summaryrefslogtreecommitdiff
path: root/2495
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2495
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2495')
-rw-r--r--2495/CH1/EX1.5.1/Ex1_5_1.sce19
-rw-r--r--2495/CH1/EX1.5.10/Ex1_5_10.sce9
-rw-r--r--2495/CH1/EX1.5.11/Ex1_5_11.sce17
-rw-r--r--2495/CH1/EX1.5.12/Ex1_5_12.sce17
-rw-r--r--2495/CH1/EX1.5.13/Ex1_5_13.sce10
-rw-r--r--2495/CH1/EX1.5.2/Ex1_5_2.sce12
-rw-r--r--2495/CH1/EX1.5.3/Ex1_5_3.sce9
-rw-r--r--2495/CH1/EX1.5.4/Ex1_5_4.sce16
-rw-r--r--2495/CH1/EX1.5.5/Ex1_5_5.sce15
-rw-r--r--2495/CH1/EX1.5.6/Ex1_5_6.sce14
-rw-r--r--2495/CH1/EX1.5.7/Ex1_5_7.sce12
-rw-r--r--2495/CH1/EX1.5.8/Ex1_5_8.sce22
-rw-r--r--2495/CH1/EX1.5.9/Ex1_5_9.sce20
-rw-r--r--2495/CH1/EX1.7.1/Ex1_7_1.sce11
-rw-r--r--2495/CH1/EX1.7.2/Ex1_7_2.sce12
-rw-r--r--2495/CH2/EX2.10.1/Ex2_10_1.sce20
-rw-r--r--2495/CH2/EX2.10.2/Ex2_10_2.sce25
-rw-r--r--2495/CH2/EX2.11.1/Ex2_11_1.sce16
-rw-r--r--2495/CH2/EX2.11.2/Ex2_11_2.sce16
-rw-r--r--2495/CH2/EX2.11.3/Ex2_11_3.sce20
-rw-r--r--2495/CH2/EX2.11.4/Ex2_11_4.sce18
-rw-r--r--2495/CH2/EX2.11.5/Ex2_11_5.sce15
-rw-r--r--2495/CH2/EX2.11.6/Ex2_11_6.sce17
-rw-r--r--2495/CH2/EX2.11.7/Ex2_11_7.sce16
-rw-r--r--2495/CH2/EX2.11.8/Ex2_11_8.sce25
-rw-r--r--2495/CH2/EX2.12.1/Ex2_12_1.sce13
-rw-r--r--2495/CH2/EX2.12.2/Ex2_12_2.sce13
-rw-r--r--2495/CH2/EX2.2.1/Ex2_2_1.sce19
-rw-r--r--2495/CH2/EX2.2.2/Ex2_2_2.sce15
-rw-r--r--2495/CH2/EX2.4.1/Ex2_4_1.sce13
-rw-r--r--2495/CH2/EX2.4.2/Ex2_4_2.sce22
-rw-r--r--2495/CH2/EX2.4.3/Ex2_4_3.sce17
-rw-r--r--2495/CH2/EX2.7.3/Ex2_7_3.sce16
-rw-r--r--2495/CH2/EX2.7.4/Ex2_7_4.sce17
-rw-r--r--2495/CH2/EX2.7.5/Ex2_7_5.sce17
-rw-r--r--2495/CH2/EX2.8.2/Ex2_8_2.sce29
-rw-r--r--2495/CH2/EX2.8.3/Ex2_8_3.sce24
-rw-r--r--2495/CH2/EX2.9.1/Ex2_9_1.sce17
-rw-r--r--2495/CH2/EX2.9.2/Ex2_9_2.sce22
-rw-r--r--2495/CH2/EX2.9.3/Ex2_9_3.sce17
-rw-r--r--2495/CH3/EX3.3.1/Ex3_3_1.sce49
-rw-r--r--2495/CH3/EX3.3.2/Ex3_3_2.sce15
-rw-r--r--2495/CH3/EX3.3.3/Ex3_3_3.sce9
-rw-r--r--2495/CH3/EX3.3.4/Ex3_3_4.sce20
-rw-r--r--2495/CH4/EX4.10.1/Ex4_10_1.sce16
-rw-r--r--2495/CH4/EX4.10.2/Ex4_10_2.sce12
-rw-r--r--2495/CH4/EX4.11.1/Ex4_11_1.sce15
-rw-r--r--2495/CH4/EX4.11.2/Ex4_11_2.sce23
-rw-r--r--2495/CH4/EX4.11.3/Ex4_11_3.sce13
-rw-r--r--2495/CH4/EX4.11.4/Ex4_11_4.sce17
-rw-r--r--2495/CH4/EX4.11.5/Ex4_11_5.sce18
-rw-r--r--2495/CH4/EX4.6.1/Ex4_6_1.sce12
-rw-r--r--2495/CH4/EX4.6.2/Ex4_6_2.sce19
-rw-r--r--2495/CH4/EX4.6.3/Ex4_6_3.sce12
-rw-r--r--2495/CH4/EX4.6.4/Ex4_6_4.sce19
-rw-r--r--2495/CH4/EX4.6.5/Ex4_6_5.sce23
-rw-r--r--2495/CH4/EX4.7.10/Ex4_7_10.sce20
-rw-r--r--2495/CH4/EX4.7.11/Ex4_7_11.sce17
-rw-r--r--2495/CH4/EX4.7.12/Ex4_7_12.sce27
-rw-r--r--2495/CH4/EX4.7.13/Ex4_7_13.sce23
-rw-r--r--2495/CH4/EX4.7.14/Ex4_7_14.sce26
-rw-r--r--2495/CH4/EX4.7.15/Ex4_7_15.sce26
-rw-r--r--2495/CH4/EX4.7.3/Ex4_7_3.sce27
-rw-r--r--2495/CH4/EX4.7.4/Ex4_7_4.sce11
-rw-r--r--2495/CH4/EX4.7.5/Ex4_7_5.sce12
-rw-r--r--2495/CH4/EX4.7.6/Ex4_7_6.sce25
-rw-r--r--2495/CH4/EX4.7.7/Ex4_7_7.sce19
-rw-r--r--2495/CH4/EX4.7.8/Ex4_7_8.sce14
-rw-r--r--2495/CH4/EX4.7.9/Ex4_7_9.sce23
-rw-r--r--2495/CH5/EX5.2.1/Ex5_2_1.sce19
-rw-r--r--2495/CH5/EX5.2.2/Ex5_2_2.sce14
-rw-r--r--2495/CH6/EX6.6.1/Ex6_6_1.sce15
-rw-r--r--2495/CH6/EX6.6.2/Ex6_6_2.sce12
-rw-r--r--2495/CH6/EX6.6.3/Ex6_6_3.sce20
-rw-r--r--2495/CH6/EX6.6.5/Ex6_6_5.sce19
-rw-r--r--2495/CH6/EX6.6.6/Ex6_6_6.sce28
-rw-r--r--2495/CH8/EX8.10.1/Ex8_10_1.sce10
-rw-r--r--2495/CH8/EX8.11.1/Ex8_11_1.sce12
-rw-r--r--2495/CH8/EX8.12.1/Ex8_12_1.sce12
-rw-r--r--2495/CH8/EX8.12.2/Ex8_12_2.sce10
-rw-r--r--2495/CH8/EX8.14.1/Ex8_14_1.sce16
-rw-r--r--2495/CH8/EX8.16.1/Ex8_16_1.sce9
-rw-r--r--2495/CH8/EX8.16.2/Ex8_16_2.sce11
-rw-r--r--2495/CH8/EX8.16.3/Ex8_16_3.sce12
-rw-r--r--2495/CH8/EX8.18.1/Ex8_18_1.sce16
-rw-r--r--2495/CH8/EX8.18.10/Ex8_18_10.sce13
-rw-r--r--2495/CH8/EX8.18.11/Ex8_18_11.sce10
-rw-r--r--2495/CH8/EX8.18.12/Ex8_18_12.sce20
-rw-r--r--2495/CH8/EX8.18.13/Ex8_18_13.sce13
-rw-r--r--2495/CH8/EX8.18.14/Ex8_18_14.sce18
-rw-r--r--2495/CH8/EX8.18.15/Ex8_18_15.sce16
-rw-r--r--2495/CH8/EX8.18.16/Ex8_18_16.sce15
-rw-r--r--2495/CH8/EX8.18.2/Ex8_18_2.sce16
-rw-r--r--2495/CH8/EX8.18.3/Ex8_18_3.sce19
-rw-r--r--2495/CH8/EX8.18.4/Ex8_18_4.sce15
-rw-r--r--2495/CH8/EX8.18.5/Ex8_18_5.sce12
-rw-r--r--2495/CH8/EX8.18.6/Ex8_18_6.sce19
-rw-r--r--2495/CH8/EX8.18.7/Ex8_18_7.sce13
-rw-r--r--2495/CH8/EX8.18.8/Ex8_18_8.sce13
-rw-r--r--2495/CH8/EX8.18.9/Ex8_18_9.sce13
-rw-r--r--2495/CH8/EX8.20.1/Ex8_20_1.sce11
-rw-r--r--2495/CH8/EX8.20.3/Ex8_20_3.sce11
-rw-r--r--2495/CH8/EX8.21.2/Ex8_21_2.sce14
-rw-r--r--2495/CH8/EX8.23.1/Ex8_23_1.sce10
-rw-r--r--2495/CH8/EX8.23.2/Ex8_23_2.sce25
-rw-r--r--2495/CH8/EX8.23.3/Ex8_23_3.sce25
-rw-r--r--2495/CH8/EX8.23.4/Ex8_23_4.sce15
-rw-r--r--2495/CH8/EX8.23.5/Ex8_23_5.sce16
-rw-r--r--2495/CH8/EX8.23.6/Ex8_23_6.sce17
-rw-r--r--2495/CH8/EX8.23.7/Ex8_23_7.sce12
-rw-r--r--2495/CH8/EX8.9.2/Ex8_9_2.sce52
-rw-r--r--2495/CH8/EX8.9.3/Ex8_9_3.sce29
-rw-r--r--2495/CH8/EX8.9.4/Ex8_9_4.sce28
-rw-r--r--2495/CH8/EX8.9.6/Ex8_9_6.sce12
-rw-r--r--2495/CH8/EX8.9.7/Ex8_9_7.sce31
115 files changed, 2004 insertions, 0 deletions
diff --git a/2495/CH1/EX1.5.1/Ex1_5_1.sce b/2495/CH1/EX1.5.1/Ex1_5_1.sce
new file mode 100644
index 000000000..f57a43693
--- /dev/null
+++ b/2495/CH1/EX1.5.1/Ex1_5_1.sce
@@ -0,0 +1,19 @@
+clear ;
+clc ;
+T1 = 234.5 ;// Temperature in K
+P = 1 ; // Pressure in atm
+rho1 = 14.19 // Density of solid Hg in g/(cm^3)
+rho2 = 13.70 // Density of liquid Hg in g/(cm^3)
+V = 200.59 // volume of liquid and solid in g/mol
+delV = ((V/rho2)-(V/rho1))*(10^-3)// in dm^3/mol
+delTdelP = 0.0051 // K/atm
+R1 = 8.314 // in J
+R2 = 0.082 // in (dm)^3/atm
+delH = ((delV*T1)/(delTdelP))*(R1/R2)*10^-3;//molar heat of fusion in kJ/mol
+printf('delH = %.3f (KJ)/mol',delH)
+T2 = 273// in K
+delP = (delH*(R2/R1)*(T2-T1))/(delV*T1)*10^3;//pressure required to raise melting point to T2 in atm
+printf('\ndelP = %d atm ',delP)
+
+
+//Example in page 10
diff --git a/2495/CH1/EX1.5.10/Ex1_5_10.sce b/2495/CH1/EX1.5.10/Ex1_5_10.sce
new file mode 100644
index 000000000..24edd9961
--- /dev/null
+++ b/2495/CH1/EX1.5.10/Ex1_5_10.sce
@@ -0,0 +1,9 @@
+clear
+clc
+T=273;//in K
+R=8.314;//in J/Kmol
+DelHm=T*2.303*R;//in J/mol
+printf('DelHm=%.1d J/mol',DelHm)
+
+//page 16
+
diff --git a/2495/CH1/EX1.5.11/Ex1_5_11.sce b/2495/CH1/EX1.5.11/Ex1_5_11.sce
new file mode 100644
index 000000000..72d485cb5
--- /dev/null
+++ b/2495/CH1/EX1.5.11/Ex1_5_11.sce
@@ -0,0 +1,17 @@
+clear;
+clc;
+DelG=2866;//in J/mol
+rhoG=2.25;//in gm/cm^3
+rhoD=3.52;//in gm/cm^3
+MC=12;//mass of carbon
+P1=1;//in atm
+P2=(-DelG/(MC/rhoD-MC/rhoG))+P1
+printf('P2=%.1f Jcm^-3',P2)
+R1=0.082;//in dm^3atm
+R2=8.314;//in J
+P21=P2*(R1*1000/R2)
+printf('\nP21=%.1d atm',P21)
+
+//There are some errors in the solution given in textbook
+//page 23
+
diff --git a/2495/CH1/EX1.5.12/Ex1_5_12.sce b/2495/CH1/EX1.5.12/Ex1_5_12.sce
new file mode 100644
index 000000000..7e016b687
--- /dev/null
+++ b/2495/CH1/EX1.5.12/Ex1_5_12.sce
@@ -0,0 +1,17 @@
+clear
+clc
+rho1=1.21;//in gm^cm-3
+rho2=1.10;//in gm^cm-3
+P2=3260;//in atm
+T2=298.15;//in K
+P1=2450;//in atm
+T1=242.15;//in K
+MI=18;//molar mass of ice in gm/mol
+R1=8.314;//in J
+R2=0.082;//in atm dm^3
+DelH_Tr=((P2-P1)*(R1/R2)*(MI/rho2-MI/rho1)*T1)/(T2-T1)
+printf('DelH_Tr=%.3f J/mol',DelH_Tr)
+
+//There is an error in the answer given in the textbook
+//In text book he took (T1-T2)=6,but actually (T1-T2)=56
+//page 23
diff --git a/2495/CH1/EX1.5.13/Ex1_5_13.sce b/2495/CH1/EX1.5.13/Ex1_5_13.sce
new file mode 100644
index 000000000..b5a956650
--- /dev/null
+++ b/2495/CH1/EX1.5.13/Ex1_5_13.sce
@@ -0,0 +1,10 @@
+clear
+clc
+DelVm_tr=0.0126;//in cm^3/gm
+P=1;//in atm
+Ti=368.65;//in K
+DelTDelP=0.035;//in K/atm
+R1=8.314;//in J
+R2=0.082;//in dm^3atm
+DelHm_tr=Ti*(DelVm_tr*32/1000)*1/(DelTDelP)*(R1/R2)
+printf('DelHm_tr=%.1f J/mol',DelHm_tr)
diff --git a/2495/CH1/EX1.5.2/Ex1_5_2.sce b/2495/CH1/EX1.5.2/Ex1_5_2.sce
new file mode 100644
index 000000000..99e614d77
--- /dev/null
+++ b/2495/CH1/EX1.5.2/Ex1_5_2.sce
@@ -0,0 +1,12 @@
+clear;
+clc;
+T1=373.15;//in K
+P=1;//atm
+Vv=1674;//in cm^3/gm
+delPdelT=27.12;//in torr/K
+R1=8.314;//in J
+R2=0.082;//in atm/(dm)^3
+delH=((delPdelT)/760)*T1*((Vv*10^-3)*18)*(R1/R2)
+printf('delH =%d J/mol',delH)
+
+////Example in page 15
diff --git a/2495/CH1/EX1.5.3/Ex1_5_3.sce b/2495/CH1/EX1.5.3/Ex1_5_3.sce
