summaryrefslogtreecommitdiff
path: root/2621/CH5
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2621/CH5
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2621/CH5')
-rw-r--r--2621/CH5/EX5.1/Ex5_1.sce21
-rw-r--r--2621/CH5/EX5.10/Ex5_10.sce24
-rw-r--r--2621/CH5/EX5.11/Ex5_11.sce13
-rw-r--r--2621/CH5/EX5.2/Ex5_2.sce24
-rw-r--r--2621/CH5/EX5.3/Ex5_3.sce17
-rw-r--r--2621/CH5/EX5.4/Ex5_4.sce18
-rw-r--r--2621/CH5/EX5.5/Ex5_5.sce20
-rw-r--r--2621/CH5/EX5.6/Ex5_6.sce18
-rw-r--r--2621/CH5/EX5.7/Ex5_7.sce25
-rw-r--r--2621/CH5/EX5.8/Ex5_8.sce22
10 files changed, 202 insertions, 0 deletions
diff --git a/2621/CH5/EX5.1/Ex5_1.sce b/2621/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..a269b2fba
--- /dev/null
+++ b/2621/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,21 @@
+// Example 5.1
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+C= 0.01;// in µF
+C=C*10^-6;// in F
+R_A= 2;// in kΩ
+R_A=R_A*10^3;// in Ω
+R_B= 100;// in kΩ
+R_B=R_B*10^3;// in Ω
+T_HIGH= 0.693*(R_A+R_B)*C;//charging period in second
+T_LOW= 0.693*R_B*C;// discharging period in second
+T= T_HIGH+T_LOW;// overall period of oscillations in second
+f= 1/T;// frequency of oscillations in Hz
+D= T_HIGH/T*100;// duty cycle in %
+disp(f,"The frequency of oscillations in Hz is : ")
+disp(D,"Duty cycle in % is : ")
+
+
diff --git a/2621/CH5/EX5.10/Ex5_10.sce b/2621/CH5/EX5.10/Ex5_10.sce
new file mode 100644
index 000000000..8a1dea92b
--- /dev/null
+++ b/2621/CH5/EX5.10/Ex5_10.sce
@@ -0,0 +1,24 @@
+// Example 5.10
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+I_Bmax= 500;// in nA
+I_Bmax= I_Bmax*10^-9;// in A
+VCC= 10;// in V
+f= 10*10^3;// in Hz
+I1= 500*10^-6;// current through R1 in A (assume)
+Vout= (VCC-1);//output voltage in V
+// Rf+R1= Vout/I1 and Rf= 2*R1, so
+R1= Vout/(3*I1);// in Ω
+R1= R1*10^-3;// in kΩ
+disp("The value of R1 is : "+string(R1)+" kΩ (standard value 5.6 kΩ)");
+R1= 5.6;// in kΩ (standard value)
+Rf= 2*R1;// in kΩ
+disp("The value of Rf is : "+string(Rf)+" kΩ (standard value 12 kΩ)");
+R= R1;// in kΩ
+R= R*10^3;// in Ω
+C= 1/(2*%pi*f*R);// in F
+C= C*10^12;// in pF
+disp("The value of C is : "+string(C)+" pF");
diff --git a/2621/CH5/EX5.11/Ex5_11.sce b/2621/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..cbb817a00
--- /dev/null
+++ b/2621/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,13 @@
+// Example 5.11
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+R= 1*10^3;// in Ω
+C= 4.7*10^-6;// in F
+omega= 1/(R*C);// radians/second
+f= omega/(2*%pi);// in Hz
+disp(f,"The frequency of oscillation in Hz is : ")
+
+
diff --git a/2621/CH5/EX5.2/Ex5_2.sce b/2621/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..1bac646e4
--- /dev/null
+++ b/2621/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,24 @@
+// Example 5.2
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+C= 1;// in µF
+C=C*10^-6;// in F
+R_A= 4.7;// in kΩ
+R_A=R_A*10^3;// in Ω
+R_B= 1;// in kΩ
+R_B=R_B*10^3;// in Ω
+T_on= 0.693*(R_A+R_B)*C;//positive pulse width in second
+T_on= T_on*10^3;// in ms
+T_off= 0.693*R_B*C;// pulse width in second
+T_off= T_off*10^3;// in ms
+f= 1.4/((R_A+2*R_B)*C);// free running frequency in Hz
+D= round((R_A+R_B)/(R_A+2*R_B)*100);// in %
+disp(T_on,"The positive pulse width in ms")
+disp(T_off,"The negative pulse width in ms")
+disp(f,"The frequency of oscillations in Hz is : ")
+disp(D,"Duty cycle in % is : ")
+
+
diff --git a/2621/CH5/EX5.3/Ex5_3.sce b/2621/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..bc7a43631
--- /dev/null
+++ b/2621/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,17 @@
+// Example 5.3
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+C= 0.01;// in µF
+C= C*10^-6;// in F
+f= 1;// in kHz
+f= f*10^3;// in Hz
+// For 50% duty cycle, Ton= Toff = T/2 and R_A= R_B
+// From equation, f= 1.44/((R_A+R_B)*C)= 1.44/(2*R_A*C)
