diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2705/CH7 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2705/CH7')
-rwxr-xr-x | 2705/CH7/EX7.1/Ex7_1.sce | 25 | ||||
-rwxr-xr-x | 2705/CH7/EX7.2/Ex7_2.sce | 33 | ||||
-rwxr-xr-x | 2705/CH7/EX7.3/Ex7_3.sce | 30 | ||||
-rwxr-xr-x | 2705/CH7/EX7.4/Ex7_4.sce | 30 | ||||
-rwxr-xr-x | 2705/CH7/EX7.5/Ex7_5.sce | 53 | ||||
-rwxr-xr-x | 2705/CH7/EX7.6/Ex7_6.sce | 67 | ||||
-rwxr-xr-x | 2705/CH7/EX7.7/Ex7_7.sce | 45 | ||||
-rwxr-xr-x | 2705/CH7/EX7.8/Ex7_8.sce | 39 | ||||
-rwxr-xr-x | 2705/CH7/EX7.9/Ex7_9.sce | 21 |
9 files changed, 343 insertions, 0 deletions
diff --git a/2705/CH7/EX7.1/Ex7_1.sce b/2705/CH7/EX7.1/Ex7_1.sce new file mode 100755 index 000000000..3a5463218 --- /dev/null +++ b/2705/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,25 @@ +clear;
+clc;
+disp('Example 7.1');
+
+// aim : To determine
+// the specific enthalpy of water
+
+// Given values
+Tf = 273+100;// Temperature,[K]
+
+// solution
+// from steam table
+cpl = 4.187;// [kJ/kg K]
+// using equation [8]
+sf = cpl*log(Tf/273.16);// [kJ/kg*K]
+mprintf('\n The specific entropy of water is = %f kJ/kg K\n',sf);
+
+// using steam table
+sf = 1.307;// [kJ/kg K]
+mprintf('\n From table The accurate value of sf in this case is = %f kJ/kg K\n',sf);
+
+// There is small error in book's final value of sf
+
+
+// End
diff --git a/2705/CH7/EX7.2/Ex7_2.sce b/2705/CH7/EX7.2/Ex7_2.sce new file mode 100755 index 000000000..38d974b14 --- /dev/null +++ b/2705/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,33 @@ +
+clear;
+clc;
+disp('Example 7.2');
+
+// aim : To determine
+// the specific entropy
+
+// Given values
+P = 2;// pressure,[MN/m^2]
+x = .8;// dryness fraction
+
+// solution
+// from steam table at given pressure
+Tf = 485.4;// [K]
+cpl = 4.187;// [kJ/kg K]
+hfg = 1888.6;// [kJ/kg]
+
+// (a) finding entropy by calculation
+s = cpl*log(Tf/273.16)+x*hfg/Tf;// formula for entropy calculation
+
+mprintf('\n (a) The specific entropy of wet steam is = %f kJ/kg K\n',s);
+
+// (b) calculation of entropy using steam table
+// from steam table at given pressure
+sf = 2.447;// [kJ/kg K]
+sfg = 3.89;// [kJ/kg K]
+// hence
+s = sf+x*sfg;// [kJ/kg K]
+
+mprintf('\n (b) The specific entropy using steam table is = %f kJ/kg K\n',s);
+
+// End
diff --git a/2705/CH7/EX7.3/Ex7_3.sce b/2705/CH7/EX7.3/Ex7_3.sce new file mode 100755 index 000000000..21e0a7087 --- /dev/null +++ b/2705/CH7/EX7.3/Ex7_3.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+disp('Example 7.3');
+
+// aim : To determine
+// the specific entropy of steam
+
+// Given values
+P = 1.5;//pressure,[MN/m^2]
+T = 273+300;//temperature,[K]
+
+// solution
+
+// (a)
+// from steam table
+cpl = 4.187;// [kJ/kg K]
+Tf = 471.3;// [K]
+hfg = 1946;// [kJ/kg]
+cpv = 2.093;// [kJ/kg K]
+
+// usung equation [2]
+s = cpl*log(Tf/273.15)+hfg/Tf+cpv*log(T/Tf);// [kJ/kg K]
+mprintf('\n (a) The specific entropy of steam is = %f kJ/kg K\n',s);
+
+// (b)
+// from steam tables
+s = 6.919;// [kJ/kg K]
+mprintf('\n (b) The accurate value of specific entropy from steam table is = %f kJ/kg K\n',s);
+
+// End
diff --git a/2705/CH7/EX7.4/Ex7_4.sce b/2705/CH7/EX7.4/Ex7_4.sce new file mode 100755 index 000000000..c908c859e --- /dev/null +++ b/2705/CH7/EX7.4/Ex7_4.sce @@ -0,0 +1,30 @@ +clear;
+clc;
+disp('Example 7.4');
+
+// aim : To determine
+// the dryness fraction of steam
+
+// Given values
+P1 = 2;// initial pressure, [MN/m^2]
+t = 350;// temperature, [C]
+P2 = .28;// final pressure, [MN/m^2]
+
+// solution
+// at 2 MN/m^2 and 350 C,steam is superheated because the saturation temperature is 212.4 C
+// From steam table
+s1 = 6.957;// [kJ/kg K]
+
+// for isentropic process
+s2 = s1;
+// also
+sf2 = 1.647;// [kJ/kg K]
+sfg2 = 5.368;// [kJ/kg K]
+
+// using
+// s2 = sf2+x2*sfg2, where x2 is dryness fraction of steam
+// hence
+x2 = (s2-sf2)/sfg2;
+mprintf('\n The final dryness fraction of steam is x2 = %f\n',x2);
+
+// End
diff --git a/2705/CH7/EX7.5/Ex7_5.sce b/2705/CH7/EX7.5/Ex7_5.sce new file mode 100755 index 000000000..53cec3d7a --- /dev/null +++ b/2705/CH7/EX7.5/Ex7_5.sce @@ -0,0 +1,53 @@ +clear;
+clc;
+disp('Example 7.5');
+
+// aim : To determine
+// the final condition of steam...