new file mode 100644
index 000000000..d26587d7d
--- /dev/null
+++ b/2495/CH1/EX1.5.3/Ex1_5_3.sce
@@ -0,0 +1,9 @@
+clear;
+clc;
+T1=313.75;//in K
+P1=59.1;//in torr
+T2=353.15;//in K
+P2=298.7;//in torr
+R=2.303*8.314;//in J/(K*mol)
+delH=R*log10(P2/P1)*((T2*T1)/(T2-T1))
+printf('delH=%d J/mol',delH)
diff --git a/2495/CH1/EX1.5.4/Ex1_5_4.sce b/2495/CH1/EX1.5.4/Ex1_5_4.sce
new file mode 100644
index 000000000..aaf6df326
--- /dev/null
+++ b/2495/CH1/EX1.5.4/Ex1_5_4.sce
@@ -0,0 +1,16 @@
+clear
+clc
+T1=325.15;//in K
+T2=338.15;//in K
+P2=760;//in torr
+DelHm_v=10.5;//
+P1=P2/(10^((DelHm_v/2.303)*((T2/T1)-1)));//in torr
+printf('P1=%.1f torr',P1)
+P=200;//in torr
+T=T2/(1+((2.303/10.5)*log10(P2/P)));//in K
+printf('\nT=%.1d K',T)
+I=log10(P2)-(((DelHm_v*T2)/2.303)*(-1/T2));//
+printf('\nI=%.3f',I)
+
+//There are some errors in the solution given in textbook
+//page 16
diff --git a/2495/CH1/EX1.5.5/Ex1_5_5.sce b/2495/CH1/EX1.5.5/Ex1_5_5.sce
new file mode 100644
index 000000000..389ba4491
--- /dev/null
+++ b/2495/CH1/EX1.5.5/Ex1_5_5.sce
@@ -0,0 +1,15 @@
+clear;
+clc;
+P=760;//in torr
+dP=52;//in torr
+dT=2;//in K
+DelH_RTb=10.5;//Trouton rule
+Tb=(DelH_RTb*P)/(dP/dT)
+printf('Tb=%.1f K',Tb)
+R=8.314;//in J/Kmol
+DelH_v=(DelH_RTb*R*Tb)
+printf('\nDelH_v=%1d J/mol',DelH_v)
+
+//There are some errors in the solution given in textbook
+//page 17
+
diff --git a/2495/CH1/EX1.5.6/Ex1_5_6.sce b/2495/CH1/EX1.5.6/Ex1_5_6.sce
new file mode 100644
index 000000000..3282e6f8f
--- /dev/null
+++ b/2495/CH1/EX1.5.6/Ex1_5_6.sce
@@ -0,0 +1,14 @@
+clear;
+clc;
+T1=373.15;//in K
+P1=76.0;//in cmHg
+P2=77.0;//in cmHg
+DelHm_v=2255;//in J/gm
+Vm_v=1664;//in cm^3/mol
+Vm_l=1;//in cm^3/mol
+R=8.314;//in J/Kmol
+T2=(1/((1/T1)-((2.303*R/(DelHm_v*18))*log10(P2/P1))))
+printf('T2=%.1f K',T2)
+
+//There are some errors in the solution given in textbook
+//page 18
diff --git a/2495/CH1/EX1.5.7/Ex1_5_7.sce b/2495/CH1/EX1.5.7/Ex1_5_7.sce
new file mode 100644
index 000000000..c7daa2008
--- /dev/null
+++ b/2495/CH1/EX1.5.7/Ex1_5_7.sce
@@ -0,0 +1,12 @@
+clear;
+clc;
+T1=373.15;//in K
+P1=76.0;//in cmHg
+T2=363.15//in K
+DelHm_v=2268;//in J/gm
+R=8.314;//in J/Kmol
+P2=P1*(10^((DelHm_v*18/(2.303*R))*(1/T1-1/T2)))
+printf('P2=%.1f cmHg',P2)
+
+//page 19
+
diff --git a/2495/CH1/EX1.5.8/Ex1_5_8.sce b/2495/CH1/EX1.5.8/Ex1_5_8.sce
new file mode 100644
index 000000000..8e8a8d2ee
--- /dev/null
+++ b/2495/CH1/EX1.5.8/Ex1_5_8.sce
@@ -0,0 +1,22 @@
+clear
+clc
+T1=456.15;//boiling temperature of iodine in K
+T2=389.65;//vapour pressure temperature of iodine in K
+P1=760;//pressure in torr
+P2=100;//vapour pressure in torr
+DelHm_f=15.65;//heat of fusion in kJ/mol
+R=8.314;//in J/K
+DelHm_v=(2.303*R*log10(P1/P2))/((1/T2)-(1/T1));//heat of vapourization in J/mol
+DelHm_s=(DelHm_f*1000)+DelHm_v;//heat of sublimation in J/mol
+T=311.85;//temperature at solid vapour equilibrium in K
+P=1;//pressure at solid vapour equilibrium in torr
+K1=(DelHm_s)/(2.30*R);//
+K2=(DelHm_v)/(2.30*R);//
+T0=(K1-K2)/((K1*(1/T))-(K2*(1/T2))-log10(P2));//triple point temperature in K
+printf('\nT0=%.1f K',T0)
+P0=10^(K1*((1/T)-(1/T0)));//triple point pressure in torr
+printf('\nP0=%.2f torr',P0)
+
+//There are some errors in the solution given in textbook
+//page 19
+
diff --git a/2495/CH1/EX1.5.9/Ex1_5_9.sce b/2495/CH1/EX1.5.9/Ex1_5_9.sce
new file mode 100644
index 000000000..4f99fcbc2
--- /dev/null
+++ b/2495/CH1/EX1.5.9/Ex1_5_9.sce
@@ -0,0 +1,20 @@
+clear
+clc
+K1=5.36;//
+K2=4.95;//
+T1=-2875;//in K
+T2=-2740;//in K
+R=8.314;//in J/Kmol
+T=(T2-T1)/(K1-K2);//triple point temperature in K
+printf('T=%.1f K',T)
+P=(10^((T1/T)+K1));//triple point pressure in atm
+printf('\nP=%.7f K atm',P)
+DelHm_s=2.303*R*(-T1);//molar enthalpy of sublimation in J/mol
+DelHm_v=2.303*R*(-T2);//molar enthalpy of vapourization in J/mol
+DelHm_f=DelHm_s-DelHm_v;//molar enthalpy of fusion in J/mol
+printf('\nDelHm_f=%.1d J/mol',DelHm_f)
+DelSm_f=DelHm_f/T;//molar entropy of fusion in J/Kmol
+printf('\nDelSm_f=%.2f J/Kmol',DelSm_f)
+
+//There are some errors in the solution given in textbook
+//page 20
diff --git a/2495/CH1/EX1.7.1/Ex1_7_1.sce b/2495/CH1/EX1.7.1/Ex1_7_1.sce
new file mode 100644
index 000000000..3e97d9697
--- /dev/null
+++ b/2495/CH1/EX1.7.1/Ex1_7_1.sce
@@ -0,0 +1,11 @@
+clear
+clc
+T=263.15;//in K
+P2=1.95;//in torr
+rho=0.920;//in gm/cm^3
+P=1;//in atm
+R=0.082;//in dm^3atm/(molK)
+P1=P2*exp((18/(rho*1000))*(P-(P2/760))/(R*T))
+printf('P1=%.3f torr',P1)
+
+//page 29
diff --git a/2495/CH1/EX1.7.2/Ex1_7_2.sce b/2495/CH1/EX1.7.2/Ex1_7_2.sce
new file mode 100644
index 000000000..e92103087
--- /dev/null
+++ b/2495/CH1/EX1.7.2/Ex1_7_2.sce
@@ -0,0 +1,12 @@
+clear
+clc
+P0=100;//in atm
+P=1;//in atm
+P2=31.82;//in torr
+rho=0.996;//in gm/cm^3
+R=0.082;//in dm^3atm/(molK)
+T=303.15;//in K
+P1=P2*(10^(((18/(rho*1000))*(P0-P))/(2.303*R*T)))
+printf('P1=%.1f torr',P1)
+
+//page 29
diff --git a/2495/CH2/EX2.10.1/Ex2_10_1.sce b/2495/CH2/EX2.10.1/Ex2_10_1.sce
new file mode 100644
index 000000000..29d7bc4bd
--- /dev/null
+++ b/2495/CH2/EX2.10.1/Ex2_10_1.sce
@@ -0,0 +1,20 @@
+clear
+clc
+P=2.47;//osmotic pressure in atm
+DelHm_v=539*18;//in cal/mol
+R=0.082;//in litreatm
+Vm=18.1;//molar volume of water
+T=303;//in K
+Tb=373;//boiling point temperature in K
+DelTb=(P*Vm*10^-3*(Tb^2))/(DelHm_v*(R/1.987)*T)
+printf('DelTb=%.4f K',DelTb)
+
+//The above calculations are done in CGS units
+
+//To convert them into SI units the following changes are done
+R=8.314;//in J/Kmol
+P=2.47*101325;//in N/m^2
+Vm=18.1*10^-6;//in m^3/mol
+
+//Both answers come out be same
+//page 70
diff --git a/2495/CH2/EX2.10.2/Ex2_10_2.sce b/2495/CH2/EX2.10.2/Ex2_10_2.sce
new file mode 100644
index 000000000..4d17e274d
--- /dev/null
+++ b/2495/CH2/EX2.10.2/Ex2_10_2.sce
@@ -0,0 +1,25 @@
+clear
+clc
+rho=1.59;//density of CCl4 in kg/dm^3
+M1=154;//molar mass of CCl4 in kg/mol
+DelTb=0.60;//boiling point of CCl4 in K
+Kb=5.03;//in Kkg/mol
+m=DelTb/Kb;
+m2=3;//amount added to CCl4 in gm
+m1=100;//amount of CCl4 in gm
+M2=(m2*10^-3)/(m1*10^-3*m);//molar mass of substance
+printf('M2=%.3f kg/mol',M2)
+Kf=31.8;//freezing point depression in Kkg/mol
+DelTf=Kf*m
+printf('\nDelTf=%.3f K',DelTf)
+P=(m2*10^-3/M2)/(((m2*10^-3)/M2)+((m1*10^-3)/(M1*10^-3)));//relative vapour pressure DelP/P1
+printf('\nP=%.5f',P)
+V1m=m1*10^-3/(rho);//volume in dm^3
+R=0.082;//in dm^3atm/Kmol
+T=298;//Temperature in K
+P0=((m2/250)*R*T)/V1m;//osmotic pressure in atm
+printf('\nP0=%.3f atm',P0)
+
+//There are some errors in the solution given in textbook
+//page 71
+
diff --git a/2495/CH2/EX2.11.1/Ex2_11_1.sce b/2495/CH2/EX2.11.1/Ex2_11_1.sce
new file mode 100644
index 000000000..6ca9e0507
--- /dev/null
+++ b/2495/CH2/EX2.11.1/Ex2_11_1.sce
@@ -0,0 +1,16 @@
+clear
+clc
+w2=0.122;//amount of benzoic acid in kg
+w1=1;//amount of benzene in kg
+Tb1=353;//boiling point of benzene in K
+Tb2=354.5;//boiling point at which actually boiling of benzene starts in K
+DelH_v=394.57;//in J/gm
+M1=w2/0.122;//amount of benzoic acid in mol
+R=8.314;//in J/Kmol
+M2=((M1*78*10^-3)*R*Tb1^2*w2)/(w1*(Tb2-Tb1)*(DelH_v*78));//apparant molar mass of benzoic acid in kg/mol
+printf('M2=%.4f kg/mol',M2)
+alpha=2*(1-(w2/M2));//degree of dimerisation in mol
+printf('\nalpha=%.4f mol',alpha)
+
+//There are some errors in the solution given in textbook
+//page 75
diff --git a/2495/CH2/EX2.11.2/Ex2_11_2.sce b/2495/CH2/EX2.11.2/Ex2_11_2.sce
new file mode 100644
index 000000000..e4cec04ee
--- /dev/null
+++ b/2495/CH2/EX2.11.2/Ex2_11_2.sce
@@ -0,0 +1,16 @@
+clear
+clc
+w2=0.011;//amount of barium nitrate in kg
+M2=0.2613;//molar mass of barium nitrate inkg/mol
+w1=0.1;//amount of water in kg
+Kb=5.2;//for 100gm of water in K
+m=(w2/M2)/w1;//molality of solution in mol/kg
+DelTb_0=Kb/10*m;//in K
+T=100.46;//boiling point of water
+i=(T-100)/DelTb_0;//van't hoff factor
+v=3;
+alpha=(i-1)/(v-1);//degree of ionization
+printf('alpha=%.2f',alpha)
+
+//page 75
+
diff --git a/2495/CH2/EX2.11.3/Ex2_11_3.sce b/2495/CH2/EX2.11.3/Ex2_11_3.sce
new file mode 100644
index 000000000..836fccc72
--- /dev/null
+++ b/2495/CH2/EX2.11.3/Ex2_11_3.sce
@@ -0,0 +1,20 @@
+clear
+clc
+M1=324.6;//molar mass of Hg(NO3)2 in gm
+m1=3.24;//amount of Hg(NO3)2 in gm dissolved in water
+w=1;//amount of water in kg
+M0=(m1/M1)*(1/w);//molality of the solution in K
