diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2705/CH10 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2705/CH10')
-rwxr-xr-x | 2705/CH10/EX10.1/Ex10_1.sce | 31 | ||||
-rwxr-xr-x | 2705/CH10/EX10.10/Ex10_10.sce | 64 | ||||
-rwxr-xr-x | 2705/CH10/EX10.2/Ex10_2.sce | 47 | ||||
-rwxr-xr-x | 2705/CH10/EX10.3/Ex10_3.sce | 44 | ||||
-rwxr-xr-x | 2705/CH10/EX10.4/Ex10_4.sce | 46 | ||||
-rwxr-xr-x | 2705/CH10/EX10.5/Ex10_5.sce | 31 | ||||
-rwxr-xr-x | 2705/CH10/EX10.6/Ex10_6.sce | 49 | ||||
-rwxr-xr-x | 2705/CH10/EX10.7/Ex10_7.sce | 61 | ||||
-rwxr-xr-x | 2705/CH10/EX10.8/Ex10_8.sce | 63 | ||||
-rwxr-xr-x | 2705/CH10/EX10.9/Ex10_9.sce | 48 |
10 files changed, 484 insertions, 0 deletions
diff --git a/2705/CH10/EX10.1/Ex10_1.sce b/2705/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..563d4d450 --- /dev/null +++ b/2705/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,31 @@ +clear;
+clc;
+disp('Example 10.1');
+
+// aim : To determine
+// the equivalent evaporation
+
+// Given
+P = 1.4;// [MN/m^2]
+m = 8;// mass of water,[kg]
+T1 = 39;// entering temperature,[C]
+T2 = 100;// [C]
+x = .95;//dryness fraction
+
+// solution
+hf = 830.1;// [kJ/kg]
+hfg = 1957.7;// [kJ/kg]
+// steam is wet so specific enthalpy of steam is
+h = hf+x*hfg;// [kJ/kg]
+
+// at 39 C
+h1 = 163.4;// [kJ/kg]
+// hence
+q = h-h1;// [kJ/kg]
+Q = m*q;// [kJ]
+
+evap = Q/2256.9;// equivalent evaporation[kg steam/(kg coal)]
+
+mprintf('\n The equivalent evaporation, from and at 100 C is = %f kg steam/kg coal\n ',evap);
+
+// End
diff --git a/2705/CH10/EX10.10/Ex10_10.sce b/2705/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..c0d346f7f --- /dev/null +++ b/2705/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,64 @@ +clear;
+clc;
+disp('Example 10.10');
+
+// aim : To determine
+// (a) the mass of steam bled to each feed heater in kg/kg of supply steam
+// (b) the thermal efficiency of the arrangement
+
+// given values
+P1 = 7;// steam initial pressure, [MN/m^2]
+T1 = 273+500;// steam initil temperature, [K]
+P2 = 2;// pressure at stage 1, [MN/m^2]
+P3 = .5;// pressure at stage 2, [MN/m^2]
+P4 = .05;// condenser pressure,[MN/m^2]
+SE = .82;// stage efficiency of turbine
+
+// solution
+// from the enthalpy-entropy chart(Fig10.23) values of specific enthalpies are
+h1 = 3410;// [kJ/kg]
+h2_prim = 3045;// [kJ/kg]
+// h1-h2=SE*(h1-h2_prim), so
+h2 = h1-SE*(h1-h2_prim);// [kJ/kg]
+
+h3_prim = 2790;// [kJ/kg]
+// h2-h3=SE*(h2-h3_prim), so
+h3 = h2-SE*(h2-h3_prim);// [kJ/kg]
+
+h4_prim = 2450;// [kJ/kg]
+// h3-h4 = SE*(h3-h4_prim), so
+h4 = h3-SE*(h3-h4_prim);// [kJ/kg]
+
+// from steam table
+// @ 2 MN/m^2
+hf2 = 908.6;// [kJ/kg]
+// @ .5 MN/m^2
+hf3 = 640.1;// [kJ/kg]
+// @ .05 MN/m^2
+hf4 = 340.6;// [kJ/kg]
+
+// (a)
+// for feed heater1
+m1 = (hf2-hf3)/(h2-hf3);// mass of bled steam, [kg/kg supplied steam]
