summaryrefslogtreecommitdiff
path: root/2705/CH13
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2705/CH13
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2705/CH13')
-rwxr-xr-x2705/CH13/EX13.1/Ex13_1.sce24
-rwxr-xr-x2705/CH13/EX13.2/Ex13_2.sce38
-rwxr-xr-x2705/CH13/EX13.3/Ex13_3.sce28
-rwxr-xr-x2705/CH13/EX13.4/Ex13_4.sce37
-rwxr-xr-x2705/CH13/EX13.5/Ex13_5.sce36
5 files changed, 163 insertions, 0 deletions
diff --git a/2705/CH13/EX13.1/Ex13_1.sce b/2705/CH13/EX13.1/Ex13_1.sce
new file mode 100755
index 000000000..55203b728
--- /dev/null
+++ b/2705/CH13/EX13.1/Ex13_1.sce
@@ -0,0 +1,24 @@
+clear;
+clc;
+disp('Example 13.1');
+
+// aim : To determine
+// the power developed for a steam flow of 1 kg/s at the blades and the kinetic energy of the steam finally leaving the wheel
+
+// Given values
+alfa = 20;// blade angle, [degree]
+Cai = 375;// steam exit velocity in the nozzle,[m/s]
+U = 165;// blade speed, [m/s]
+loss = .15;// loss of velocity due to friction
+
+// solution
+// using Fig13.12,
+Cvw = 320;// change in velocity of whirl, [m/s]
+cae = 132.5;// absolute velocity at exit, [m/s]
+Pds = U*Cvw*10^-3;// Power developed for steam flow of 1 kg/s, [kW]
+Kes = cae^2/2*10^-3;// Kinetic energy change of steam, [kW/kg]
+
+mprintf('\n The power developed for a steam flow of 1 kg/s is = %f kW\n',Pds)
+mprintf('\n The energy of steam finally leaving the wheel is = %f kW/kg\n',Kes);
+
+// End
diff --git a/2705/CH13/EX13.2/Ex13_2.sce b/2705/CH13/EX13.2/Ex13_2.sce
new file mode 100755
index 000000000..601a28f65
--- /dev/null
+++ b/2705/CH13/EX13.2/Ex13_2.sce
@@ -0,0 +1,38 @@
+clear;
+clc;
+disp('Example 13.2');
+
+// aim : To determine
+// (a) the entry angle of the blades
+// (b) the work done per kilogram of steam per second
+// (c) the diagram efficiency
+// (d) the end-thrust per kilogram of steam per second
+
+// given values
+Cai = 600;// steam velocity, [m/s]
+sia = 25;// steam inlet angle with blade, [degree]
+U = 255;// mean blade speed, [m/s]
+sea = 30;// steam exit angle with blade,[degree]
+
+// solution
+// (a)
+// using Fig.13.13(diagram for example 13.2)
+eab = 41.5;// entry angle of blades, [degree]
+mprintf('\n (a) The angle of blades is = %f degree\n',eab);
+
+// (b)
+Cwi_plus_Cwe = 590;// velocity of whirl, [m/s]
+W = U*(Cwi_plus_Cwe);// work done on the blade,[W/kg]
+mprintf('\n (b) The work done on the blade is = %f kW/kg\n',W*10^-3);
+
+// (c)
+De = 2*U*(Cwi_plus_Cwe)/Cai^2;// diagram efficiency
+mprintf('\n (c) The diagram efficiency is = %f percent\n',De*100);
+
+// (d)
+// again from the diagram
+Cfe_minus_Cfi = -90;// change invelocity of flow, [m/s]
+Eth = Cfe_minus_Cfi;// end-thrust, [N/kg s]
+mprintf('\n (d) The End-thrust is = %f N/kg',Eth);
+
+// End
diff --git a/2705/CH13/EX13.3/Ex13_3.sce b/2705/CH13/EX13.3/Ex13_3.sce
new file mode 100755
index 000000000..511e4e183
--- /dev/null
+++ b/2705/CH13/EX13.3/Ex13_3.sce
@@ -0,0 +1,28 @@
+clear;
+clc;
+disp('Example 13.3');
+
+// aim : To determine
+// (a) the power output of the turbine
+// (b) the diagram efficiency