+Kf=1.86;//in Kkg/mol
+DelTf_0=(Kf*M0);// here DelTf_0 is negative
+DelTf=0.0558;//freezing point of the solution here DelTf is negative
+i=(DelTf/DelTf_0);//van't hoff factor
+v=3;
+alpha=(i-1)/(v-1);//degree of dissociation
+printf('alpha=%1d',alpha)
+M2=271.5;//molar mass of HgCl2 in gm
+m2=10.84;//amount of HgCl2 dissolved in water in gm
+M=(m2/M2)*(1/w);//molality of HgCl2 solution in mol/kg
+DelTf1_0=Kf*M;//for HgCl2 solution
+printf('\nDelTf1_0=%.3f K',DelTf1_0)
+
+//page 76
diff --git a/2495/CH2/EX2.11.4/Ex2_11_4.sce b/2495/CH2/EX2.11.4/Ex2_11_4.sce
new file mode 100644
index 000000000..5da996822
--- /dev/null
+++ b/2495/CH2/EX2.11.4/Ex2_11_4.sce
@@ -0,0 +1,18 @@
+clear
+clc
+M=78*10^-3;//molar mass of C6H6 in Kg/mol
+R=8.314;//gas constant in J/Kmol
+Tf2=278.4;//melting point of pure C6H6 in K
+DelHm_v=10.042*10^3;//heat of fusion in J/mol
+Kf=((M*R*Tf2^2)/DelHm_v);//inKkg/mol
+Tf1=277.4;//melting point of C6H6 in Kg/mol
+M1=(Tf2-Tf1)/Kf;//molality in mol/kg
+X1=0.02;//molefraction of CH3COOH
+M2=X1/M;//molality in mol/kg
+Md=(M2-M1);//molality of dimer in mol/kg
+Mm=M1-Md;//molality of monomer in mol/kg
+Keq=(Md)/(Mm^2);//equilibrium constant fo dimerization of CH3COOH
+printf('Keq=%.2f',Keq)
+
+//There are some errors in the solution given in textbook
+//page 76
diff --git a/2495/CH2/EX2.11.5/Ex2_11_5.sce b/2495/CH2/EX2.11.5/Ex2_11_5.sce
new file mode 100644
index 000000000..05d33e73b
--- /dev/null
+++ b/2495/CH2/EX2.11.5/Ex2_11_5.sce
@@ -0,0 +1,15 @@
+clear
+clc
+DelTf1=0.704;//freezing point of aqueous KCN in K
+Kf=1.86;//in kg/mol
+M1=(DelTf1)/Kf;//molality of the solution containing KCN
+DelTf2=0.530;//freezing point on addition of Hg(CN)2
+M2=(DelTf2)/Kf;//molality on addition og Hg(CN)2
+Kplus=0.1892;//amount of K+ in 1000gm of solvent
+HgCN2=0.095;//amount of Hg(CN)2 added to form complex
+M=(Kplus+Kplus+HgCN2-M2);//
+N=(M/HgCN2);//no. of CN- units combined
+printf('N=%.1f',N)
+
+//Formula is Hg(CN)2^-4
+//page 77
diff --git a/2495/CH2/EX2.11.6/Ex2_11_6.sce b/2495/CH2/EX2.11.6/Ex2_11_6.sce
new file mode 100644
index 000000000..179ef2391
--- /dev/null
+++ b/2495/CH2/EX2.11.6/Ex2_11_6.sce
@@ -0,0 +1,17 @@
+clear
+clc
+M1=148.31;//molar mass of Mg(NO2)2 in gm
+m1=6.69;//amount of Mg(NO2)2 dissolved in water
+m2=100;//amount of water
+P1=747;//pressure in torr
+T2=373;//temperature in K
+P=760;//pressure at normal temperature
+X=(m1/M1)/((m1/M1)+(m2/18));//mole fraction of solute in solution \
+DelP=X*P;//
+i=(P-P1)/DelP;//van't hoff factor
+v=3;//
+alpha=(i-1)/(v-1);//degree of dissociation of salt in solution
+printf('alpha=%.3f',alpha)
+
+//page 78
+
diff --git a/2495/CH2/EX2.11.7/Ex2_11_7.sce b/2495/CH2/EX2.11.7/Ex2_11_7.sce
new file mode 100644
index 000000000..d1741d8a9
--- /dev/null
+++ b/2495/CH2/EX2.11.7/Ex2_11_7.sce
@@ -0,0 +1,16 @@
+clear
+clc
+C_Mg=0.5;//concentration of Mg2+ ion
+C_SO4=0.7;//concentration of SO4_2- ion
+C_Al=0.1;//concentration of Al3+ ion
+C_Cl=0.3;//cocncentration of Cl- ion
+C_NH4=0.4;//concentration of NH4+ ion
+Z1=2;//valence of Mg2+ ion
+Z2=2;//valence of SO4_2- ion
+Z3=3;//valence of Al3+ ion
+Z4=1;//valence of Cl- ion
+Z5=1;//valence of NH4+ ion
+mu=1/2*(C_Mg*(Z1^2)+C_SO4*(Z2^2)+C_Al*(Z3^2)+C_Cl*(Z4^2)+C_NH4*(Z5^2));//ionic strength
+printf('mu=%.1f',mu)
+
+//page 78
diff --git a/2495/CH2/EX2.11.8/Ex2_11_8.sce b/2495/CH2/EX2.11.8/Ex2_11_8.sce
new file mode 100644
index 000000000..c418817cf
--- /dev/null
+++ b/2495/CH2/EX2.11.8/Ex2_11_8.sce
@@ -0,0 +1,25 @@
+clear
+clc
+Kf=1.86;//in Kkg/mol
+m=0.2;//amount of aqueous solution of KCL freezes in mol/kg
+DelTf_0=Kf*m;//in K
+DelTf_1=0.680;//in K
+i1=DelTf_1/DelTf_0;//van't hoff factor
+printf('i1=%.2f',i1)
+v=2;
+alpha=(i1-1)/(v-1);//degree of dissociation
+printf('\nalpha=%.2f',alpha)
+z=1;//valency
+mu=(1/2)*((m*z^1)+(m*z^1))
+printf('\nmu=%.1f',mu)
+i2=v*(1-((0.375+z-z)*(sqrt(mu))))
+printf('\ni2=%.4f',i2)
+Kb=0.52;//in Kkg/mol
+DelTb=i1*Kb*m
+printf('\nDelTb=%.3f K',DelTb)
+R=8.314;//in J/Kmol
+T=273;//in K
+P=i1*(m*10^3)*R*T*(1/101325);//osmotic pressure in atm
+printf('\nP=%.1f atm',P)
+
+//page 79
diff --git a/2495/CH2/EX2.12.1/Ex2_12_1.sce b/2495/CH2/EX2.12.1/Ex2_12_1.sce
new file mode 100644
index 000000000..5078dd24b
--- /dev/null
+++ b/2495/CH2/EX2.12.1/Ex2_12_1.sce
@@ -0,0 +1,13 @@
+clear
+clc
+DelH2m_f=10;//molar heat of fusion in kJ/mol
+T1=298.15;//temperature in K
+T2=353.35;//freezing temperature in K
+R=8.314;//in J/Kmol
+X=(10^-(((DelH2m_f*10^3)/R)*((1/T1)-(1/T2))));//solubility of napthalene
+printf('X=%.4f',X)
+
+//solution is wrong
+//There are some errors in the solution given in textbook
+//page 81
+
diff --git a/2495/CH2/EX2.12.2/Ex2_12_2.sce b/2495/CH2/EX2.12.2/Ex2_12_2.sce
new file mode 100644
index 000000000..d653dae18
--- /dev/null
+++ b/2495/CH2/EX2.12.2/Ex2_12_2.sce
@@ -0,0 +1,13 @@
+clear
+clc
+n2=6.2;//in mol
+n1=1000;//in mol
+X=(n2)/((n1/18)+n2);//solubility of sucrose
+T1=298;//in K
+T2=473;//freezing point temperature in K
+R=8.314;//in J/Kmol
+DelH2m_f=-(R*2.303*log10(X)/((1/T1)-(1/T2)));//molar heat of fusion
+printf('DelH2m_f=%.1d J/mol',DelH2m_f)
+
+//There are some errors in the solution given in textbook
+//page 82
diff --git a/2495/CH2/EX2.2.1/Ex2_2_1.sce b/2495/CH2/EX2.2.1/Ex2_2_1.sce
new file mode 100644
index 000000000..cc72f1177
--- /dev/null
+++ b/2495/CH2/EX2.2.1/Ex2_2_1.sce
@@ -0,0 +1,19 @@
+clear
+clc
+M1=20;//mass of acetic acid in gm
+M2=80;//mass of water in gm
+mM=60;//molar mass of acetic acid in gm
+Vm1=M1/60;//in mol
+Vm2=M2/18;//in mol
+rho=1.026;//in gm/cm^3
+X=Vm1/(Vm1+Vm2);//mole fraction of acetic acid
+printf('X=%.3f',X)
+B=Vm1/(M2/1000);//molality of acetic acid
+printf('\nB=%.3f mol/kg',B)
+V=(M1+M2)/rho
+C=(Vm1)/(V/1000);//molarity of acetic acid
+printf('\nC=%.3f moldm^-3',C)
+
+//There are some errors in the solution given in textbook
+//In textbook the value of X is given in fraction
+//page 36
diff --git a/2495/CH2/EX2.2.2/Ex2_2_2.sce b/2495/CH2/EX2.2.2/Ex2_2_2.sce
new file mode 100644
index 000000000..e50bde655
--- /dev/null
+++ b/2495/CH2/EX2.2.2/Ex2_2_2.sce
@@ -0,0 +1,15 @@
+clear
+clc
+C=5;//molarity in mol
+mM=100;//molar mass in gm
+rho=1.289;//in gm/cm^3
+M1=C*mM;//mass of solute
+M2=(rho*1000)-M1;//mass of solvent
+V=(M2)/18;//volume of water solvent in mol
+X=(C)/(V+C);//mole fraction of solute
+printf('X=%.4f',X)
+B=(C)/(M2/1000)
+printf('\nB=%.3f mol/kg',B)
+
+//page 23
+
diff --git a/2495/CH2/EX2.4.1/Ex2_4_1.sce b/2495/CH2/EX2.4.1/Ex2_4_1.sce
new file mode 100644
index 000000000..b6928bc91
--- /dev/null
+++ b/2495/CH2/EX2.4.1/Ex2_4_1.sce
@@ -0,0 +1,13 @@
+clear
+clc
+T=303;//in K
+m2=10;//mass of solute in gm
+m1=80;//mass of solute acetone in gm
+P1=271;//in torr
+P2=283;//in torr
+M1=58;//in gm/mol
+M2=((m2*M1)/(((P2-P1)/P2)*m1))-((M1*m2)/m1)
+printf('M2=%.1f gm/mol',M2)
+
+//page 39
+
diff --git a/2495/CH2/EX2.4.2/Ex2_4_2.sce b/2495/CH2/EX2.4.2/Ex2_4_2.sce
new file mode 100644
index 000000000..1abf256d6
--- /dev/null
+++ b/2495/CH2/EX2.4.2/Ex2_4_2.sce
@@ -0,0 +1,22 @@
+clear
+clc
+P1=74.01;//in torr
+P2=74.66;//in torr
+m2=2;//in gm
+m1=100;//in gm
+M1=78;//in gm
+M2=((m2*M1)/(((P2-P1)/P2)*m1))-((M1*m2)/m1)
+printf('M2=%.1f gm/mol',M2)
+nCH=94.4/5.6;//mass ratio of C and H
+N=nCH*(1/12);//atomic ratio
+printf('\nN=%.1f',N)
+
+//atomic ratio is 7:5 (here N is showed decimals)
+
+EM=(12*7)+(1*5);//empirical mass
+K=M2/EM;//No. of units C7H5
+printf('\nK=%1f',K)
+
+//Approximately equal to 2, Molecular Formula C14H10
+//There are some errors in the solution given in textbook
+//page 40
diff --git a/2495/CH2/EX2.4.3/Ex2_4_3.sce b/2495/CH2/EX2.4.3/Ex2_4_3.sce
new file mode 100644
index 000000000..3fb042175
--- /dev/null
+++ b/2495/CH2/EX2.4.3/Ex2_4_3.sce
@@ -0,0 +1,17 @@
+clear
+clc
+m1=100;//amount of water in gm
+M1=18;//in gm
+m2=1;//amount of urea in gm
+M2=60;//in gm
+m3=2;//amount of sucrose in gm
+M3=342;//in gm
+X=(m1/M1)/((m1/M1)+(m2/M2)+(m3/M3));//mole fraction of solvent
+P2=23.756;//in torr
+T=298;//in K
+P1=P2*X;//vapour pressure of solution intorr
+printf('P1=%.2f torr',P1)
+
+//There are some errors in the solution given in textbook
+//page 39
+
diff --git a/2495/CH2/EX2.7.3/Ex2_7_3.sce b/2495/CH2/EX2.7.3/Ex2_7_3.sce
new file mode 100644
index 000000000..c67cc4bbe
--- /dev/null
+++ b/2495/CH2/EX2.7.3/Ex2_7_3.sce
@@ -0,0 +1,16 @@
+clear
+clc
