// [mol]
+a = 15.14;// [mol]
+d = .836;// [mol]
+f = 69.3*d;// [mol]
+// so fuel side combustion equation is
+// 84/12 C + 14/2 H2 +2/32 O2 + 15.14 O2 +85.5 N2
+mair = ( a*mO2 +f*mN2)/100;// mass of air/kg fuel, [kg]
+mprintf('\n The mass of air supplied per kg of fuel is = %f kg\n',mair);
+
+// End
diff --git a/2705/CH8/EX8.3/Ex8_3.sce b/2705/CH8/EX8.3/Ex8_3.sce
new file mode 100755
index 000000000..6050727e8
--- /dev/null
+++ b/2705/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+disp('Example 8.3');
+
+// aim : To determine
+// the stoichiometric mass of air
+// the products of combustion both by mass and as percentage
+
+// Given values
+C = .82;// mass composition C
+H2 = .12;// mass composition of H2
+O2 = .02;// mass composition of O2
+S = .01;// mass composition of S
+N2 = .03;// mass composition of N2
+
+ // solution
+// for 1kg fuel
+mo2 = 8/3*C+8*H2-O2+S*1;// total mass of O2 required, [kg]
+sa = mo2/.232;// stoichimetric air, [kg]
+mprintf('\n The stoichiometric mass of air is = %f kg/kg fuel\n',sa);
+
+// for one kg fuel
+mCO2 = C*11/3;// mass of CO2 produced, [kg]
+mH2O = H2*9;// mass of H2O produced, [kg]
+mSO2 = S*2;// mass of SO2 produce, [kg]
+mN2 = C*8.84+H2*26.5-O2*.768/.232+S*3.3+N2;// mass of N2 produced, [kg]
+
+mt = mCO2+mH2O+mSO2+mN2;// total mass of product, [kg]
+
+x1 = mCO2/mt*100;// %age mass composition of CO2 produced
+x2 = mH2O/mt*100;// %age mass composition of H2O produced
+x3 = mSO2/mt*100;// %age mass composition of SO2 produced
+x4 = mN2/mt*100;// %age mass composition of N2 produced
+
+mprintf('\n CO2 produced = %f kg/kg fuel, percentage composition = %f,\n H2O produced = %f kg/kg fuel, percentage composition = %f,\n SO2 produced = %f kg/kg fuel, percentage composition = %f,\n N2 produced = %f kg/kg fuel, percentage composition = %f',mCO2,x1,mH2O,x2,mSO2,x3,mN2,x4);
+
+// End
diff --git a/2705/CH8/EX8.4/Ex8_4.sce b/2705/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..6938b2413
--- /dev/null
+++ b/2705/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,25 @@
+clear;
+clc;
+disp('Example 8.4');
+
+// aim : To determine
+// the stoichiometric volume of air required for complete combution of 1 m^3 of the gas
+
+// Given values
+H2 = .14;// volume fraction of H2
+CH4 = .02;// volume fraction of CH4
+CO = .22;// volume fraction of CO
+CO2 = .05;// volume fraction of CO2
+O2 = .02;// volume fraction of O2
+N2 = .55;// volume fraction of N2
+
+// solution
+// for 1 m^3 of fuel
+Va = .5*H2+2*CH4+.5*CO-O2;// [m^3]
+
+// stoichiometric air required is
+Vsa = Va/.21;// [m^3]
+
+mprintf('\n The stoichiometric volume of air required for complete combustion is = %f m^3/m^3 fuel\n',Vsa);
+
+// End
diff --git a/2705/CH8/EX8.5/Ex8_5.sce b/2705/CH8/EX8.5/Ex8_5.sce
new file mode 100755
index 000000000..a69209cb1
--- /dev/null
+++ b/2705/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,21 @@
+clear;
+clc;
+disp('Example 8.5');
+