+// for feed heater2
+m2 = (1-m1)*(hf3-hf4)/(h3-hf4);//
+mprintf('\n (a) The mass of steam bled in feed heater 1 is = %f kg/kg supply steam\n',m1);
+mprintf('\n The mass of steam bled in feed heater 2 is = %f kg/kg supply steam\n',m2);
+
+// (b)
+W = (h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4);// theoretical work done, [kJ/kg]
+Eb = h1-hf2;// energy input in the boiler, [kJ/kg]
+TE1 = W/Eb;// thermal efficiency
+mprintf('\n (b) The thermal efficiency of the arrangement is = %f percent\n',TE1*100);
+
+// If there is no feed heating
+hf5 = hf4;
+h5_prim = 2370;// [kJ/kg]
+// h1-h5 = SE*(h1-h5_prim), so
+h5 = h1-SE*(h1-h5_prim);// [kJ/kg]
+Ei = h1-hf5;//energy input, [kJ/kg]
+W = h1-h5;// theoretical work, [kJ/kg]
+TE2 = W/Ei;// thermal efficiency
+mprintf('\n The thermal efficiency if there is no feed heating is = %f percent\n',TE2*100);
+
+// End
diff --git a/2705/CH10/EX10.2/Ex10_2.sce b/2705/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..7993e77ac --- /dev/null +++ b/2705/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,47 @@ +clear;
+clc;
+disp('Example 10.2');
+
+// aim : To determine
+// the mass of oil used per hour and the fraction of enthalpy drop through the turbine
+// heat transfer available per kilogram of exhaust steam
+
+// Given values
+ms_dot = 5000;// generation of steam, [kg/h]
+P1 = 1.8;// generated steam pressure, [MN/m^2]
+T1 = 273+325;// generated steam temperature, [K]
+Tf = 273+49.4;// feed temperature, [K]
+neta = .8;// efficiency of boiler plant
+c = 45500;// calorific value, [kJ/kg]
+P = 500;// turbine generated power, [kW]
+Pt = .18;// turbine exhaust pressure, [MN/m^2]
+x = .98;// dryness farction of steam
+
+// solution
+// using steam table at 1.8 MN/m^2
+hf1 = 3106;// [kJ/kg]
+hg1 = 3080;// [kJ/kg]
+// so
+h1 = hf1-neta*(hf1-hg1);// [kJ/kg]
+// again using steam table specific enthalpy of feed water is
+hwf = 206.9;// [kJ/kg]
+h_rais = ms_dot*(h1-hwf);// energy to raise steam, [kJ]
+
+h_fue = h_rais/neta;// energy from fuel per hour, [kJ]
+m_oil = h_fue/c;// mass of fuel per hour, [kg]
+
+// from steam table at exhaust
+hf = 490.7;// [kJ/kg]
+hfg = 2210.8;// [kJ/kg]
+// hence
+h = hf+x*hfg;// [kJ/kg]
+// now
+h_drop = (h1-h)*ms_dot/3600;// specific enthalpy drop in turbine [kJ]
+f = P/h_drop;// fraction ofenthalpy drop converted into work
+// heat transfer available in exhaust is
+Q = h-hwf;// [kJ/kg]
+mprintf('\n The mass of oil used per hour is = %f kg\n',m_oil);
+mprintf('\n The fraction of the enthalpy drop through the turbine that is converted into useful work is = %f\n',f);
+mprintf('\n The heat transfer available in exhaust steam above 49.4 C is = %f kJ/kg\n',Q);
+
+// End
diff --git a/2705/CH10/EX10.3/Ex10_3.sce b/2705/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..5ea7c08db --- /dev/null +++ b/2705/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,44 @@ +clear;