+R_A= 1.44/(2*f*C);// in Ω
+R_A= R_A*10^-3;// in kΩ
+R_B= R_A;// in kΩ
+disp(R_A,"The value of R_A and R_B in kΩ : ")
+disp("(Standard value 68 kΩ)")
diff --git a/2621/CH5/EX5.4/Ex5_4.sce b/2621/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..718fd8520
--- /dev/null
+++ b/2621/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,18 @@
+// Example 5.4
+clc;
+clear;
+close;
+// Given data
+format('v',5);
+f= 700;// in Hz
+C= 0.01;// in µF (assumed)
+C= C*10^-6;// in F
+// For 50% duty cycle, Ton= Toff = T/2 and R_A= R_B
+// From equation, f= 1.44/((R_A+R_B)*C)= 1.44/(2*R_A*C)
+R_A= 1.44/(2*f*C);// in Ω
+R_A= R_A*10^-3;// in kΩ
+R_B= R_A;// in kΩ
+C= C*10^6;// in µF
+disp(R_A,"The value of R_A and R_B in kΩ : ")
+disp("(Standard value 100 kΩ)")
+disp(C,"The value of C in µF is : ")
diff --git a/2621/CH5/EX5.5/Ex5_5.sce b/2621/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..5015449ec
--- /dev/null
+++ b/2621/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,20 @@
+// Example 5.5
+clc;
+clear;
+close;
+// Given data
+format('v',5);
+f= 800;// in Hz
+C= 0.01;// in µF (assumed)
+C= C*10^-6;// in F
+D= 60;// in duty cycle in %
+// D= (R_A+R_B)/(R_A+2*R_B)*100= 60 or
+// R_B= 2*R_A
+R_A= 1.44/(f*5*C);// in Ω (From f=1.44/((R_A+2*R_B)*C))
+R_A= R_A*10^-3;//in kΩ
+R_B= 2*R_A;// in kΩ
+C= C*10^6;//in F
+disp(R_A,"The value of R_A in kΩ is : ");
+disp(R_B,"The value of R_B in kΩ is : ");
+disp(C,"The value of C in µF is : ")
+
diff --git a/2621/CH5/EX5.6/Ex5_6.sce b/2621/CH5/EX5.6/Ex5_6.sce
new file mode 100644
index 000000000..4bbc6c4f4
--- /dev/null
+++ b/2621/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,18 @@
+// Example 5.6
+clc;
+clear;
+close;
+// Given data
+format('v',5);
+Rs= 5*10^3;//series resistance in Ω
+Ls= 0.8;// seried inductance in H
+Cs= 0.08*10^-12;//series capacitance in F
+Cp= 1.0*10^-12;// parallel capacitance in F
+fs= 1/(2*%pi*sqrt(Ls*Cs));// series resonant frequency in Hz
+fs= fs*10^-3;// in kHz
+fp= 1/(2*%pi)*sqrt((1+Cs/Cp)/(Ls*Cs));// parallel resonant frequency in Hz
+fp= fp*10^-3;// in kHz
+disp(fs,"The series resonant frequency in kHz is : ")
+disp(fp,"The parallel resonant frequency in kHz is : ")
+
+
diff --git a/2621/CH5/EX5.7/Ex5_7.sce b/2621/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..e8bc3a6e6
--- /dev/null
+++ b/2621/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,25 @@
+// Example 5.7
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+C1= 1000*10^-12;// in F
+C2= 100*10^-12;// in F
+f= 1*10^6;// in Hz
+R1= 1*10^6;// in Ω (assume)
+R2= 10*10^3;// in Ω (assume)
+Rs= 800;// in Ω
+VDD= 5;// in V
+C_T= C1*C2/(C1+C2);//total capacitance in F
+// At resonance, X_L= X_CT or 2*%pi*f*L= 1/(2*%pi*f*C_T), So
+L= 1/((2*%pi*f)^2*C_T);// in H
+L= L*10^3;// in mH
+disp(L,"The value of inductance in mH is : ")
+i_p= VDD/(R1+R2+Rs);//current through crystal in A
+// Power dissipated in the crystal,
+P_D= (0.707*i_p)^2*Rs;// in W
+P_D= P_D*10^9;//in nW
+disp(P_D,"The power dissipated in the crystal in nW is : ")
+
+
diff --git a/2621/CH5/EX5.8/Ex5_8.sce b/2621/CH5/EX5.8/Ex5_8.sce
new file mode 100644
index 000000000..b76cbd94f
--- /dev/null
+++ b/2621/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,22 @@
+// Example 5.8
+clc;
+clear;
+close;
+// Given data
+format('v',6);
+R= 12*10^3;// in Ω
+R1= 120*10^3;// in Ω
+Rf= 1*10^6;// in Ω
+C= 0.1*10^-6;// in F
+Vsupply= 12;// in V
+Vsat= 10;//in V
+//Part (i) : Signal frequency,
+f= Rf/(4*R1*R*C);// in Hz
+f= f*10^-3;// in kHz
+disp("Part (i) : The signal frequency : "+string(f)+" kHz")
+// Part (ii) : Amplitude of triangular wave,
+Vpp= 2*R1/Rf*Vsat;// Vp-p
+disp("Part (ii) : Amplitude of the triangular wave is : "+string(Vpp)+" Vp-p")
+// Amplitude of square wave,
+Vpp= Vsat-(-Vsat);//Vp-p
+disp("Amplitude of the square wave is : "+string(Vpp)+" Vp-p")