+// aim : To determine
+// the volume of the air required
+
+// Given values
+H2 = .45;// volume fraction of H2
+CO = .40;// volume fraction of CO
+CH4 = .15;// volume fraction of CH4
+
+// solution
+V = 2.38*(H2+CO)+9.52*CH4;// stoichimetric volume of air, [m^3]
+
+mprintf('\n The volume of air required is = %f m^3/m^3 fuel\n',V);
+
+// Result in the book is misprinted
+
+// End
+
diff --git a/2705/CH8/EX8.6/Ex8_6.sce b/2705/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..fe97bb2fb
--- /dev/null
+++ b/2705/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+disp('Example 8.6');
+
+// aim : To determine
+// the stoichiometric volume of air for the complete combustion
+// the products of combustion
+
+// given values
+CH4 = .142;// volumetric composition of CH4
+CO2 = .059;// volumetric composition of CO2
+CO = .360;// volumetric composition of CO
+H2 = .405;// volumetric composition of H2
+O2 = .005;// volumetric composition of O2
+N2 = .029;// volumetric composition of N2
+
+aO2 = .21;// O2 composition into air by volume
+
+// solution
+svO2 = CH4*2+CO*.5+H2*.5-O2;// stroichiometric volume of O2 required, [m^3/m^3 fuel]
+svair = svO2/aO2;// stroichiometric volume of air required, [m^3/m^3 fuel]
+mprintf('\n Stoichiometric volume of air required is = %f m^3/m^3 fuel\n',svair);
+
+// for one m^3 fuel
+vN2 = CH4*7.52+CO*1.88+H2*1.88-O2*.79/.21+N2;// volume of N2 produced, [m^3]
+vCO2 = CH4*1+CO2+CO*1;// volume of CO2 produced, [m^3]
+vH2O = CH4*2+H2*1;// volume of H2O produced, [m^3]
+
+vt = vN2+vCO2+vH2O;// total volume of product, [m^3]
+
+x1 = vN2/vt*100;// %age composition of N2 in product,
+x2 = vCO2/vt*100;// %age composition of CO2 in product
+x3 = vH2O/vt*100;// %age composition of H2O in product
+
+mprintf('\n N2 in products = %fm^3/m^3 fuel, percentage composition = %f,\n CO2 in products = %f m^3/m^3 fuel, percentage composition = %f,\n H2O in products = %fm^3/m^3 fuel, percentage composition = %f',vN2,x1,vCO2,x2,vH2O,x3);
+
+// End
diff --git a/2705/CH8/EX8.7/Ex8_7.sce b/2705/CH8/EX8.7/Ex8_7.sce
new file mode 100755
index 000000000..534f4f01e
--- /dev/null
+++ b/2705/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,25 @@
+clear;
+clc;
+disp('Example 8.7');
+
+// aim : To determine
+// the percentage analysis of the gas by mass
+
+// Given values
+CO2 = 20;// percentage volumetric composition of CO2
+N2 = 70;// percentage volumetric composition of N2
+O2 = 10;// percentage volumetric composition of O2
+
+mCO2 = 44;// moleculer mas of CO2
+mN2 = 28;// moleculer mass of N2
+mO2 = 32;// moleculer mass of O2
+
+// solution
+mgas = CO2*mCO2+N2*mN2+O2*mO2;// moleculer mass of gas
+m1 = CO2*mCO2/mgas*100;// percentage composition of CO2 by mass
+m2 = N2*mN2/mgas*100;// percentage composition of N2 by mass
+m3 = O2*mO2/mgas*100;// percentage composition of O2 by mass
+
+mprintf('\n Mass percentage of CO2 is = %f\n\n Mass percentage of N2 is = %f\n\n Mass percentage of O2 is = %f\n',m1,m2,m3 )