+clc;
+disp('Example 10.3');
+
+// aim : To determine
+// (a) the thermal efficiency of the boiler
+// (b) the equivalent evaporation of the boiler
+// (c) the new coal consumption
+
+// given values
+ms_dot = 5400;// steam feed rate, [kg/h]
+P = 750;// steam pressure, [kN/m^2]
+x = .98;// steam dryness fraction
+Tf1 = 41.5;// feed water temperature, [C]
+CV = 31000;// calorific value of coal used in the boiler, [kJ/kg]
+mc1 = 670;// rate of burning of coal/h, [kg]
+Tf2 = 100;// increased water temperature, [C]
+
+// solution
+// (a)
+SRC = ms_dot/mc1;// steam raised/kg coal, [kg]
+hf = 709.3;// [kJ/kg]
+hfg = 2055.5;// [kJ/kg]
+h1 = hf+x*hfg;// specific enthalpy of steam raised, [kJ/kg]
+// from steam table
+hfw = 173.9;// specific enthalpy of feed water, [kJ/kg]
+EOB = SRC*(h1-hfw)/CV;// efficiency of boiler
+mprintf('\n (a) The thermal efficiency of the boiler is = %f percent\n',EOB*100);
+
+// (b)
+he = 2256.9;// specific enthalpy of evaporation, [kJ/kg]
+Ee = SRC*(h1-hfw)/he;// equivalent evaporation[kg/kg coal]
+mprintf('\n (b) The equivalent evaporation of boiler is = %f kg/kg coal\n',Ee);
+
+// (c)
+hw = 419.1;// specific enthalpy of feed water at 100 C, [kJ/kg]
+Eos = ms_dot*(h1-hw);// energy of steam under new condition, [kJ/h]
+neb = EOB+.05;// given condition new efficiency of boiler if 5%more than previous
+Ec = Eos/neb;// energy from coal, [kJ/h]
+mc2 = Ec/CV;// mass of coal used per hour in new condition, [kg]
+mprintf('\n (c) Mass of coal used in new condition is = %f kg\n',mc2);
+mprintf('\n The saving in coal per hour is = %f kg\n',mc1-mc2);
+
+// End
diff --git a/2705/CH10/EX10.4/Ex10_4.sce b/2705/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..c7d9ea745 --- /dev/null +++ b/2705/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,46 @@ +clear;
+clc;
+disp('Example 10.4');
+
+// aim : To determine the
+// (a) Heat transfer in the boiler
+// (b) Heat transfer in the superheater
+// (c) Gas used
+
+// given values
+P = 100;// boiler operating pressure, [bar]
+Tf = 256;// feed water temperature, [C]
+x = .9;// steam dryness fraction.
+Th = 450;// superheater exit temperature, [C]
+m = 1200;// steam generation/h, [tonne]
+TE = .92;// thermal efficiency
+CV = 38;// calorific value of fuel, [MJ/m^3]
+
+// solution
+// (a)
+// from steam table
+hw = 1115.4;// specific enthalpy of feed water, [kJ/kg]
+// for wet steam
+hf = 1408;// specific enthalpy, [kJ/kg]
+hg = 2727.7;// specific enthalpy, [kJ/kg]
+// so
+h = hf+x*(hg-hf);// total specific enthalpy of wet steam, [kJ/kg]
+// hence
+Qb = m*(h-hw);// heat transfer/h for wet steam, [MJ]
+mprintf('\n (a) The heat transfer/h in producing wet steam in the boiler is = %f MJ\n',Qb);
+
+// (b)
+// again from steam table
