summaryrefslogtreecommitdiff
path: root/2657/CH18/EX18.10
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2657/CH18/EX18.10
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2657/CH18/EX18.10')
-rwxr-xr-x2657/CH18/EX18.10/Ex18_10.sce44
1 files changed, 44 insertions, 0 deletions
diff --git a/2657/CH18/EX18.10/Ex18_10.sce b/2657/CH18/EX18.10/Ex18_10.sce
new file mode 100755
index 000000000..418931804
--- /dev/null
+++ b/2657/CH18/EX18.10/Ex18_10.sce
@@ -0,0 +1,44 @@
+//Calculations on gas engine
+clc,clear
+//Given:
+d=27,l=45 //Bore and stroke in cm
+D_b=1.62 //Effective diameter of the brake wheel in m
+t=38.5 //Duration of test in min
+N=8080,N1=3230 //Number of revolutions and explosions
+P=903 //Net load on brake in N
+imep=5.64 //Indicated mean effective pressure in bar
+Vg1=7.7 //Gas used in m^3
+T1=27+273 //Temperature of the gas in K
+deltaP1=135 //Pressure difference of gas above atmospheric pressure in mm of water
+Patm=750 //Atmospheric pressure in mm of Hg
+CV=18420 //Calorific value of the gas in kJ/m^3 at N.T.P.
+m_w=183 //Mass of cooling water used in kg
+deltaT_w=47 //Cooling water temperature rise in degreeC
+//Solution:
+P1=Patm+deltaP1/13.6 //Gas pressure in mm of Hg
+P1=P1/750 //Gas pressure in bar
+T2=0+273,P2=1.013 //Normal temperature and pressure (N.T.P.) in K and bar
+Vg2=(P1/P2)*(T2/T1)*Vg1 //Gas consumption at N.T.P. in m^3
+Q1=Vg2/t*CV //Heat supplied in kJ/min
+T=P*D_b/2 //Brake torque delivered in Nm
+bp=2*%pi*(N/t*1/60)*(T)*10^-3 //Brake power in kW
+bp=round(10*bp)/10
+Q_bp=bp*60 //Heat equivalent to brake power in kJ/min
+A=%pi/4*d^2*10^-4 //Area of cylinder in m^2
+ip=imep*10^2*l/100*A*(N1/t*1/60) //Indicated power in kW
+ip=round(10*ip)/10
+Q_ip=ip*60 //Heat equivalent to indicated power in kJ/min
+fp=ip-bp //Frictional power in kW
+Q_fp=fp*60 //Heat equivalent to frictional power in kJ/min
+cp=4.1868 //Specfic heat of water in kJ/kgK
+Q_w=m_w/t*cp*(deltaT_w) //Heat in cooling water in kJ/min
+Q_e=Q1-Q_bp-Q_w //Heat to exhaust, radiation in kJ/min
+eta_it=Q_ip/Q1 //Indicated thermal efficiency
+eta_bt=Q_bp/Q1 //Brake thermal efficiency
+//Results:
+printf("\n The indicated thermal efficiency, eta_it = %.1f percent",eta_it*100)
+printf("\n The brake thermal efficiency, eta_bt = %.1f percent",eta_bt*100)
+printf("\n\n Heat balance sheet\n\t Heat supplied by the gas = %d kJ/min, %d percent",Q1,Q1/Q1*100)
+printf("\n\t Heat equivalent to b.p. = %d kJ/min, %.1f percent",Q_bp,Q_bp/Q1*100)
+printf("\n\t Heat in cooling water = %d kJ/min, %.1f percent",Q_w,Q_w/Q1*100)
+printf("\n\t Heat to exhaust, radiation = %d kJ/min, %.1f percent",Q_e,Q_e/Q1*100)