+m1=0.5126;//in dissolved mass in gm
+mM1=128.2;//molar mass of napthalene in gm
+m0=50;//mass of solvent in gm
+B=(m1/mM1)/(m0/1000);//Molality of solution in mol/kg
+printf('B=%.5f mol/kg',B)
+delTb=0.402;//change in tempereature of napthalene in K
+Kb=delTb/B;
+delTbs=0.647//chamge in temp for unknown solution in K
+m2=0.6216;//mass of unknown solute
+M=(Kb*m2*1000)/(delTbs*m0);//molar mass of unknown solute
+printf('\nM=%.2f gm/mol',M)
+
+//page 51
+
diff --git a/2495/CH2/EX2.7.4/Ex2_7_4.sce b/2495/CH2/EX2.7.4/Ex2_7_4.sce
new file mode 100644
index 000000000..f0eae0395
--- /dev/null
+++ b/2495/CH2/EX2.7.4/Ex2_7_4.sce
@@ -0,0 +1,17 @@
+clear
+clc
+P0=100;//vapour pressure in torr
+P2=760;//in torr
+T2=353.15;//in K
+T1=300.15;// in K
+DelSm_v=87.03;//entropy in J/Kmol
+R=8.314;//in J/Kmol
+P1=P2/(10^((DelSm_v*(T2-T1))/(2.303*R*T1)))
+printf('P1=%.1f torr',P1)
+X=(P1-P0)/P1;//Mole fraction of solute
+printf('\nX=%.4f',X)
+T0=(1/T2)+((R*log(1-X))/(DelSm_v*T2))
+Tb=1/T0;//Boiling point of solution
+printf('\nTb=%.1f K',Tb)
+
+//page 52
diff --git a/2495/CH2/EX2.7.5/Ex2_7_5.sce b/2495/CH2/EX2.7.5/Ex2_7_5.sce
new file mode 100644
index 000000000..d64b66f48
--- /dev/null
+++ b/2495/CH2/EX2.7.5/Ex2_7_5.sce
@@ -0,0 +1,17 @@
+clear
+clc
+M1=76;//molar mass of CS2 in gm
+w2=3.795;//weight of S in 100gm of CS2 in gm
+w1=100;//weight of CS2
+R=8.314;//in J/Kmol
+Tb=319.81;//boiling point of CS2 in K
+Tbp=319.45;//boiling point of pure CS2 in K
+DelHm_v=351.87;//enthalpy of vaporization in J/gm
+M2=(w2*M1*R*(Tb^2))/(w1*(Tb-Tbp)*DelHm_v*76)
+printf('M2=%.1f gm/mol',M2)
+N=M2/32;//no. of s atoms
+printf('\nN=%.1f',N)
+
+//Molecular formula S8
+//There are some errors in the solution given in textbook
+//page 53
diff --git a/2495/CH2/EX2.8.2/Ex2_8_2.sce b/2495/CH2/EX2.8.2/Ex2_8_2.sce
new file mode 100644
index 000000000..2bc1b299d
--- /dev/null
+++ b/2495/CH2/EX2.8.2/Ex2_8_2.sce
@@ -0,0 +1,29 @@
+clear
+clc
+M1=152.2;//molar mass of carbon in gm
+T1=451.55;//melting point temp in K
+T2=433.85;//melting point temp in K(for unknown compound)
+w2=0.0386;//mass of unknown compound in gm
+w1=0.522;//mass of camphor in solution in gm
+R=8.314;//J/Kmol
+DelHm_f=6.844;//in KJ
+Kf=(((R*T1^2)/(DelHm_f*10^3))*(M1/1000))
+printf('Kf=%.1f',Kf)
+DelT_f=(T1-T2);
+B=(DelT_f/Kf);//molality of the solution in mol/kg
+printf('\nB=%.2f mol/kg',B)
+M2=(w2/B)*(1000/w1);
+printf('\nM2=%.1f gm/mol',M2)
+Z=92.3/7.7;//mass ratio of wC and wH
+N0=1/12;//atomic ratio of H and C
+K=(Z*N0);
+printf('\nK=%.1f',K)
+
+//Clearly we get K=1.0 implies empirical formula is CH
+Me=13;//empirical mass in gm
+N=(M2/Me);//no. of units of CH
+printf('\nN=%.1f',N)
+
+//Taking approximately equal to 12 Molecular formula is C12H12
+//There are some errors in the solution given in textbook
+//page 58
diff --git a/2495/CH2/EX2.8.3/Ex2_8_3.sce b/2495/CH2/EX2.8.3/Ex2_8_3.sce
new file mode 100644
index 000000000..e1020b81a
--- /dev/null
+++ b/2495/CH2/EX2.8.3/Ex2_8_3.sce
@@ -0,0 +1,24 @@
+clear
+clc
+n1=0.1;//amount of napthalene in mol
+n2=0.9;//amount of benzene in mol
+Tf=278.5;//freezing temperature of C6H6 in K
+Tb=353;//boiling temperature of C6H6 in K
+P1=670;//vapour pressure in torr
+P2=760;//in torr
+R=8.314;//in J/Kmol
+M1=78;//atomic mass of C6H6
+DelHm_f=10.67;//in KJ
+X1=(P2-P1)/P2;//
+nT=(n1/X1);//
+nb=(nT-n1);//
+Kfb=((R*Tf^2)/(DelHm_f*1000))*(M1/1000);//
+printf('Kfb=%.3f Kg/mol',Kfb)
+B=(n1/(nb*M1)*1000);//molality of the solution
+printf('\nB=%.3f mol/kg',B)
+DelTf=(Kfb*B);//in K
+T=(Tf-DelTf);//in K
+printf('\nT=%.2f K',T)
+
+//There are some errors in the solution given in textbook
+//page 59
diff --git a/2495/CH2/EX2.9.1/Ex2_9_1.sce b/2495/CH2/EX2.9.1/Ex2_9_1.sce
new file mode 100644
index 000000000..a37a96845
--- /dev/null
+++ b/2495/CH2/EX2.9.1/Ex2_9_1.sce
@@ -0,0 +1,17 @@
+clear
+clc
+x1=[0.0200,0.0150,0.0100,0.0075,0.0050,0.00025]
+y2=[0.104,0.101,0.099,0.098]
+x2=[0.0200,0.0150,0.0100,0.0050]
+y1=[0.585,0.440,0.300,0.230,0.18,0.140]
+plot(x1,y1,'go-',x2,y2,'ro-')
+[m1,c1]=reglin(x1,y1)
+[m2,c2]=reglin(x2,y2)
+R=82.0;//in cm^2atm/Kmol
+T=298;//in K
+M=R*T/c2;//molar mass of polyisobutylene in gm/mol
+printf('M=%.1d gm/mol',M)
+
+//There is some error in the solution given in textbook
+//There are some errors in the solution given in textbook
+//page 68
diff --git a/2495/CH2/EX2.9.2/Ex2_9_2.sce b/2495/CH2/EX2.9.2/Ex2_9_2.sce
new file mode 100644
index 000000000..56b64ea2c
--- /dev/null
+++ b/2495/CH2/EX2.9.2/Ex2_9_2.sce
@@ -0,0 +1,22 @@
+clear
+clc
+h=3.9;//height in mm
+rho=1.0;//density of solution
+g=980.7;//acceleration due to gravity in cm/s^2
+P=((h/10)*rho*g);//osmotic pressure in gm/(cms^2)
+V=1000;//volume in cm^3
+T=25;//temperatur in C
+w2=1;//weight of serum albumin
+R=8.314;//in J/Kmol
+M2=(w2*(R*10^7)*(T+273))/(P*V);//molar mass of serum albumin
+printf('M2=%.3f *10^4 g/mol',M2/10^4)
+
+//The above result is in CGS units
+
+//The following results are in SI units
+p=(P/10);//osmotic pressure in N/m^2
+m2=(M2/10^3);//molar mass of serum albumin
+printf('\nm2=%.2f Kg/mol',m2)
+
+//page 67
+
diff --git a/2495/CH2/EX2.9.3/Ex2_9_3.sce b/2495/CH2/EX2.9.3/Ex2_9_3.sce
new file mode 100644
index 000000000..84f2be469
--- /dev/null
+++ b/2495/CH2/EX2.9.3/Ex2_9_3.sce
@@ -0,0 +1,17 @@
+clear
+clc
+w1=1;//amount of glucose C6H12O6 in gm
+w2=1;//amount of sucrose C12H12022 in gm
+n=(w1/180)+(w2/342);//amount of solute
+R=8.314;//in J/Kmol
+T=25;//in C
+V=1000;//volume of water in gm
+P=(n*R*(T+273))/(V*10^-6);//osmotic pressure of solution
+printf('P=%.3f *10^4 N/m^2',P/10^4)
+w=(w1+w2);//weight of solute
+M=(w*R*(T+273))/(P*(V*10^-3));//molar mass of solute
+printf('\nM=%.4f kg/mol',M)
+Mn=((w1*10^-3)+(w2*10^-3))/(n);//average molar mass in Kg/mol
+printf('\nMn=%.4f kg/mol',Mn)
+
+//page 67
diff --git a/2495/CH3/EX3.3.1/Ex3_3_1.sce b/2495/CH3/EX3.3.1/Ex3_3_1.sce
new file mode 100644
index 000000000..a554b87fa
--- /dev/null
+++ b/2495/CH3/EX3.3.1/Ex3_3_1.sce
@@ -0,0 +1,49 @@
+clear
+clc
+//In KCL NaCl H20 system
+r=3;//no.of reactions
+C=8;//no. of constituents
+Z=2;//no.of restricting equations
+C1=C-r-Z;//no. of components
+printf('C1=%.1d',C1)
+
+//If salts present in equal amounts
+C1=C-r-(Z+1);//no. of components
+printf('\nC1=%.1d',C1)
+
+//If KCL NaCl as strong electrolytes
+r=1;//no.of reactions
+C=6;//no. of constituents
+Z=2;//no.of restricting equations
+C3=C-r-Z;//no. of components
+printf('\nC3=%.1d',C3)
+
+//If salts present in equal amounts
+C4=C-r-(Z+1);//no. of components
+printf('\nC4=%.1d',C4)
+
+//In KCL NaCl H20 system
+r=5;//no.of reactions
+C=11;//no. of constituents
+Z=2;//no.of restricting equations
+C5=C-r-Z;//no. of components
+printf('\nC5=%.1d',C5)
+
+//If salts present in equal amounts
+C6=C-r-(Z+1);//no. of components
+printf('\nC6=%.1d',C6)
+
+//If KCL NaCl NaBr and KBr as strong electrolytes
+r=1;//no.of reactions
+C=7;//no. of constituents
+Z=2;//no.of restricting equations
+C7=C-r-Z;//no. of components
+printf('\nC7=%.1d',C7)
+
+//If salts present in equal amounts
+C8=C-r-(Z+1);//no. of components
+printf('\nC8=%.1d',C8)
+
+//page 103
+
+
diff --git a/2495/CH3/EX3.3.2/Ex3_3_2.sce b/2495/CH3/EX3.3.2/Ex3_3_2.sce
new file mode 100644
index 000000000..fa89517eb
--- /dev/null
+++ b/2495/CH3/EX3.3.2/Ex3_3_2.sce
@@ -0,0 +1,15 @@
+clear
+clc
+//For system when P_NH3=P_HCl
+r=1;//no.of equations
+C=3;//no. of constituents
+Z1=1;//no. of restricting equations
+C1=C-r-Z1;//no. of components
+printf('C1=%.1d',C1)
+
+//For system when P_NH3 not equal P_HCl
+Z2=0;//no. of restricting equations
+C1=C-r-Z2
+printf('\nC1=%.1d',C1)
+
+//page 103
diff --git a/2495/CH3/EX3.3.3/Ex3_3_3.sce b/2495/CH3/EX3.3.3/Ex3_3_3.sce
new file mode 100644
index 000000000..58c5aa00b
--- /dev/null
+++ b/2495/CH3/EX3.3.3/Ex3_3_3.sce
@@ -0,0 +1,9 @@
+clear
+clc
+C=9;//no. of constituents
+r=5;//no. of equilibium reactions
+Z=1;//no. of restricting conditions
+C1=C-r-Z;//no. of components
+printf('C1=%.1d',C1)
+
+//page 103
diff --git a/2495/CH3/EX3.3.4/Ex3_3_4.sce b/2495/CH3/EX3.3.4/Ex3_3_4.sce
new file mode 100644
index 000000000..0868dc990
--- /dev/null
+++ b/2495/CH3/EX3.3.4/Ex3_3_4.sce
@@ -0,0 +1,20 @@
+clear
+clc
+//Arbitrary amounts of A1 and A2 only
+C=4;//no. of constituents
+r=1;//no. of reactions
+Z1=1;//no. of restrictions
+C1=C-r-Z1;//no. of components
+printf('C1=%.1d',C1)
+