+// specific enthalpy of superheated stem at given condition is,
+hs = 3244;// [kJ/kg]
+
+Qs = m*(hs-h);// heat transfer/h in superheater, [MJ]
+mprintf('\n (b) The heat transfer/h in superheater is = %f MJ\n',Qs);
+
+// (c)
+V = (Qb+Qs)/(TE*CV);// volume of gs used/h, [m^3]
+mprintf('\n (c) The volume of gas used/h is = %f m^3\n',V);
+
+// There is calculation mistake in the book so our answer is not matching
+
+// End
diff --git a/2705/CH10/EX10.5/Ex10_5.sce b/2705/CH10/EX10.5/Ex10_5.sce new file mode 100755 index 000000000..e7086049a --- /dev/null +++ b/2705/CH10/EX10.5/Ex10_5.sce @@ -0,0 +1,31 @@ +clear;
+clc;
+disp('Example 10.5');
+
+//aim : To determine
+// the flow rate of cooling water
+
+//Given values
+P=24;//pressure, [kN/m^2]
+ms_dot=1.8;//steam condense rate,[tonne/h]
+x=.98;//dryness fraction
+T1=21;//entrance temperature of cooling water,[C]
+T2=57;//outlet temperature of cooling water,[C]
+
+//solution
+//at 24 kN/m^2, for steam
+hfg=2616.8;//[kJ/kg]
+hf1=268.2;//[kJ/kg]
+//hence
+h1=hf1+x*(hfg-hf1);//[kJ/kg]
+
+//for cooling water
+hf3=238.6;//[kJ/kg]
+hf2=88.1;//[kJ/kg]
+
+//using equation [3]
+//ms_dot*(hf3-hf2)=mw_dot*(h1-hf1),so
+mw_dot=ms_dot*(h1-hf1)/(hf3-hf2);//[tonne/h]
+disp('tonne/h',mw_dot,'The flow rate of the cooling water is =')
+
+//End
diff --git a/2705/CH10/EX10.6/Ex10_6.sce b/2705/CH10/EX10.6/Ex10_6.sce new file mode 100755 index 000000000..b4d0e04fe --- /dev/null +++ b/2705/CH10/EX10.6/Ex10_6.sce @@ -0,0 +1,49 @@ +clear;
+clc;
+disp('Example 10.6');
+
+// aim : To determine
+// (a) the energy supplied in the boiler
+// (b) the dryness fraction of the steam entering the condenser
+// (c) the rankine efficiency
+
+// given values
+P1 = 3.5;// steam entering pressure, [MN/m^2]
+T1 = 273+350;// entering temperature, [K]
+P2 = 10;//steam exhaust pressure, [kN/m^2]
+
+// solution
+// (a)
+// from steam table, at P1 is,
+hf1 = 3139;// [kJ/kg]
+hg1 = 3095;// [kJ/kg]
+h1 = hf1-1.5/2*(hf1-hg1);
+// at Point 3
+h3 = 191.8;// [kJ/kg]
+Es = h1-h3;// energy supplied, [kJ/kg]
+mprintf('\n (a) The energy supplied in boiler/kg steam is = %f kJ/kg\n',Es);
+
+// (b)
+// at P1
+sf1 = 6.960;// [kJ/kg K]
+sg1 = 6.587;// [kJ/kg K]
+s1 = sf1-1.5/2*(sf1-sg1);// [kJ/kg K]
+// at P2
+sf2 = .649;// [kJ/kg K]
+ sg2 = 8.151;// [kJ/kg K]
+ // s2=sf2+x2(sg2-sf2)
+ // theoretically expansion through turbine is isentropic so s1=s2
+ // hence
+ s2 = s1;
+ x2 = (s2-sf2)/(sg2-sf2);// dryness fraction
+ mprintf('\n (b) The dryness fraction of steam entering the condenser is = %f \n',x2);
+
+ // (c)
+ // at point 2
+ hf2 = 191.8;// [kJ/kg]
+ hfg2 = 2392.9;// [kJ/kg]
+ h2 = hf2+x2*hfg2;// [kJ/kg]
+ Re = (h1-h2)/(h1-h3);// rankine efficiency
+ mprintf('\n (c) The Rankine efficiency is = %f percent\n',Re*100);
+
+ // End