+
+// End
diff --git a/2705/CH8/EX8.8/Ex8_8.sce b/2705/CH8/EX8.8/Ex8_8.sce
new file mode 100755
index 000000000..347ec4c01
--- /dev/null
+++ b/2705/CH8/EX8.8/Ex8_8.sce
@@ -0,0 +1,31 @@
+clear;
+clc;
+disp('Example 8.8');
+
+// aim : To determine
+// the percentage composition of the gas by volume
+
+// given values
+CO = 30;// %age mass composition of CO
+N2 = 20;// %age mass composition of N2
+CH4 = 15;// %age mass composition of CH4
+H2 = 25;// %age mass composition of H2
+O2 = 10;// %age mass composition of O2
+
+mCO = 28;// molculer mass of CO
+mN2 = 28;// molculer mass of N2
+mCH4 = 16;// molculer mass of CH4
+mH2 = 2;// molculer mass of H2
+mO2 = 32;// molculer mass of O2
+
+// solution
+vg = CO/mCO+N2/mN2+CH4/mCH4+H2/mH2+O2/mO2;
+v1 = CO/mCO/vg*100;// %age volume composition of CO
+v2 = N2/mN2/vg*100;// %age volume composition of N2
+v3 = CH4/mCH4/vg*100;// %age volume composition of CH4
+v4 = H2/mH2/vg*100;// %age volume composition of H2
+v5 = O2/mO2/vg*100;// %age volume composition of O2
+
+mprintf('\n The percentage composition of CO by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n\nThe percentage composition of CH4 by volume is = %f\n\nThe percentage composition of H2 by volume is = %f\n\nThe percentage composition of O2by volume is=%f',v1,v2,v3,v4,v5);
+
+// End
diff --git a/2705/CH8/EX8.9/Ex8_9.sce b/2705/CH8/EX8.9/Ex8_9.sce
new file mode 100755
index 000000000..0528a2575
--- /dev/null
+++ b/2705/CH8/EX8.9/Ex8_9.sce
@@ -0,0 +1,44 @@
+clear;
+clc;
+disp('Example 8.9');
+
+// aim : To determine
+// the mass of air supplied per kilogram of fuel burnt
+
+// given values
+CO2 = 8.85;// volume composition of CO2
+CO = 1.2;// volume composition of CO
+O2 = 6.8;// volume composition of O2
+N2 = 83.15;// volume composition of N2
+
+// composition of gases in the fuel oil
+C = .84;// mass composition of carbon
+H = .14;// mass composition of hydrogen
+o2 = .02;// mass composition of oxygen
+
+mC = 12;// moleculer mass of Carbon
+mCO2 = 44;// molculer mass of CO2
+mCO = 28;// molculer mass of CO
+mN2 = 28;// molculer mass of N2
+mO2 = 32;// molculer mass of O2
+aO2 = .23;// mass composition of O2 in air
+
+// solution
+ma = (8/3*C+8*H-o2)/aO2;// theoretical mass of air/kg fuel, [kg]
+
+mgas = CO2*mCO2+CO*mCO+N2*mN2+O2*mO2;// total mass of gas/kg fuel, [kg]
+x1 = CO2*mCO2/mgas;// composition of CO2 by mass
+x2 = CO*mCO/mgas;// composition of CO by mass
+x3 = O2*mO2/mgas;// composition of O2 by mass
+x4 = N2*mN2/mgas;// composition of N2 by mass
+
+m1 = x1*mC/mCO2+x2*mC/mCO;// mass of C/kg of dry flue gas, [kg]
+m2 = C;// mass of C/kg fuel, [kg]
+mf = m2/m1;// mass of dry flue gas/kg fuel, [kg]
+mo2 = mf*x3;// mass of excess O2/kg fuel, [kg]
+mair = mo2/aO2;// mass of excess air/kg fuel, [kg]
+m = ma+mair;// mass of excess air supplied/kg fuel, [kg]
+
+mprintf('\n The mass of air supplied per/kg of fuel burnt is = %f kg\n',m);
+
+// End