+//Arbitrary amounts of A1,A2,A3,A4
+Z2=0
+C1=C-r-Z2;//no. of components
+printf('\nC1=%.1d',C1)
+
+//Different moles of A1 and A2 only
+Z3=2
+C1=C-r-Z3;//no. of components
+printf('\nC1=%.1d',C1)
+
+//page 103
diff --git a/2495/CH4/EX4.10.1/Ex4_10_1.sce b/2495/CH4/EX4.10.1/Ex4_10_1.sce
new file mode 100644
index 000000000..6fd2ebca9
--- /dev/null
+++ b/2495/CH4/EX4.10.1/Ex4_10_1.sce
@@ -0,0 +1,16 @@
+clear
+clc
+P=760;//total vapour pressure in torr
+MA=112.5;//molar mass of chlorobenzene in gm
+MB=18;//molar mass of water in gm
+P1=538.9;//vapour pressure of water at 90.6 C
+PA=(P-P1);//vapour pressure of pure chlorobenzene in torr
+W1=(PA*MA)/(P1*MB);//
+W2=1/W1;//
+W=W2+1;//
+M=100;//in gm
+WA=M/W;//
+printf('WA=%.1d gm',WA)
+
+//There are some errors in the solution given in textbook
+//page 191
diff --git a/2495/CH4/EX4.10.2/Ex4_10_2.sce b/2495/CH4/EX4.10.2/Ex4_10_2.sce
new file mode 100644
index 000000000..34d08d162
--- /dev/null
+++ b/2495/CH4/EX4.10.2/Ex4_10_2.sce
@@ -0,0 +1,12 @@
+clear
+clc
+Pt=747.3;//toatal pressure in torr
+PB=638.6;//vapour pressure of water
+PA=Pt-PB;//vapour pressure of liquid
+WA=1.27;//in gm
+WB=1;//in gm
+MB=18;//molar mass of water in gm/mol
+MA=(WA/WB)*((PB*MB)/PA);//molar mass of liquid in gm/mol
+printf('MA=%.1f gm/mol',MA)
+
+//page 192
diff --git a/2495/CH4/EX4.11.1/Ex4_11_1.sce b/2495/CH4/EX4.11.1/Ex4_11_1.sce
new file mode 100644
index 000000000..46c68aa07
--- /dev/null
+++ b/2495/CH4/EX4.11.1/Ex4_11_1.sce
@@ -0,0 +1,15 @@
+clear
+clc
+Xw1=0.01;//in gm/dm^3
+Xw2=0.12;//in gm/dm^3
+Xw3=0.24;//in gm/dm^3
+Xb1=1.848*10^-5;//in gm/dm^3
+Xb2=2.661*10^-3;//in gm/dm^3
+Xb3=1.089*10^-2;//in gm/dm^3
+//Taking Xw1,Xw2,Xb1,Xb1 to calculate n
+n=((log10(Xb1))-(log10(Xb2)))/((log10(Xw1))-(log10(Xw2)));//degree of complexity
+printf('n=%.1f',n)
+
+//Similarly can be done using lines(4,5,7,8) and also for lines (3,5,6,8)
+//For all we get n=2
+//page 200
diff --git a/2495/CH4/EX4.11.2/Ex4_11_2.sce b/2495/CH4/EX4.11.2/Ex4_11_2.sce
new file mode 100644
index 000000000..c5f6fa5b6
--- /dev/null
+++ b/2495/CH4/EX4.11.2/Ex4_11_2.sce
@@ -0,0 +1,23 @@
+clear
+clc
+KD=9;//distribution coefficient
+M1=0.10825;//amount of p-nitroaniline in gm
+N=0.00693;//amount of p-nitroaniline chlorine dissolved in mol
+N0=0.04342;//molarity of dil HCl
+m1=138;//molar mass of p-nitroaniline in gm/mol
+N1=60;//amount of benzene added in cm^3
+N2=25;//amount of benzene withdrawn in cm^3
+M2=(M1/m1);//amount of free base in 25cm^3 of benzene
+X=(M2*(N1/N2));//amount in mol
+M=(X/(N1/1000));//in mol/dm^3
+M0=(M/KD);//molar concentration of free bas e in aqeous solution
+C=(N-(X+M0));//concentration of unhydrolyzed cation
+C1=(X+M0);//amount of free base in benzene and water
+Ct=(N0+C1);//total amount of acid
+Kh=(M0*Ct)/C;//hydrolysis constant
+printf('kh=%.4f mol/dm^3',Kh)
+
+//There are some errors in the solution given in textbook
+//page 201
+
+
diff --git a/2495/CH4/EX4.11.3/Ex4_11_3.sce b/2495/CH4/EX4.11.3/Ex4_11_3.sce
new file mode 100644
index 000000000..321ec836c
--- /dev/null
+++ b/2495/CH4/EX4.11.3/Ex4_11_3.sce
@@ -0,0 +1,13 @@
+clear
+clc
+KD=25.8;//
+M1=0.385;//concentration of NH3 in aqueous CuSO4 solution in mol/dm^-3
+M2=0.0112;//concentration of NH3 in chloroform in mol/dm^-3
+m=0.025;//concentration of CuSO4 in mol/dm^-3
+M0=(M2*KD);//concentration of NH3 in aqueous layer in mol/dm^-3
+M=M1-M0;//concentration of combined NH3 in mol/dm^-3
+X=(M/m);//
+printf('X=%.2f',X)
+
+// X is approximately equal to 4
+//page 202
diff --git a/2495/CH4/EX4.11.4/Ex4_11_4.sce b/2495/CH4/EX4.11.4/Ex4_11_4.sce
new file mode 100644
index 000000000..9b8ee8f1f
--- /dev/null
+++ b/2495/CH4/EX4.11.4/Ex4_11_4.sce
@@ -0,0 +1,17 @@
+clear
+clc
+Ac=10;//
+Ab=1;//
+Kd=Ab/Ac;//
+wn=0.01;//in gm
+w=1.00;//in gm
+Vb=100;//in cm^3
+Vc=10;//in cm^3
+n=log10(wn/w)/(log10((Kd*Vb)/((Kd*Vb)+Vc)));//
+printf('n=%.1f',n)
+V=n*10;//in am^3
+printf('\nV=%.1d',V)
+
+//approximately equal to 7,n=7 is taken in the text book
+////There are some errors in the solution given in textbook
+//page 202
diff --git a/2495/CH4/EX4.11.5/Ex4_11_5.sce b/2495/CH4/EX4.11.5/Ex4_11_5.sce
new file mode 100644
index 000000000..d2327eb3f
--- /dev/null
+++ b/2495/CH4/EX4.11.5/Ex4_11_5.sce
@@ -0,0 +1,18 @@
+clear
+clc
+KD=4.7;//distribution coefficient
+W1=20;//amount of ether added in cm^3
+W2=50;//amount of solution in cm^3
+M=0.20;//amount of aspirin in gm
+w2=(M/(1+(W1*KD)/W2));//mass of aspirin in ether phase in gm
+printf('w2=%.4f gm',w2)
+w1=M-w2;//mass of aspirin in aqueous phase in gm
+printf('\nw1=%.4f gm',w1)
+n=2
+W=10;//
+wn=(((1/KD)*W2)/(((1/KD)*W2)+W))^n*(M);//amount of aspirin unextracted in gm
+printf('\nwn=%.4f gm',wn)
+w=(M-wn);//amount of aspirin extracted in gm
+printf('\nw=%.4f gm',w)
+
+//page 203
diff --git a/2495/CH4/EX4.6.1/Ex4_6_1.sce b/2495/CH4/EX4.6.1/Ex4_6_1.sce
new file mode 100644
index 000000000..e786bedf3
--- /dev/null
+++ b/2495/CH4/EX4.6.1/Ex4_6_1.sce
@@ -0,0 +1,12 @@
+clear
+clc
+T1=273;//in K
+T2=283;//in K
+R=8.314;//in J/Kmol
+alpha1=0.04889;//absorption coefficients in /atm
+alpha2=0.03802;//absorption coefficients in /atm
+DelH=(2.303*R*log10(alpha2/alpha1))/((1/T1)-(1/T2));//enthalpy of solution
+printf('DelH=%.1d J/mol',DelH)
+
+//Answer comes negative,error in the textbook
+//page 118
diff --git a/2495/CH4/EX4.6.2/Ex4_6_2.sce b/2495/CH4/EX4.6.2/Ex4_6_2.sce
new file mode 100644
index 000000000..785a232a5
--- /dev/null
+++ b/2495/CH4/EX4.6.2/Ex4_6_2.sce
@@ -0,0 +1,19 @@
+clear
+clc
+V1=500;//volume of H2O in cm^3
+V2=15.03;//volume of CH4 in cm^3
+V=V2/V1;//volume dissolved in 1 cm^3 water
+P=1;//pressure in atm
+T=273;//Temperature in K
+R=82.06;//In cm^3atm/Kmol
+X=(P*V)/(R*T);//amount of gas dissolved in mol
+M=(X*16);//mass of gas dissolved in gm
+K=M/P;//
+m1=0.001;//amount of CH4 in mol
+m2=300;//amount of H20 in cm^3
+M1=(m1*16)/m2;//mass of gas dissolved in 1 cm^3
+P0=M1/K;//pressure if Henry's law holds in atm
+printf('P0=%.3f atm',P0)
+
+ //There are some errors in the solution given in textbook
+//page 58
diff --git a/2495/CH4/EX4.6.3/Ex4_6_3.sce b/2495/CH4/EX4.6.3/Ex4_6_3.sce
new file mode 100644
index 000000000..c3f12e422
--- /dev/null
+++ b/2495/CH4/EX4.6.3/Ex4_6_3.sce
@@ -0,0 +1,12 @@
+clear
+clc
+Kh=150;//Henry's law constant in torr
+X1=0.12;//mole fraction of acetone
+P=(Kh*X1);//vapour pressure of acetone in torr
+printf('P=%.1d torr',P)
+Kh1=175;//Henry's law constant for chloroform in torr
+X2=(P/Kh1);
+printf('\nX2=%.3f',X2)
+
+//page 119
+
diff --git a/2495/CH4/EX4.6.4/Ex4_6_4.sce b/2495/CH4/EX4.6.4/Ex4_6_4.sce
new file mode 100644
index 000000000..287e2606e
--- /dev/null
+++ b/2495/CH4/EX4.6.4/Ex4_6_4.sce
@@ -0,0 +1,19 @@
+clear
+clc
+X1=4/100;// amount of NH3 solution
+X2=(1-X1);//amount of water]
+P=17;//vapour pressure of pure water
+PT=50;//total pressure in torr
+P2=(P*X2);//vapour pressure of water in torr
+P1=(PT-P2);//vapour pressure of NH3 in torr
+Kh=P1/X1;//Henry's constant for NH3 in torr
+X=5/100;//mol % of solution
+P10=Kh*X;//pressure of NH3 at 5% mol in torr
+printf('P10=%.1f torr',P10)
+P20=P*(1-X);//pressure of water at 5% mol in torr
+printf('\nP20=%.1f torr',P20)
+PT0=(P10+P20);//total pressure for 5% of mol solution in torr
+printf('\nPT0=%.1f torr',PT0)
+
+//There are some errors in the solution given in textbook
+//page 119
diff --git a/2495/CH4/EX4.6.5/Ex4_6_5.sce b/2495/CH4/EX4.6.5/Ex4_6_5.sce
new file mode 100644
index 000000000..436dbab4c
--- /dev/null
+++ b/2495/CH4/EX4.6.5/Ex4_6_5.sce
@@ -0,0 +1,23 @@
+clear
+clc
+P1=2/100*101325;//partial pressure of O2 in Pa
+P2=8/100*101325;//partial pressure of N2 in Pa
+Kh1=2.53*10^9;//Henry's law constant for O2 in Pa
+Kh2=5.47*10^9;//Henry's law constant for N2 in Pa
+X1=(P1/Kh1);//mole fraction of O2
+X2=(P2/Kh2);//mole fraction of N2
+K=(X1/X2);
+P=1;//in atm
+M1=(K/(P+K))*100;//mol % of O2
+printf('M1=%.2f',M1)
+M2=100-M1;//mol % of N2
+printf('\nM2=%.2f',M2)
+X=X1+X2;//total mole fraction
+N=X*(1000/18);//in mol
+Kf=1.86;//Kkg/mol
+DelTf=(Kf*N);//freezing point of saturated water in K
+printf('\nDelTf=%.5f',DelTf)
+
+//Freezing point will be negative of DelTf
+//There are some errors in the solution given in textbook
+//page 120
diff --git a/2495/CH4/EX4.7.10/Ex4_7_10.sce b/2495/CH4/EX4.7.10/Ex4_7_10.sce
new file mode 100644
index 000000000..50032330c
--- /dev/null