diff --git a/2705/CH10/EX10.7/Ex10_7.sce b/2705/CH10/EX10.7/Ex10_7.sce new file mode 100755 index 000000000..b3e5be740 --- /dev/null +++ b/2705/CH10/EX10.7/Ex10_7.sce @@ -0,0 +1,61 @@ +clear;
+clc;
+disp('Example 10.7');
+
+// aim : To determine
+// the specific work done and compare this with that obtained when determining the rankine effficiency
+
+// given values
+P1 = 1000;// steam entering pressure, [kN/m^2]
+x1 = .97;// steam entering dryness fraction
+P2 = 15;//steam exhaust pressure, [kN/m^2]
+n = 1.135;// polytropic index
+
+// solution
+// (a)
+// from steam table, at P1 is
+hf1 = 762.6;// [kJ/kg]
+hfg1 = 2013.6;// [kJ/kg]
+h1 = hf1+hfg1; // [kJ/kg]
+
+sf1 = 2.138;// [kJ/kg K]
+sg1 = 6.583;// [kJ/kg K]
+s1 = sf1+x1*(sg1-sf1);// [kJ/kg K]
+
+// at P2
+sf2 = .755;// [kJ/kg K]
+ sg2 = 8.009;// [kJ/kg K]
+// s2 = sf2+x2(sg2-sf2)
+// since expansion through turbine is isentropic so s1=s2
+ // hence
+ s2 = s1;
+ x2 = (s2-sf2)/(sg2-sf2);// dryness fraction
+
+ // at point 2
+ hf2 = 226.0;// [kJ/kg]
+ hfg2 = 2373.2;// [kJ/kg]
+ h2 = hf2+x2*hfg2;// [kJ/kg]
+
+// at Point 3
+h3 = 226.0;// [kJ/kg]
+
+// (a)
+ Re = (h1-h2)/(h1-h3);// rankine efficiency
+ mprintf('\n (a) The Rankine efficiency is = %f percent\n',Re*100);
+
+// (b)
+vg1 = .1943;// specific volume at P1, [m^3/kg]
+vg2 = 10.02;// specific volume at P2, [m^3/kg]
+V1 = x1*vg1;// [m^3/kg]
+V2 = x2*vg2;// [m^3/kg]
+
+W1 = n/(n-1)*(P1*V1-P2*V2);// specific work done, [kJ/kg]
+
+// from rankine cycle
+W2 = h1-h2;// [kJ/kg]
+mprintf('\n (b) The specific work done is = %f kJ/kg\n',W1);
+mprintf('\n The specific work done (from rankine) is = %f kJ/kg\n',W2);
+
+// there is calculation mistake in the book so our answer is not matching
+
+// End
diff --git a/2705/CH10/EX10.8/Ex10_8.sce b/2705/CH10/EX10.8/Ex10_8.sce new file mode 100755 index 000000000..f65703173 --- /dev/null +++ b/2705/CH10/EX10.8/Ex10_8.sce @@ -0,0 +1,63 @@ +clear;
+clc;
+disp('Example 10.8');
+
+// aim : To determine
+// (a) the rankine fficiency
+// (b) the specific steam consumption
+// (c) the carnot efficiency of the cycle
+
+// given values
+P1 = 1100;// steam entering pressure, [kN/m^2]
+T1 = 273+250;// steam entering temperature, [K]
+P2 = 280;// pressure at point 2, [kN/m^2]
+P3 = 35;// pressure at point 3, [kN/m^2]
+
+// solution
+// (a)
+// from steam table, at P1 and T1 is
+hf1 = 2943;// [kJ/kg]
+hg1 = 2902;// [kJ/kg]
+h1 = hf1-.1*(hf1-hg1); // [kJ/kg]
+
+sf1 = 6.926;// [kJ/kg K]
+sg1 = 6.545;// [kJ/kg K]
+s1 = sf1-.1*(sf1-sg1);// [kJ/kg K]
+
+// at P2
+sf2 = 1.647;// [kJ/kg K]
+ sg2 = 7.014;// [kJ/kg K]
+// s2=sf2+x2(sg2-sf2)
+// since expansion through turbine is isentropic so s1=s2
+ // hence
+ s2 = s1;
+ x2 = (s2-sf2)/(sg2-sf2);// dryness fraction
+
+ // at point 2
+ hf2 = 551.4;// [kJ/kg]
+ hfg2 = 2170.1;// [kJ/kg]
+ h2 = hf2+x2*hfg2;// [kJ/kg]
+ vg2 = .646;// [m^3/kg]
+ v2 = x2*vg2;// [m^3/kg]
+
+ // by Fig10.20.