+
+// given values
+U = 150;// mean blade speed, [m/s]
+Cai1 = 675;// nozzle speed, [m/s]
+na = 20;// nozzle angle, [degree]
+m_dot = 4.5;// steam flow rate, [kg/s]
+
+// solution
+// from Fig. 13.15(diagram 13.3)
+Cw1 = 915;// [m/s]
+Cw2 = 280;// [m/s]
+
+// (a)
+P = m_dot*U*(Cw1+Cw2);// power of turbine,[W]
+mprintf('\n (a) The power of turbine is = %f kW\n',P*10^-3);
+
+// (b)
+De = 2*U*(Cw1+Cw2)/Cai1^2;// diagram efficiency
+mprintf('\n (b) The diagram efficiency is = %f percent\n',De*100);
+
+// End
diff --git a/2705/CH13/EX13.4/Ex13_4.sce b/2705/CH13/EX13.4/Ex13_4.sce
new file mode 100755
index 000000000..2f9f9c42a
--- /dev/null
+++ b/2705/CH13/EX13.4/Ex13_4.sce
@@ -0,0 +1,37 @@
+clear;
+clc;
+disp('Example 13.4');
+
+// aim : To determine
+// (a) the power output of the stage
+// (b) the specific enthalpy drop in the stage
+// (c) the percentage increase in relative velocity in the moving blades due to expansion in the bladse
+
+// given values
+N = 50;// speed, [m/s]
+d = 1;// blade ring diameter, [m]
+nai = 50;// nozzle inlet angle, [degree]
+nae = 30;// nozzle exit angle, [degree]
+m_dot = 600000;// steam flow rate, [kg/h]
+se = .85;// stage efficiency
+
+// solution
+// (a)
+U = %pi*d*N;// mean blade speed, [m/s]
+// from Fig. 13.17(diagram 13.4)
+Cwi_plus_Cwe = 444;// change in whirl speed, [m/s]
+P = m_dot*U*Cwi_plus_Cwe/3600;// power output of the stage, [W]
+mprintf('\n (a) The power output of the stage is = %f MW\n',P*10^-6);
+
+// (b)
+h = U*Cwi_plus_Cwe/se;// specific enthalpy,[J/kg]
+mprintf('\n (b) The specific enthalpy drop in the stage is = %f kJ/kg\n ',h*10^-3);
+
+// (c)
+// again from diagram
+Cri = 224;// [m/s]
+Cre = 341;// [m/s]
+Iir = (Cre-Cri)/Cri;// increase in relative velocity
+mprintf('\n (c) The increase in relative velocity is = %f percent\n',Iir*100);
+
+// End
diff --git a/2705/CH13/EX13.5/Ex13_5.sce b/2705/CH13/EX13.5/Ex13_5.sce
new file mode 100755
index 000000000..b2c3c6672
--- /dev/null
+++ b/2705/CH13/EX13.5/Ex13_5.sce
@@ -0,0 +1,36 @@
+clear;
+clc;
+disp('Example 13.5');
+
+// aim : To determine
+// (a) the blade height of the stage
+// (b) the power developed in the stage
+// (c) the specific enthalpy drop at the stage
+
+// given values
+U = 60;// mean blade speed, [m/s]
+P = 350;// steam pressure, [kN/m^2]
+T = 175;// steam temperature, [C]
+nai = 30;// stage inlet angle, [degree]
+nae = 20;// stage exit angle, [degree]
+
+// solution
+// (a)
+m_dot = 13.5;// steam flow rate, [kg/s]
+// at given T and P
+v = .589;// specific volume, [m^3/kg]
+// given H=d/10, so
+H = sqrt(m_dot*v/(%pi*10*60));// blade height, [m]
+mprintf('\n (a) The blade height at this stage is = %f mm\n',H*10^3);
+
+// (b)
+Cwi_plus_Cwe = 270;// change in whirl speed, [m/s]
+P = m_dot*U*(Cwi_plus_Cwe);// power developed, [W]
+mprintf('\n (b) The power developed is = %f kW\n',P*10^-3);
+
+// (c)
+s = .85;// stage efficiency
+h = U*Cwi_plus_Cwe/s;// specific enthalpy,[J/kg]
+mprintf('\n (a) The specific enthalpy drop in the stage is = %f kJ/kg',h*10^-3);
+
+// End