+++ b/2495/CH4/EX4.7.10/Ex4_7_10.sce
@@ -0,0 +1,20 @@
+clear
+clc
+PA=300;//in torr
+PB=800;//in torr
+XA=0.60;//
+XB=1-XA;//
+P=(PA*XA)+(PB*XB);//pressure at which first bubble of vapour is formed
+printf('P=%.1d torr',P)
+YA=(XA*PA)/P;//mole fraction of components in first bubble of vapour
+printf('\nYA=%.2f ',YA)
+YB=(1-YA);//ole fraction of components in first bubble of vapour
+printf('\nYB=%.2f ',YB)
+XA1=(XA*PB)/(PA+((PB-PA)*XA));//mole fraction of last drop of liquid
+printf('\nXA1=%.2f ',XA1)
+XB1=(1-XA1);//mole fraction of last drop of liquid
+printf('\nXB1=%.2f ',XB1)
+P=(PA*XA1)+(PB*XB1);//pressure when the last droplet of liquid remains
+printf('\nP=%.1d torr',P)
+
+//page 151
diff --git a/2495/CH4/EX4.7.11/Ex4_7_11.sce b/2495/CH4/EX4.7.11/Ex4_7_11.sce
new file mode 100644
index 000000000..e943e521b
--- /dev/null
+++ b/2495/CH4/EX4.7.11/Ex4_7_11.sce
@@ -0,0 +1,17 @@
+clear
+clc
+Tb=353.25;//temperature of benzene in K
+Tt=383.75;//temperature of toluene in K
+T=368.15;//temperature in K
+DelS_vR=-10.6;//
+Xb=((exp(DelS_vR))-(exp((DelS_vR)*(Tt/T))))/((exp((DelS_vR)*(Tb/T)))-(exp((DelS_vR)*(Tt/T))));//mole fraction of benzene
+printf('Xb=%.4f',Xb)
+Xt=(1-Xb);//mole fraction of benzene
+printf('\nXt=%.4f',Xt)
+Yb=Xb*(exp((-DelS_vR)*(1-(Tb/T))));//
+printf('\nYb=%.4f',Yb)
+Yt=1-Yb;//
+printf('\nYt=%.4f',Yt)
+
+//There are minor errors in solution in textbook
+//page 151
diff --git a/2495/CH4/EX4.7.12/Ex4_7_12.sce b/2495/CH4/EX4.7.12/Ex4_7_12.sce
new file mode 100644
index 000000000..94e5004dc
--- /dev/null
+++ b/2495/CH4/EX4.7.12/Ex4_7_12.sce
@@ -0,0 +1,27 @@
+clear
+clc
+T1=5100;//in K
+T2=4530;//in K
+A=16.24;//
+B=13.38;//
+PA=760;//in torr
+PB=PA
+TA=-(T1/(log10(PA)-A));//in K
+printf('TA=%.1f K',TA)
+TB=-(T2/(log10(PB)-B));//in K
+printf('\nTB=%.1f K',TB)
+l=round(TA)+3;
+u=round(TB)-6;
+T=l:5:u;
+for i=1:length(T)
+P_A=10^(-T1/T(i)+A);
+P_B=10^(-T2/T(i)+B);
+x_A(i)=(PA-P_B)/(P_A-P_B);
+y_A(i)=x_A(i)*P_A/PB
+end
+plot(x_A,T,y_A,T); xlabel('Mole fraction xA');ylabel('T/K');
+
+//There is no numerical solution to the given question only a graph is plotted
+//page 152
+
+
diff --git a/2495/CH4/EX4.7.13/Ex4_7_13.sce b/2495/CH4/EX4.7.13/Ex4_7_13.sce
new file mode 100644
index 000000000..f270b7476
--- /dev/null
+++ b/2495/CH4/EX4.7.13/Ex4_7_13.sce
@@ -0,0 +1,23 @@
+clear
+clc
+T=391;//temperature in K
+Yb=0.045;//
+Ya=0.955;//
+T=410;//in K
+X=50/100;//
+XA=0.09;//composition of liquid at l2
+XB=0.91;//composition of liquid at l2
+YA=0.74;//composition of liquid at v2
+YB=0.26;//composition of liquid at v2
+N=(YA-X)/(X-XA);//
+M1=(X-XA)/((YA-X)+(X-XA))*100;//mol % of vapour
+printf('M1=%.2f',M1)
+M2=100-M1;//mol % of vapour
+printf('\nM2=%.2f',M2)
+XA1=0.035;//composition of liquid at l3
+XB1=0.965;////composition of liquid at l3
+Yaf=0.743;//
+X1=(Ya+Yaf)/2;//
+printf('\nX1=%.2f',X1)
+
+//page 154
diff --git a/2495/CH4/EX4.7.14/Ex4_7_14.sce b/2495/CH4/EX4.7.14/Ex4_7_14.sce
new file mode 100644
index 000000000..00989c31e
--- /dev/null
+++ b/2495/CH4/EX4.7.14/Ex4_7_14.sce
@@ -0,0 +1,26 @@
+clear
+clc
+n1=270;//amount of sugar in gm
+N1=358;//molar mass of sugar in gm/mol
+n2=1;//amount of water in kg
+N2=18;//molar mass of water in gm/mol
+M1=n1/N1;//amount of sugar in mol
+M2=(n2*1000)/N2;//amount of water in mol
+Mt=M1+M2;//total amount in mol
+Xs=M1/Mt;//mole fraction of sugar
+Xw=M2/Mt;//mole fraction of water
+R=8.314;//in J/Kmol
+T=298;//in K
+DelG_m=(Xs*R*T*log(Xs))+(Xw*R*T*log(Xw))
+printf('DelG_m=%.3f J/mol',DelG_m)
+DelGm=Mt*DelG_m;//
+printf('\nDelGm=%.2f J',DelGm)
+DelS_m=-(DelG_m/T);//
+printf('\nDelS_m=%.3f J/Kmol',DelS_m)
+DelSm=-(DelGm/T);//
+printf('\nDelSm=%.3f J/Kmol',DelSm)
+
+//There are some errors in the solution given in textbook
+//page 154
+
+//there are some minor errors in solutions in textbook
diff --git a/2495/CH4/EX4.7.15/Ex4_7_15.sce b/2495/CH4/EX4.7.15/Ex4_7_15.sce
new file mode 100644
index 000000000..63d1d92bd
--- /dev/null
+++ b/2495/CH4/EX4.7.15/Ex4_7_15.sce
@@ -0,0 +1,26 @@
+clear
+clc
+R=8.314;//in J/Kmol
+T=300;//in K
+Nt=10;//in mol
+m1=1;//in mol
+m2=9;//in mol
+M=10;//in mol
+DelGm1=Nt*R*T*((m1/M*log(m1/M))+(m2/M*log(m2/M)))*(10^-3);//
+printf('DelGm1=%.3f kJ',DelGm1)
+DelSm1=-((DelGm1/T)*1000);//
+printf('\nDelSm1=%.2f J/K',DelSm1)
+Nt1=20;//in mol
+m3=19;//in mol
+M1=20;//in mol
+DelGm3=Nt1*R*T*((m1/M1*log(m1/M1))+(m3/M1*log(m3/M1)))*(10^-3);//
+printf('\nDelGm3=%.3f kJ',DelGm3)
+DelSm3=-((DelGm3/T)*1000);//
+printf('\nDelSm3=%.2f J/K',DelSm3)
+DelGm2=DelGm3-DelGm1
+printf('\nDelGm2=%.3f kJ',DelGm2)
+DelSm2=DelSm3-DelSm1
+printf('\nDelSm2=%.2f J/K',DelSm2)
+
+//There are some errors in the solution given in textbook
+//page 155
diff --git a/2495/CH4/EX4.7.3/Ex4_7_3.sce b/2495/CH4/EX4.7.3/Ex4_7_3.sce
new file mode 100644
index 000000000..97fd96a4a
--- /dev/null
+++ b/2495/CH4/EX4.7.3/Ex4_7_3.sce
@@ -0,0 +1,27 @@
+clear
+clc
+Xt=1/2;//mole fraction of toluene
+Xb=1/2;//mole fraction of benzene
+Pt=4.274;//Partial pressure of toluene in kNm^2
+Pb=13.734;//Partial pressure of benzene in kNm^2
+P=(Xt*Pt)+(Xb*Pb);//total pressure in kNm^2
+printf('P=%.4f kNm^2',P)
+Yt=(Xt*Pt)/P;//compostion of toluene
+printf('\nYt=%.4f ',Yt)
+Yb=(1-Yt);//compostion of benzene
+printf('\nYb=%.4f ',Yb)
+P0=(Pb*Pt)/(Pt+((Pb-Pt)*Xt));//pressure at which last trace liquid disappear
+printf('\nP0=%.3f kNm^2',P0)
+Xt1=(Xt*P0)/Pt;//composition of last trace of toluene
+printf('\nXt1=%.4f kNm^2',Xt1)
+Xb1=(1-Xt1);//composition of last trace of benzene
+printf('\nXb1=%.4f kNm^2',Xb1)
+P=sqrt(Pt*Pb);//pressure when 1 mol of mixture is vaporized in kN/m^2
+printf('\nP=%.3f kN/m^2',P)
+Yb1=1-((P-Pt)/(Pb-Pt));//composition of benzene when 1 mol of mixture is vaporized
+printf('\nYb1=%.3f ',Yb1)
+Yt1=(1-Yb1);//composition of toluene when 1 mol of mixture is vaporized
+printf('\nYt1=%.3f ',Yt1)
+
+//There are some errors in the solution given in textbook
+//page 143
diff --git a/2495/CH4/EX4.7.4/Ex4_7_4.sce b/2495/CH4/EX4.7.4/Ex4_7_4.sce
new file mode 100644
index 000000000..58ec167ef
--- /dev/null
+++ b/2495/CH4/EX4.7.4/Ex4_7_4.sce
@@ -0,0 +1,11 @@
+clear
+clc
+XA=0.70;
+YA=0.35;
+P=600;//in torr
+PA=(YA*P)/XA;//vapour pressure of pure A
+printf('PA=%.1d torr',PA)
+PB=((1-YA)*P)/(1-XA);//vapour pressure of pure B
+printf('\nPB=%.1f torr',PB)
+
+//page 145
diff --git a/2495/CH4/EX4.7.5/Ex4_7_5.sce b/2495/CH4/EX4.7.5/Ex4_7_5.sce
new file mode 100644
index 000000000..1a3757bf2
--- /dev/null
+++ b/2495/CH4/EX4.7.5/Ex4_7_5.sce
@@ -0,0 +1,12 @@
+clear
+clc
+PA=54.4;//vapour pressure of n-hexane in kN/m^2
+PB=18.8;//vapour pressure of n-heptane in kN/m^2
+YA=0.85;//molar fraction of n-hexane
+XA=(YA*PB)/(PA-((PA-PB)*YA));//mole fraction of n-hexane in equilibrium with vapour
+printf('XA=%.3f',XA)
+R=8.314;//J/Kmol
+DelS_mix=(-((XA*2.303*log10(XA))+((1-XA)*2.303*log10(1-XA))))*R
+printf('\nDelS_mix=%.3f J/K',DelS_mix)
+
+//page 146
diff --git a/2495/CH4/EX4.7.6/Ex4_7_6.sce b/2495/CH4/EX4.7.6/Ex4_7_6.sce
new file mode 100644
index 000000000..84d56ab77
--- /dev/null
+++ b/2495/CH4/EX4.7.6/Ex4_7_6.sce
@@ -0,0 +1,25 @@
+clear
+clc
+P1=36.7;//vapour pressure of pure toluene in torr
+P2=118.2;//vapour pressure of pure benzene in torr
+nt=50;//% amount of toluene in gm
+nb=50;//% amount of benzene in gm
+Nt=92;//molar mass of toluene in gm/mol
+Nb=78;//molar mass of benzene in gm/mol
+Xt=(nt/Nt)/((nt/Nt)+(nb/Nb));//mole fraction of toluene
+Pt=Xt*P1;//partial pressure of toluene on torr
+Pb=(1-Xt)*P2;//partial pressure of benzene on torr
+P=Pt+Pb;//total pressure of toluene on torr
+printf('P=%.2f torr',P)
+Yt=Pt/P;//mole fraction of toluene in vapour phase
+printf('\nYt=%.3f ',Yt)
+Yb=(1-Yt);//mole fraction of benzene in vapour phase
+printf('\nYb=%.3f ',Yb)
+P0=50;//in torr
+Xt1=(P0-P2)/(P1-P2);//mole fraction of toluene at P=50 torr
+printf('\nXt1=%.4f ',Xt1)
+Xb1=(1-Xt1);//mole fraction of benzene at P=50 torr
+printf('\nXb1=%.4f ',Xb1)
+
+//page 146
+
diff --git a/2495/CH4/EX4.7.7/Ex4_7_7.sce b/2495/CH4/EX4.7.7/Ex4_7_7.sce
new file mode 100644
index 000000000..6060219b2
--- /dev/null
+++ b/2495/CH4/EX4.7.7/Ex4_7_7.sce
@@ -0,0 +1,19 @@
+clear
+clc
+PA=22.93;//vapour pressure of pure ethyl bromide in kNm^-2
+PB=16.93;//vapour pressure of pure propylene bromide in kNm^-2
+nA=3;//in mol
+nB=2;//in mol
+P=20.4;//in kNm^-2
