diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2642/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2642/CH4')
-rwxr-xr-x | 2642/CH4/EX4.10/Ex4_10.sce | 30 | ||||
-rwxr-xr-x | 2642/CH4/EX4.11/Ex4_11.sce | 30 | ||||
-rwxr-xr-x | 2642/CH4/EX4.2/Ex4_2.sce | 23 | ||||
-rwxr-xr-x | 2642/CH4/EX4.3/Ex4_3.sce | 24 | ||||
-rwxr-xr-x | 2642/CH4/EX4.4/Ex4_4.sce | 25 | ||||
-rwxr-xr-x | 2642/CH4/EX4.5/Ex4_5.sce | 28 | ||||
-rwxr-xr-x | 2642/CH4/EX4.6/Ex4_6.sce | 27 | ||||
-rwxr-xr-x | 2642/CH4/EX4.7/Ex4_7.sce | 34 | ||||
-rwxr-xr-x | 2642/CH4/EX4.8/Ex4_8.sce | 33 | ||||
-rwxr-xr-x | 2642/CH4/EX4.9/Ex4_9.sce | 27 |
10 files changed, 281 insertions, 0 deletions
diff --git a/2642/CH4/EX4.10/Ex4_10.sce b/2642/CH4/EX4.10/Ex4_10.sce new file mode 100755 index 000000000..66839a973 --- /dev/null +++ b/2642/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,30 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.10
+
+clc;clear; // clears the console and command history
+
+// Given data
+Pw = 12 // power in kW
+P = 4 // number of poles
+Z = 500 // number of conductors
+V_t = 250 // generator voltage in V
+N = 1000 // speed in rpm
+P_cu = 600 // full load copper loss in W
+brush_drop = 2 // brush drop in V
+
+// caclulations
+A = 4 // for lab wound A=P
+I_a = Pw*10^3/V_t // armature current in A
+R_a = P_cu/I_a^2 // from copper loss equestion R_a in ohm
+E_g = V_t+I_a*R_a+brush_drop // generated voltage in V
+phi = E_g*60*A/(P*Z*N) // flux per pole in Wb
+
+
+// display the result
+disp("Example 4.10 solution");
+printf(" \n Flux per pole \n phi = %.3f Wb \n", phi );
diff --git a/2642/CH4/EX4.11/Ex4_11.sce b/2642/CH4/EX4.11/Ex4_11.sce new file mode 100755 index 000000000..57707d495 --- /dev/null +++ b/2642/CH4/EX4.11/Ex4_11.sce @@ -0,0 +1,30 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.11
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 4 // number of poles
+I_L = 25 // generator delivering current in A
+V_t = 230 // generator terminal voltage in V
+R_a = 0.2 // armature resistance in ohm
+R_sh = 55 // shunt field resistance in ohm
+brush_drop = 1 // brush drop in V
+
+// caclulations
+I_sh = V_t/R_sh // shunt field current in A
+I_a = I_L+I_sh // armature current in A
+E_g = V_t+I_a*R_a+brush_drop // induced voltage in V
+P_arm = E_g*I_a // power generated in armature in W
+P_L = V_t*I_L // power absorbed by load in W
+n = (P_L/P_arm)*100 // efficiency
+
+// display the result
+disp("Example 4.11 solution");
+printf(" \n Induced voltage \n E_g = %.1f V \n", E_g );
+printf(" \n Efficiency \n n = %.1f percent \n", n );
diff --git a/2642/CH4/EX4.2/Ex4_2.sce b/2642/CH4/EX4.2/Ex4_2.sce new file mode 100755 index 000000000..3c395ae32 --- /dev/null +++ b/2642/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,23 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.2
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+l = 0.65 // length of conductor in m
+v = 35 // speed in m/s
+B = 0.8 // magnetic flux density in T
+
+// caclulations
+e = B*l*v // induced voltage in V
+
+// display the result
+disp("Example 4.2 solution");
+printf(" \n Induced voltage \n e = %.1f V \n", e);
+
diff --git a/2642/CH4/EX4.3/Ex4_3.sce b/2642/CH4/EX4.3/Ex4_3.sce new file mode 100755 index 000000000..4aef86cf3 --- /dev/null +++ b/2642/CH4/EX4.3/Ex4_3.sce @@ -0,0 +1,24 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.3
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+l = 1.5 // length of conductor in m
+v = 20 // speed in m/s
+B = 0.9 // magnetic flux density in Wb/m^2
+teta = 35 // angle of rotation in degree
+
+// caclulations
+e = B*l*v*sind(teta) // induced voltage in V
+
+// display the result
+disp("Example 4.3 solution");
+printf(" \n Induced voltage \n e = %.1f V \n", e);
+
diff --git a/2642/CH4/EX4.4/Ex4_4.sce b/2642/CH4/EX4.4/Ex4_4.sce new file mode 100755 index 000000000..e18553573 --- /dev/null +++ b/2642/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,25 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.4
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 4 // number of poles
+Z = 40*10 // number of conductors
+phi = 0.02 // flux per pole in Wb
+N = 1200 // speed in rpm
+
+// caclulations
+A = P/2
+E_g = (P*phi*Z*N)/(60*A) // generated voltage in V
+
+// display the result
+disp("Example 4.4 solution");
+printf("\n Generated voltage \n E_g = %.0f V \n", E_g);
+
diff --git a/2642/CH4/EX4.5/Ex4_5.sce b/2642/CH4/EX4.5/Ex4_5.sce new file mode 100755 index 000000000..7996df6df --- /dev/null +++ b/2642/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,28 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.5
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 6 // number of poles
+Z = 600 // number of conductors