+// the change in specific entropy during hyperbolic process
+
+// Given values
+P1 = 2;// pressure, [MN/m^2]
+t = 250;// temperature, [C]
+P2 = .36;// pressure, [MN/m^2]
+P3 = .06;// pressure, [MN/m^2]
+
+// solution
+
+// (a)
+// from steam table
+s1 = 6.545;// [kJ/kg K]
+// at .36 MN/m^2
+sg = 6.930;// [kJ/kg*K]
+
+sf2 = 1.738;// [kJ/kg K]
+sfg2 = 5.192;// [kJ/kg K]
+vg2 = .510;// [m^3]
+
+// so after isentropic expansion, steam is wet
+// hence, s2=sf2+x2*sfg2, where x2 is dryness fraction
+// also
+s2 = s1;
+// so
+x2 = (s2-sf2)/sfg2;
+// and
+v2 = x2*vg2;// [m^3]
+
+// for hyperbolic process
+// P2*v2=P3*v3
+// hence
+v3 = P2*v2/P3;// [m^3]
+
+mprintf('\n (a) From steam table at .06 MN/m^2 steam is superheated and has temperature of 100 C with specific volume is = %f m^3/kg\n',v3);
+
+// (b)
+// at this condition
+s3 = 7.609;// [kJ/kg*K]
+// hence
+change_s23 = s3-sg;// change in specific entropy during the hyperblic process[kJ/kg*K]
+mprintf('\n (b) The change in specific entropy during the hyperbolic process is = %f kJ/kg K\n',change_s23);
+
+// In the book they have taken sg instead of s2 for part (b), so answer is not matching
+
+// End
+
diff --git a/2705/CH7/EX7.6/Ex7_6.sce b/2705/CH7/EX7.6/Ex7_6.sce new file mode 100755 index 000000000..b9e9a3beb --- /dev/null +++ b/2705/CH7/EX7.6/Ex7_6.sce @@ -0,0 +1,67 @@ +
+clear;
+clc;
+disp('Example 7.6');
+
+// aim : To determine the
+// (a) heat transfer during the expansion and
+// (b) work done durind the expansion
+
+// given values
+m = 4.5; // mass of steam,[kg]
+P1 = 3; // initial pressure,[MN/m^2]
+T1 = 300+273; // initial temperature,[K]
+
+P2 = .1; // final pressure,[MN/m^2]
+x2 = .96; // dryness fraction at final stage
+
+// solution
+// for state point 1,using steam table
+s1 = 6.541;// [kJ/kg/K]
+u1 = 2751;// [kJ/kg]
+
+ // for state point 2
+ sf2 = 1.303;// [kJ/kg/K]
+ sfg2 = 6.056;// [kJ/kg/k]
+ T2 = 273+99.6;// [K]
+ hf2 = 417;// [kJ/kg]
+ hfg2 = 2258;// [kJ/kg]
+ vg2 = 1.694;// [m^3/kg]
+
+ // hence
+ s2 = sf2+x2*sfg2;// [kJ/kg/k]
+ h2 = hf2+x2*hfg2;// [kJ/kg]
+ u2 = h2-P2*x2*vg2*10^3;// [kJ/kg]
+
+ // Diagram of example 7.6
+ x = [s1 s2];
+ y = [T1 T2];
+plot2d(x,y);
+ xtitle('Diagram for example 7.6(T vs s)');
+ xlabel('Entropy (kJ/kg K)');
+ ylabel('Temperature (K)');
+
+x = [s1,s1];
+y = [0,T1];
+plot2d(x,y);
+
+x = [s2,s2];
+y = [0,T2];
+plot2d(x,y);
+
+ // (a)
+ // Q_rev is area of T-s diagram
+ Q_rev = (T1+T2)/2*(s2-s1);// [kJ/kg]
+ // so total heat transfer is
+ Q_rev = m*Q_rev;// [kJ]
+
+ // (b)
+ del_u = u2-u1;// change in internal energy, [kJ/kg]
+ // using 1st law of thermodynamics
+ W = Q_rev-m*del_u;// [kJ]
+
+mprintf('\n (a) The heat transfer during the expansion is = %f kJ (received)\n',Q_rev);
+
+ mprintf('\n (b) The work done during the expansion is = %f kJ\n',W);
+
+ // End
diff --git a/2705/CH7/EX7.7/Ex7_7.sce b/2705/CH7/EX7.7/Ex7_7.sce new file mode 100755 index 000000000..9a68eddbd --- /dev/null +++ b/2705/CH7/EX7.7/Ex7_7.sce @@ -0,0 +1,45 @@ +
+clear;
+clc;
+disp('Example 7.7');
+
+// aim : To determine the