+XA=(P-PB)/(PA-PB);//mole fraction of ethyl bromide
+printf('XA=%.3f',XA)
+XB=(1-XA);//mole fraction of propylene bromide
+printf('\nXB=%.3f',XB)
+YA=(XA*PA)/P;
+printf('\nYA=%.4f',YA)
+NA=(nA-(XA*(nA+nB)))/(1-(XA/YA));//amount of vaporized ethyl bromide at P
+printf('\nNA=%.4f',NA)
+NB=(NA/YA)-NA;//amount of vaporized propylene bromide at P
+printf('\nNB=%.4f',NB)
+//There are some errors in the solution given in textbook
+//page 147
diff --git a/2495/CH4/EX4.7.8/Ex4_7_8.sce b/2495/CH4/EX4.7.8/Ex4_7_8.sce
new file mode 100644
index 000000000..2705426f1
--- /dev/null
+++ b/2495/CH4/EX4.7.8/Ex4_7_8.sce
@@ -0,0 +1,14 @@
+clear
+clc
+YA=0.6497;//
+XA=0.578;//
+nA=3;//
+nB=2;//
+N1=(YA-(nA/(nA+nB)))/((nA/(nA+nB))-XA);//amount of liquid phase
+N2=(1/(1+N1))*(nA+nB);//amount of vapour phase
+NA=YA*((nA+nB)/(1+N1));//mole fraction of ethyl bromide at P
+printf('\nNA=%.4f mol',NA)
+NB=(1-YA)*((nA+nB)/(1+N1));//
+printf('\nNB=%.4f mol',NB)
+
+//page 148
diff --git a/2495/CH4/EX4.7.9/Ex4_7_9.sce b/2495/CH4/EX4.7.9/Ex4_7_9.sce
new file mode 100644
index 000000000..69b575f07
--- /dev/null
+++ b/2495/CH4/EX4.7.9/Ex4_7_9.sce
@@ -0,0 +1,23 @@
+clear
+clc
+PA=300;//in torr
+PB=800;//in torr
+YA=0.25;
+XA=(YA*PB)/(PA-((PA-PB)*YA));//mole fraction of component A
+printf('XA=%.4f',XA)
+XB=(1-XA)
+P=(PA*XA)+(PB*XB);//total pressure P in torr
+printf('\nP=%.1f torr',P)
+P0=760;//in torr
+XA1=(P0-PB)/(PA-PB);//mole fraction at normal boiling point
+printf('\nXA1=%.2f ',XA1)
+XB1=(1-XA1);//
+printf('\nXB1=%.2f ',XB1)
+P1=(PA*YA)+(PB*(1-YA));//
+printf('\nP1=%.1d torr ',P1)
+YA1=(YA*PA)/P1;//
+printf('\nYA1=%.3f ',YA1)
+YB1=(1-YA1);//
+printf('\nYB1=%.3f ',YB1)
+
+//page 149
diff --git a/2495/CH5/EX5.2.1/Ex5_2_1.sce b/2495/CH5/EX5.2.1/Ex5_2_1.sce
new file mode 100644
index 000000000..a0164d044
--- /dev/null
+++ b/2495/CH5/EX5.2.1/Ex5_2_1.sce
@@ -0,0 +1,19 @@
+clear
+clc
+DelHm_f=6008.5;//in J/mol
+m=18;//molar mass of water in gm/mol
+rho_i=0.917;//density of ice in gm/cm^3
+rho_l=0.99987;//density of liquid in gm/m^3
+DelV=((m/rho_l)-(m/rho_i));
+printf('DelV=%.3f*10^-6 m^3/mol',DelV/10^-6)
+T=273.15;//in K
+P=760;//in mmHg
+Pt=4.6;//triple point pressure in mmHg
+DelPDelT=((DelHm_f)/(T*DelV*10^-6));
+printf('\nDelPdelT=%.3f 10^6 J/Km^3',DelPDelT/10^6)
+DelP=((P-Pt)/P)*101.325*10^3;//in N/m^3
+DelT=(DelP/DelPDelT);
+printf('\nDelT=%.4f K',DelT)
+
+//There are some errors in the solution given in textbook
+//page 222
diff --git a/2495/CH5/EX5.2.2/Ex5_2_2.sce b/2495/CH5/EX5.2.2/Ex5_2_2.sce
new file mode 100644
index 000000000..e7850c8ca
--- /dev/null
+++ b/2495/CH5/EX5.2.2/Ex5_2_2.sce
@@ -0,0 +1,14 @@
+clear
+clc
+R=8.314;//in J/Kmol
+T=273.15;//in K
+m=18;//molar mass of water in gm /mol
+rho_l=0.99987;//density of water ingm/cm^3
+P2=101.325*10^3;//atmospheric pressure in N/m^2
+Pt=4.6;//triple point pressure in mmHg
+P1=(Pt/760)*P2;//
+P=Pt*10^((((m*10^-3)/(rho_l*10^3))*(P2-P1))/(2.303*R*T));//vapour pressure of liquid water in mmHg
+printf('P=%.3f mmHg',P)
+
+//page 223
+
diff --git a/2495/CH6/EX6.6.1/Ex6_6_1.sce b/2495/CH6/EX6.6.1/Ex6_6_1.sce
new file mode 100644
index 000000000..575ec986a
--- /dev/null
+++ b/2495/CH6/EX6.6.1/Ex6_6_1.sce
@@ -0,0 +1,15 @@
+clear
+clc
+DelHmA_f=28.87;//enthalpy of fusion of NaCl in KJ/mol
+DelHmB_f=24.06;//enthalpy of fusion of Na2SO4 in KJ/mol
+R=8.314;//in J/Kmol
+TA=1074;//melting point temperature of NaCl
+XB=48.2/100;//composition of Na2SO4
+XA=(1-XB);//composition of NaCl
+TB=1/((1/TA)-(2.303*R*log10(XA)/(DelHmA_f*10^3))+(2.303*R*log10(XB)/(DelHmB_f*10^3)));//melting point of Na2SO4 in K
+printf('TB=%.1d K',TB)
+T=(1)/((-(2.303*R*log10(XA)/(DelHmA_f*10^3))+(1/TA)));//temperature of the sysytem in K
+printf('\nT=%.1f K',T)
+
+//There are some errors in the solution given in textbook
+//page 313
diff --git a/2495/CH6/EX6.6.2/Ex6_6_2.sce b/2495/CH6/EX6.6.2/Ex6_6_2.sce
new file mode 100644
index 000000000..4d3a850e4
--- /dev/null
+++ b/2495/CH6/EX6.6.2/Ex6_6_2.sce
@@ -0,0 +1,12 @@
+clear
+clc
+M=20;//in Kg
+BC=35;//in mm
+BA=31;//in mm
+M1=(BA/(BA+BC))*M;//mass of Sb in Kg
+printf('M1=%.2f Kg',M1)
+L=(BA+20);//in mm
+M2=(L/(L+BC))*20;//mass of Sb in Kg
+printf('\nM2=%.2f Kg',M2)
+
+//page 314
diff --git a/2495/CH6/EX6.6.3/Ex6_6_3.sce b/2495/CH6/EX6.6.3/Ex6_6_3.sce
new file mode 100644
index 000000000..d03bb1629
--- /dev/null
+++ b/2495/CH6/EX6.6.3/Ex6_6_3.sce
@@ -0,0 +1,20 @@
+clear
+clc
+X1=80;//mol % of n-heptane
+X2=90;//mol % of n-heptane
+X3=95;//mol % of n-heptane
+X=24;//mol % of n-heptane at -114.4 C
+N1=(100-X1)/(X1-X);//at 80% of n-heptane
+N2=(X1-X)/(100-X);//at 80% of n-heptane
+N=((N2*100)/X1)*100;//%of n-heptane recovered w.r.t to original n-heptane
+printf('N=%.1f',N)
+N3=(100-X2)/(X2-X);//at 90% of n-heptane
+N4=(X2-X)/(100-X);//at 90% of n-heptane
+N=((N4*100)/X2)*100;//%of n-heptane recovered w.r.t to original n-heptane
+printf('\nN=%.1f',N)
+N5=(100-X3)/(X3-X);//at 95% of n-heptane
+N6=(X3-X)/(100-X);//at 95% of n-heptane
+N=((N6*100)/X3)*100;//%of n-heptane recovered w.r.t to original n-heptane
+printf('\nN=%.1f',N)
+
+//page 315
diff --git a/2495/CH6/EX6.6.5/Ex6_6_5.sce b/2495/CH6/EX6.6.5/Ex6_6_5.sce
new file mode 100644
index 000000000..a9f83e68f
--- /dev/null
+++ b/2495/CH6/EX6.6.5/Ex6_6_5.sce
@@ -0,0 +1,19 @@
+clear
+clc
+X1=1.04;//solubility of KBr in gm/gm
+w=1;//amount of H20 in gm
+X2=0.64;//solubility of KBr after cooling in gm/gm
+M1=(w/X1)*(X1-X2);//mass of water to be added in gm
+M2=(X2/w)*M1;//mass of KBr in the solution in gm
+M=(X1-X2)-M2;//mass of KBr separated in gm
+N1=M*(100/X1);//percent yield of pure KBr
+printf('N1=%.2f',N1)
+M3=(w/X1)*X2;//mass of water remained in above evaporation process in gm
+M4=(X2/w)*(M3);//mass of water remained after cooling in above evaporation process in gm
+M=(X2)*M4;//mass of KBr separated in second crop in gm
+Mt=(X1-X2)+M;//total mass of kBr separated in two crops in gm
+N2=Mt*(100/X1);//percent of KBr recovered
+printf('\nN2=%.2f',N2)
+
+//There are some errors in the solution given in textbook
+//page 317
diff --git a/2495/CH6/EX6.6.6/Ex6_6_6.sce b/2495/CH6/EX6.6.6/Ex6_6_6.sce
new file mode 100644
index 000000000..2041cefdb
--- /dev/null
+++ b/2495/CH6/EX6.6.6/Ex6_6_6.sce
@@ -0,0 +1,28 @@
+clear
+clc
+M1=40;//total amount of mixture of calcium and aluminium in gm
+w1=54;//amount of aluminium in CaAl2 in gm
+w2=81;//amount of aluminium in CaAl3 in gm
+W1=70;//total amount of aluminium in gm
+X1=(W1-((w2/M1)*M1))/((w1/M1)-(w2/M1));//amount of calcium in gm
+printf('X1=%.1f gm',X1)
+N1=(w1/M1)*X1;//amount of calcium in mixture of CaAl2 in gm
+printf('\nN1=%.1f gm',N1)
+N2=(w2/M1)*(M1-X1);//amount of aluminium in mixture of CaAl3 in gm
+printf('\nN2=%.1f gm',N2)
+M2=20;//total amount of mixture of calcium and aluminium in gm
+W2=90;//total amount of aluminium in gm
+w3=86;//amount of aluminium after melting
+M3=14;//percent of clacium mass melted
+X2=(W2-((w3/M3)*M2))/((w2/M1)-(w3/M3));//amount of calcium in gm
+printf('\nX2=%.1f gm',X2)
+N3=(w2/M1)*X2;//amount of calcium in mixture of CaAL2 in gm
+printf('\nN3=%.1f gm',N3)
+N4=(w3/M3)*(M2-X2);//amount of aluminium in mixture of CaAL3 in gm
+printf('\nN4=%.1f gm',N4)
+
+//There are some errors in the solution given in textbook
+//page 318
+
+//There are some errors in the solution given in textbook
+
diff --git a/2495/CH8/EX8.10.1/Ex8_10_1.sce b/2495/CH8/EX8.10.1/Ex8_10_1.sce
new file mode 100644
index 000000000..616f55943
--- /dev/null
+++ b/2495/CH8/EX8.10.1/Ex8_10_1.sce
@@ -0,0 +1,10 @@
+clear
+clc
+RT_F=0.05915;//in V
+Ecell=0.0295;//in V
+A=0.1;//
+B=0.01;//
+n=(RT_F/Ecell)*(log10(A/B));//
+printf('n=%.1f',n)
+
+//page 459
diff --git a/2495/CH8/EX8.11.1/Ex8_11_1.sce b/2495/CH8/EX8.11.1/Ex8_11_1.sce
new file mode 100644
index 000000000..875488055
--- /dev/null
+++ b/2495/CH8/EX8.11.1/Ex8_11_1.sce
@@ -0,0 +1,12 @@
+clear
+clc
+k = [24.4,48.8,73.2,85.4]
+E = [0.101,0.116,0.129,0.139]
+l = log10(k./(100-k))
+plot(l,E,'mo-')
+[m,c]=reglin(l,E)
+V=0.0603;//in V
+n=V/m;//
+printf('n=%.1f',n)
+
+//page 460
diff --git a/2495/CH8/EX8.12.1/Ex8_12_1.sce b/2495/CH8/EX8.12.1/Ex8_12_1.sce
new file mode 100644
index 000000000..d1a17c270
--- /dev/null
+++ b/2495/CH8/EX8.12.1/Ex8_12_1.sce
@@ -0,0 +1,12 @@
+clear
+clc
+E0=0.7991;//in V
+RT_F=0.05915;//in V
+K1=6.02*10^-8;//
+K2=1.995*10^-19;//
+E1=(E0-(RT_F*(-log10(K1))));//
+printf('E1=%.4f V',E1)