+phi = 0.05 // flux per pole in Wb
+N = 1000 // speed in rpm
+I_a = 120 // generetor supply current in A
+
+// caclulations
+A=6 // for lap-wound A=P
+E_g = (P*phi*Z*N)/(60*A) // generated voltage in V
+T_em = ((P*Z*phi)/(2*%pi*A))*I_a // electromagnetic torque in N-m
+
+
+// display the result
+disp("Example 4.5 solution");
+printf(" \n Generated voltage \n E_g = %.0f V \n", E_g);
+printf(" \n Electromagnetic torque \n T_em = %.2f N-m \n", T_em);
diff --git a/2642/CH4/EX4.6/Ex4_6.sce b/2642/CH4/EX4.6/Ex4_6.sce new file mode 100755 index 000000000..cf9abfb43 --- /dev/null +++ b/2642/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,27 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.6
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+V_t = 220 // shunt generator voltage in V
+I = 250 // shunt generator current in A
+R_sh = 50 // shunt field resistance in ohm
+R_a = 0.02 // armature resistance in ohm
+
+// caclulations
+I_sh = V_t/R_sh // shunt field current in A
+I_a = I+I_sh // armature current in A
+E_g = V_t+I_a*R_a // generated voltage in V
+
+
+// display the result
+disp("Example 4.6 solution");
+printf(" \n Generated voltage \n E_g = %.2f V \n", E_g);
+
diff --git a/2642/CH4/EX4.7/Ex4_7.sce b/2642/CH4/EX4.7/Ex4_7.sce new file mode 100755 index 000000000..c63d5b623 --- /dev/null +++ b/2642/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,34 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.7
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+E = 25 // power of compound generator in kW
+V_t = 220 // terminal voltage in V
+R_se = 0.05 // series resistance in ohm
+R_sh = 55 // shunt field resistance in ohm
+R_a = 0.07 // armature resistance in ohm
+brush_drop = 1 // voltage drop per brush in V
+
+// caclulations
+I_L = E*10^3/V_t // load current in A
+I_sh1 = V_t/R_sh // shunt field current in A
+I_a1 = I_sh1+I_L // armature current in A
+E_g1 = V_t+I_a1*(R_a+R_se)+2*brush_drop // generator voltage in V
+V_ab = V_t+I_L*R_se // voltage across the shunt field in V for short shunt generator
+I_sh2 = V_ab/R_sh // current in the shunt field in A for short shunt generator
+I_a2 = I_sh2+I_L // armature current in A for short shunt generator
+E_g2 = V_ab+I_a2*R_a+2*brush_drop // generator voltage in V for short shunt generator
+
+// display the result
+disp("Example 4.7 solution");
+printf(" \n Generated emf when generatar is connected in long shunt \n E_g1 = %.f V \n", E_g1);
+printf(" \n Generated emf when generatar is connected in short shunt \n E_g2 = %.1f V \n", E_g2);
+
diff --git a/2642/CH4/EX4.8/Ex4_8.sce b/2642/CH4/EX4.8/Ex4_8.sce new file mode 100755 index 000000000..21f6aef73 --- /dev/null +++ b/2642/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,33 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.8
+
+
+clc;clear; // clears the console and command history
+
+// Given data
+V_t = 220 // shunt generator voltage in V
+I_L = 146 // generator delivering current in A
+R_sh = 50 // shunt field resistance in ohm
+R_a = 0.012 // armature resistance in ohm
+R_s = 0.02 // series field resistance in ohm
+R_d = 0.03 // diverter field resistance in ohm
+
+// caclulations
+I_sh = V_t/R_sh // shunt field current in A
+I_a = I_L+I_sh // armature current in A
+R_com = R_s*R_d/(R_s+R_d) // combined resistance in ohm
+E_g = V_t+(I_a*(R_a+R_com)) // generated voltage in V
+P_lsd = I_a^2*R_com // power loss in series and diverter in W
+P_la = I_a^2*R_com // power loss in the armature circuit resistance in W
+P_lsh = V_t*I_sh // power loss in shunt field resistance in W
+P_dl = I_L*V_t // power delivered in W
+
+// display the result
+disp("Example 4.8 solution");
+printf(" \n Generated voltage \n E_g = %.1f V \n", E_g);
+printf(" \n Power distribution \n P_dl = %.0f W \n", P_dl);
diff --git a/2642/CH4/EX4.9/Ex4_9.sce b/2642/CH4/EX4.9/Ex4_9.sce new file mode 100755 index 000000000..4749e112d --- /dev/null +++ b/2642/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,27 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 4 : DIRECT CURRENT GENERATORS
+// Example : 4.9
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 4 // number of poles
+Z = 500 // number of conductors
+I_a = 30 // generetor supply current in A
+alpa = 6 // brushes displaced angle in degree
+
+// caclulations
+A = P/2 // for wave connected A=P/2
+I_c = I_a/A // current per conductor in A
+AT_d = Z*I_c*alpa/360 // demagnetizing ampere turns per pole in At
+AT_c = Z*I_c*((1/(2*P))-(alpa/360)) // cross magnetizing ampere turn per pole in At
+
+
+// display the result
+disp("Example 4.9 solution");
+printf(" \n Demagnetizing ampere turns per pole \n AT_d = %.1f At \n", AT_d );
+printf(" \n Cross magnetizing ampere turn per pole \n AT_c = %.1f At \n", AT_c );
|