+ A6125 = h1-h2;// area of 6125, [kJ/kg]
+ A5234 = v2*(P2-P3);// area 5234, [kJ/kg]
+ W = A6125+A5234;// work done
+ hf = 304.3;// specific enthalpy of water at condenser pressuer, [kJ/kg]
+ ER = h1-hf;// energy received, [kJ/kg]
+ Re = W/ER;// rankine efficiency
+ mprintf('\n (a) The rankine efficiency is = %f percent\n',Re*100);
+
+ // (b)
+ kWh = 3600;// [kJ]
+ SSC = kWh/W;// specific steam consumption, [kJ/kWh]
+ mprintf('\n (b) The specific steam consumption is = %f kJ/kWh\n',SSC);
+
+ // (c)
+ // from steam table
+T3 = 273+72.7;// temperature at point 3
+CE = (T1-T3)/T1;// carnot efficiency
+mprintf('\n (c) The carnot efficiency of the cycle is = %f percent\n',CE*100);
+
+// End
diff --git a/2705/CH10/EX10.9/Ex10_9.sce b/2705/CH10/EX10.9/Ex10_9.sce new file mode 100755 index 000000000..cd4a60ca0 --- /dev/null +++ b/2705/CH10/EX10.9/Ex10_9.sce @@ -0,0 +1,48 @@ +clear;
+clc;
+disp('Example 10.9');
+
+// aim : To determine
+// (a) the theoretical power of steam passing through the turbine
+// (b) the thermal efficiency of the cycle
+// (c) the thermal efficiency of the cycle assuming there is no reheat
+
+// given values
+P1 = 6;// initial pressure, [MN/m^2]
+T1 = 450;// initial temperature, [C]
+P2 = 1;// pressure at stage 1, [MN/m^2]
+P3 = 1;// pressure at stage 2, [MN/m^2]
+T3 = 370;// temperature, [C]
+P4 = .02;// pressure at stage 3, [MN/m^2]
+P5 = .02;// pressure at stage 4, [MN/m^2]
+T5 = 320;// temperature, [C]
+P6 = .02;// pressure at stage 5, [MN/m^2]
+P7 = .02;// final pressure , [MN/m^2]
+
+// solution
+// (a)
+// using Fig 10.21
+h1 = 3305;// specific enthalpy, [kJ/kg]
+h2 = 2850;// specific enthalpy, [kJ/kg]
+h3 = 3202;// specific enthalpy, [kJ/kg]
+h4 = 2810;// specific enthalpy, [kJ/kg]
+h5 = 3115;// specific enthalpy, [kJ/kg]
+h6 = 2630;// specific enthalpy, [kJ/kg]
+h7 = 2215;// specific enthalpy, [kJ/kg]
+W = (h1-h2)+(h3-h4)+(h5-h6);// specific work through the turbine, [kJ/kg]
+mprintf('\n (a) The theoretical power/kg steam/s is = %f kW\n',W);
+
+// (b)
+// from steam table
+hf6 = 251.5;// [kJ/kg]
+
+TE1 = ((h1-h2)+(h3-h4)+(h5-h6))/((h1-hf6)+(h3-h2)+(h5-h4));// thermal efficiency
+mprintf('\n (b) The thermal efficiency of the cycle is = %f percent\n',TE1*100);
+
+// (c)
+// if there is no heat
+hf7 = hf6;
+TE2 = (h1-h7)/(h1-hf7);// thermal efficiency
+mprintf('\n (c) The thermal efficiency of the cycle if there is no heat is = %f percent\n',TE2*100);
+
+// End
|