diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2657/CH18/EX18.3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2657/CH18/EX18.3')
-rwxr-xr-x | 2657/CH18/EX18.3/Ex18_3.sce | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/2657/CH18/EX18.3/Ex18_3.sce b/2657/CH18/EX18.3/Ex18_3.sce new file mode 100755 index 000000000..08b4495bc --- /dev/null +++ b/2657/CH18/EX18.3/Ex18_3.sce @@ -0,0 +1,54 @@ +//Calculations on oil engine
+clc,clear
+//Given:
+d=18,l=36 //Bore and stroke in cm
+N=285 //Average engine speed in rpm
+T=393 //Brake torque delivered in Nm
+imep=7.2 //Indicated mean effective pressure in bar
+m_f=3.5 //Fuel consumption in kg/hr
+m_w=4.5 //Mass of cooling water used in kg/min
+deltaT_w=36 //Cooling water temperature rise in degreeC
+A_F=25 //Air-fuel ratio
+T2=415+273 //Exhaust gas temperature in K
+P=1.013 //Atmospheric pressure in bar
+T1=21+273 //Room temperature in K
+CV=45200 //Calorific value in kJ/kg
+p=15 //Perentage of hydrogen contained by the fuel
+R=0.287 //Specific gas constant in kJ/kgK
+cv=1.005,cp=2.05 //Specific heat for dry exhaust gases and superheated steam in kJ/kgK
+//Solution:
+//(a)
+ip=imep*10^2*l*%pi/4*d^2*N/(2*60)*10^-6 //Indicated power in kW
+ip=round(10*ip)/10
+eta_it=ip*3600/(m_f*CV) //Indicated thermal efficiency
+//(b)
+m_a=m_f*A_F/60 //Mass of air inhaled in kg/min
+m_a=round(100*m_a)/100
+V_a=m_a*R*T1/(P*100) //Volume of air inhaled in m^3/min
+V_s=(%pi/4)*d^2*l*10^-6*N/2 //Swept volume in m^3/min
+eta_vol=V_a/V_s //Volumetric efficiency
+//Heat balance sheet
+Q1=m_f/60*CV //Heat input in kJ/min
+bp=2*%pi*N/60*T*10^-3 //Brake power in W
+Q_bp=bp*60 //Heat equivalent to brake power in kJ/min
+cp_w=4.1868 //Specific heat of water in kJ/kgK
+Q_w=m_w*cp_w*deltaT_w //Heat in cooling water in kJ/min
+m_e=m_a+m_f/60 //Mass of exhaust gases in kg/min
+//Since, 2 mole of hydrogen gives 1 mole of water on combine with 1 mole of oxygen
+//Thus, 1 mole of hydrogen gives 1/2 mole or 9 unit mass of water
+m_h=m_f/60*p/100 //Mass of hydrogen in kg/min
+m_s=9*m_h //Mass of steam in exhaust gases in kg/min
+m_d=m_e-m_s //Mass of dry exhaust gases in kg/min
+Q_d=m_d*cv*(T2-T1) //Heat in dry exhaust gases in kJ/min
+lv=2256.9 //Latent heat of vapourisation of water in kJ/kg
+Q_s=m_s*((373-T1)+lv+cp*(T2-373)) //Heat in steam in exhaust gases in kJ/min
+Q_r=Q1-Q_bp-Q_w-Q_d-Q_s //Heat in radiation in kJ/min
+//Results:
+printf("\n (a)The indicated thermal efficiency, eta_it = %.1f percent",eta_it*100)
+printf("\n (b)The volumetric efficiency, eta_vol = %.1f percent",eta_vol*100)
+printf("\n\n Heat balance sheet\n\t Heat input = %.1f kJ/min, %d percent",Q1,Q1/Q1*100)
+printf("\n\t Heat equivalent to b.p. = %.1f kJ/min, %.1f percent",Q_bp,Q_bp/Q1*100)
+printf("\n\t Heat in cooling water = %.1f kJ/min, %.1f percent",Q_w,Q_w/Q1*100)
+printf("\n\t Heat in dry exhaust gases = %.1f kJ/min, %.1f percent",Q_d,Q_d/Q1*100)
+printf("\n\t Heat in steam in exhaust gases = %.1f kJ/min, %.1f percent",Q_s,Q_s/Q1*100)
+printf("\n\t Heat in radiation = %.1f kJ/min, %.1f percent",Q_r,Q_r/Q1*100)
|