+// (a) change of entropy
+// (b) The approximate change of entropy obtained by dividing the heat transferred by the gas by the mean absolute temperature during the compression
+
+// Given values
+P1 = 140;// initial pressure,[kN/m^2]
+V1 = .14;// initial volume, [m^3]
+T1 = 273+25;// initial temperature,[K]
+ P2 = 1400;// final pressure [kN/m^2]
+ n = 1.25; // polytropic index
+ cp = 1.041;// [kJ/kg K]
+ cv = .743;// [kJ/kg K]
+
+ // solution
+ // (a)
+ R = cp-cv;// [kJ/kg/K]
+ // using ideal gas equation
+ m = P1*V1/(R*T1);// mass of gas,[kg]
+ // since gas is following law P*V^n=constant ,so
+ V2 = V1*(P1/P2)^(1/n);// [m^3]
+
+ // using eqn [9]
+ del_s = m*(cp*log(V2/V1)+cv*log(P2/P1));// [kJ/K]
+ mprintf('\n (a) The change of entropy is = %f kJ/K\n',del_s);
+
+ // (b)
+ W = (P1*V1-P2*V2)/(n-1);// polytropic work,[kJ]
+ Gamma = cp/cv;// heat capacity ratio
+ Q = (Gamma-n)/(Gamma-1)*W;// heat transferred,[kJ]
+
+ // Again using polytropic law
+ T2 = T1*(V1/V2)^(n-1);// final temperature, [K]
+ T_avg = (T1+T2)/2;// mean absolute temperature, [K]
+
+ // so approximate change in entropy is
+ del_s = Q/T_avg;// [kJ/K]
+
+ mprintf('\n (b) The approximate change of entropy obtained by dividing the heat transferred by the gas by the mean absolute temperature during the compression = %f kJ/K\n',del_s);
+
+ // End
diff --git a/2705/CH7/EX7.8/Ex7_8.sce b/2705/CH7/EX7.8/Ex7_8.sce new file mode 100755 index 000000000..711505b0c --- /dev/null +++ b/2705/CH7/EX7.8/Ex7_8.sce @@ -0,0 +1,39 @@ +clear;
+clc;
+disp('Example 7.8');
+
+// aim : To determine
+// the change of entropy
+
+// Given values
+m = .3;// [kg]
+P1 = 350;// [kN/m^2]
+T1 = 273+35;// [K]
+P2 = 700;// [kN/m^2]
+V3 = .2289;// [m^3]
+cp = 1.006;// [kJ/kg K]
+cv = .717;// [kJ/kg K]
+
+// solution
+// for constant volume process
+R = cp-cv;// [kJ/kg K]
+// using PV=mRT
+V1 = m*R*T1/P1;// [m^3]
+
+// for constant volume process P/T=constant,so
+T2 = T1*P2/P1;// [K]
+s21 = m*cv*log(P2/P1);// formula for entropy change for constant volume process
+mprintf('\n The change of entropy in constant volume process is = %f kJ/kg K\n',s21);
+
+// 'For the above part result given in the book is wrong
+
+V2 = V1;
+// for constant pressure process
+T3 = T2*V3/V2;// [K]
+s32 = m*cp*log(V3/V2);// [kJ/kg K]
+
+mprintf('\n The change of entropy in constant pressure process is = %f kJ/kg K\n',s32);
+
+// there is misprint in the book's result
+
+// End
diff --git a/2705/CH7/EX7.9/Ex7_9.sce b/2705/CH7/EX7.9/Ex7_9.sce new file mode 100755 index 000000000..05f58353b --- /dev/null +++ b/2705/CH7/EX7.9/Ex7_9.sce @@ -0,0 +1,21 @@ +clear;
+clc;
+disp('Example 7.9');
+
+// aim : To determine
+// the change of entropy
+
+// Given values
+P1 = 700;// initial pressure, [kN/m^2]
+T1 = 273+150;// Temperature ,[K]
+V1 = .014;// initial volume, [m^3]
+V2 = .084;// final volume, [m^3]
+
+// solution
+// since process is isothermal so
+T2 = T1;
+// and using fig.7.10
+del_s = P1*V1*log(V2/V1)/T1 ;// [kJ/K]
+mprintf('\n The change of entropy is = %f kJ/kg K\n',del_s);
+
+// End
|