+E2=(E0-(RT_F*(-log10(K2))));//
+printf('\nE2=%.4f V',E2)
+
+//page 464
diff --git a/2495/CH8/EX8.12.2/Ex8_12_2.sce b/2495/CH8/EX8.12.2/Ex8_12_2.sce
new file mode 100644
index 000000000..8922ab3bd
--- /dev/null
+++ b/2495/CH8/EX8.12.2/Ex8_12_2.sce
@@ -0,0 +1,10 @@
+clear
+clc
+T=298;//temperature in K
+R=8.314;//J/K
+F=96500;//in C
+Kw=(10^-14);//
+E=((2.303*R*T)/F)*log10(Kw);//reduction potential in V
+printf('E=%.3f V',E)
+
+//page 464
diff --git a/2495/CH8/EX8.14.1/Ex8_14_1.sce b/2495/CH8/EX8.14.1/Ex8_14_1.sce
new file mode 100644
index 000000000..8e30fb5c1
--- /dev/null
+++ b/2495/CH8/EX8.14.1/Ex8_14_1.sce
@@ -0,0 +1,16 @@
+clear
+clc
+E3=0.54;//in V
+E4=0.45;//in V
+n3=4;//
+n4=1;//
+n1=5;//
+E1=((-n3*(E3))-(n4*(E4)))/(-n1);// in V
+printf('E1=%.2f V',E1)
+n2=6;//
+n5=1;//
+E5=1.07;//in V
+E2=((-n3*(E3))-(n4*(E4))-(n5*E5))/(-n2);// in V
+printf('\nE2=%.2f V',E2)
+
+//page 468
diff --git a/2495/CH8/EX8.16.1/Ex8_16_1.sce b/2495/CH8/EX8.16.1/Ex8_16_1.sce
new file mode 100644
index 000000000..48d7f4bd3
--- /dev/null
+++ b/2495/CH8/EX8.16.1/Ex8_16_1.sce
@@ -0,0 +1,9 @@
+clear
+clc
+E_RHE=(0.1385);//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F*2)*log10(0.2));//reduction reaction at LHE in V
+Ecell=E_RHE-E_LHE;//cell reaction in V
+printf('Ecell=%.4f V',Ecell)
+
+//page 473
diff --git a/2495/CH8/EX8.16.2/Ex8_16_2.sce b/2495/CH8/EX8.16.2/Ex8_16_2.sce
new file mode 100644
index 000000000..1aea97b61
--- /dev/null
+++ b/2495/CH8/EX8.16.2/Ex8_16_2.sce
@@ -0,0 +1,11 @@
+clear
+clc
+Ecell=0.2860;//in V
+E_RHE=(-0.1522-(-0.403));//in V
+RT_F=0.05915;//
+a=10^((-2/(3*RT_F))*(Ecell-E_RHE))
+printf('a=%.4f',a)
+a1=a^3;//
+printf('\na1=%.5f',a1)
+
+//page 474
diff --git a/2495/CH8/EX8.16.3/Ex8_16_3.sce b/2495/CH8/EX8.16.3/Ex8_16_3.sce
new file mode 100644
index 000000000..2be0316c2
--- /dev/null
+++ b/2495/CH8/EX8.16.3/Ex8_16_3.sce
@@ -0,0 +1,12 @@
+clear
+clc
+m=0.01021;//in mol/kg
+m1=m*(2*m)^2
+Ecell=1.1566;//in V
+E_RHE=(0.222-(-0.762));//in V
+RT_F=0.05915;//
+K=10^((-2/(3*RT_F))*((Ecell-E_RHE)+((RT_F/2)*log10(m1))));//ion activity coefficient
+printf('K=%.4f',K)
+
+//There are some errors in the solution given in textbook
+//page 474
diff --git a/2495/CH8/EX8.18.1/Ex8_18_1.sce b/2495/CH8/EX8.18.1/Ex8_18_1.sce
new file mode 100644
index 000000000..6de4c08da
--- /dev/null
+++ b/2495/CH8/EX8.18.1/Ex8_18_1.sce
@@ -0,0 +1,16 @@
+clear
+clc
+n1=2;//
+F=96500;//in C
+E=0.0455//in V
+DelG=-(n1*F*E);//free energy change in J
+printf('DelG=%.1d J',DelG)
+T=298;//in K
+dEdT_p=(3.38*10^-4)
+DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
+printf('\nDelH=%.1d J',DelH)
+DelS=(n1*F*dEdT_p);//entropy change in J/K
+printf('\nDelS=%.2f J/K',DelS)
+
+//There are some errors in the solution given in textbook
+//page 480
diff --git a/2495/CH8/EX8.18.10/Ex8_18_10.sce b/2495/CH8/EX8.18.10/Ex8_18_10.sce
new file mode 100644
index 000000000..5a22cacc6
--- /dev/null
+++ b/2495/CH8/EX8.18.10/Ex8_18_10.sce
@@ -0,0 +1,13 @@
+clear
+clc
+E1=-0.224;//in V
+E2=0.337;//in v
+E=(E1-E2);//in V
+n=2;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.1f*10^-19',Keq/10^-19)
+
+//page 486
diff --git a/2495/CH8/EX8.18.11/Ex8_18_11.sce b/2495/CH8/EX8.18.11/Ex8_18_11.sce
new file mode 100644
index 000000000..5ad28026c
--- /dev/null
+++ b/2495/CH8/EX8.18.11/Ex8_18_11.sce
@@ -0,0 +1,10 @@
+clear
+clc
+E1=-0.151;//in V
+E2=0.799;//in v
+E=(E1-E2);//in V
+RT_F=0.05913;//in V
+Ksp=10^(E/RT_F);//solubility product
+printf('Ksp=%.2f*10^-17',Ksp/10^-17)
+
+//page 487
diff --git a/2495/CH8/EX8.18.12/Ex8_18_12.sce b/2495/CH8/EX8.18.12/Ex8_18_12.sce
new file mode 100644
index 000000000..4aa9383ec
--- /dev/null
+++ b/2495/CH8/EX8.18.12/Ex8_18_12.sce
@@ -0,0 +1,20 @@
+clear
+clc
+E1=0.222;//in V
+E2=0.095;//in v
+E=(E1-E2);//in V
+n=1;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.1f',Keq)
+X=(Keq*0.1)/(1+Keq);//in moldm^3
+printf('\nX=%.6f moldm^3',X)
+Y=0.1-X;//in moldm^3
+printf('\nY=%.6f moldm^3',Y)
+
+//error in the solution
+//There are some errors in the solution given in textbook
+//page 487
+
diff --git a/2495/CH8/EX8.18.13/Ex8_18_13.sce b/2495/CH8/EX8.18.13/Ex8_18_13.sce
new file mode 100644
index 000000000..a282b64d6
--- /dev/null
+++ b/2495/CH8/EX8.18.13/Ex8_18_13.sce
@@ -0,0 +1,13 @@
+clear
+clc
+E1=0.337;//in V
+E2=-0.763;//in v
+E=(E1-E2);//in V
+n=2;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.1f*10^37',Keq/10^37)
+
+//page 488
diff --git a/2495/CH8/EX8.18.14/Ex8_18_14.sce b/2495/CH8/EX8.18.14/Ex8_18_14.sce
new file mode 100644
index 000000000..0cae51882
--- /dev/null
+++ b/2495/CH8/EX8.18.14/Ex8_18_14.sce
@@ -0,0 +1,18 @@
+clear
+clc
+m=[0.01,0.02,0.05,0.10,0.20];//
+n=0.01;//
+mu=m+n;//
+E=[1.0495,1.0315,1.0073,0.9885,0.9694]
+E2=0.2225;//in V
+R=0.05913;//in V
+O=log10(m/n);//
+K=(E-E2)/R +O;//
+plot(mu,K,'mo-');//
+[m,c]=reglin(mu,K)
+Ksp=10^-c;//
+printf('Ksp=%.2f*10^-14',Ksp/10^-14)
+
+//There are some errors in the solution given in textbook
+//page 491
+
diff --git a/2495/CH8/EX8.18.15/Ex8_18_15.sce b/2495/CH8/EX8.18.15/Ex8_18_15.sce
new file mode 100644
index 000000000..5c34cddb3
--- /dev/null
+++ b/2495/CH8/EX8.18.15/Ex8_18_15.sce
@@ -0,0 +1,16 @@
+clear
+clc
+RT_F=0.05913;//in V
+pH=5;//
+E1=0.280;//in V
+E2=0.6996;//in V
+E=(E1-E2)+(RT_F*pH);//in V
+printf('E=%.4f V',E)
+E=0;//
+pH=(E-(E1-E2))/RT_F;//
+printf('\npH=%.1f',pH)
+pH=7.5
+E=(E1-E2)+(RT_F*pH);//in V
+printf('\nE=%.4f V',E)
+
+//page 489
diff --git a/2495/CH8/EX8.18.16/Ex8_18_16.sce b/2495/CH8/EX8.18.16/Ex8_18_16.sce
new file mode 100644
index 000000000..c05ae2b4c
--- /dev/null
+++ b/2495/CH8/EX8.18.16/Ex8_18_16.sce
@@ -0,0 +1,15 @@
+clear
+clc
+RT_F=0.05913;//in V
+pH=7;//
+E=0.062;//in V
+E1=(E-(RT_F*pH));//in V
+E2=0.145;//in V
+pH1=(E2-E1)/RT_F;//
+printf('pH1=%.1f',pH1)
+E=-0.062;//in V
+E1=(E-(RT_F*pH));//in V
+pH2=(E2-E1)/RT_F;//
+printf('\npH2=%.1f',pH2)
+
+//page 499
diff --git a/2495/CH8/EX8.18.2/Ex8_18_2.sce b/2495/CH8/EX8.18.2/Ex8_18_2.sce
new file mode 100644
index 000000000..204003e99
--- /dev/null
+++ b/2495/CH8/EX8.18.2/Ex8_18_2.sce
@@ -0,0 +1,16 @@
+clear
+clc
+n1=2;//
+F=96500;//in C
+E=0.1634//in V
+DelG=-(n1*F*E);//free energy change in J
+printf('DelG=%.1f J',DelG)
+T=298;//in K
+dEdT_p=(0.000837);//in V/K
+DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
+printf('\nDelH=%.1d J',DelH)
+DelS=(n1*F*dEdT_p);//entropy change in J/K
+printf('\nDelS=%.2f J/K',DelS)
+
+//There are some errors in the solution given in textbook
+//page 481
diff --git a/2495/CH8/EX8.18.3/Ex8_18_3.sce b/2495/CH8/EX8.18.3/Ex8_18_3.sce
new file mode 100644
index 000000000..1c8e47d83
--- /dev/null
+++ b/2495/CH8/EX8.18.3/Ex8_18_3.sce
@@ -0,0 +1,19 @@
+clear
+clc
+x=[293,298,303]
+y=[0.0663,0.06839,0.07048]
+plot(x,y,'mo-')
+[m,c]=reglin(x,y)
+n=2;//
+F=96500;//in C
+T=298;//in K
+E=0.06839;//in V
+DelG=-n*F*E;//in J
+printf('DelG=%.1f J',DelG)
+DelH=-n*F*(E-(T*m));//in J
+printf('\nDelH=%.1f J',DelH)
+DelS=n*F*m;//in J/K
+printf('\nDelS=%.1f J/K',DelS)
+
+//There are some errors in the solution given in textbook
+//page 482
diff --git a/2495/CH8/EX8.18.4/Ex8_18_4.sce b/2495/CH8/EX8.18.4/Ex8_18_4.sce
new file mode 100644
index 000000000..71e471dd3
--- /dev/null
+++ b/2495/CH8/EX8.18.4/Ex8_18_4.sce
@@ -0,0 +1,15 @@
+clear
+clc
+n1=2;//
+F=96500;//in C
+E=0.490//in V
+DelG=-(n1*F*E);//free energy change in J
+printf('DelG=%.1f J',DelG)
+T=298;//in K
+dEdT_p=-(1.86*10^-4);//in V/K
+DelH=-(n1*F*(E-(T*dEdT_p)));//enthalpy change in J
+printf('\nDelH=%.1f J',DelH)
+DelS=(n1*F*dEdT_p);//entropy change in J/K
+printf('\nDelS=%.2f J/K',DelS)
+
+//page 483
diff --git a/2495/CH8/EX8.18.5/Ex8_18_5.sce b/2495/CH8/EX8.18.5/Ex8_18_5.sce
new file mode 100644
index 000000000..d59bc3bbc
--- /dev/null
+++ b/2495/CH8/EX8.18.5/Ex8_18_5.sce
@@ -0,0 +1,12 @@
+clear
+clc
+n=2;//
+F=96500;//
+DelH=-217780;//in J
+T=273;//in K
+E=1.015;//in V
+dEdT_p=(1/T)*(E+(DelH/(n*F)));//
+printf('dEdT_p=%.3f*10^-4 V/K',dEdT_p/10^-4)
+
+//There are some errors in the solution given in textbook
+//page 483
diff --git a/2495/CH8/EX8.18.6/Ex8_18_6.sce b/2495/CH8/EX8.18.6/Ex8_18_6.sce
new file mode 100644
index 000000000..91a5cf4e1
--- /dev/null
+++ b/2495/CH8/EX8.18.6/Ex8_18_6.sce
@@ -0,0 +1,19 @@
+clear
+clc
+DelG1=-237.23;//in kJ
+DelG2=79.71;//in kJ
+n=2;//
+DelG=(DelG1+(n*DelG2));//in kJ
+F=96500;//in C
+T=298;//in K
+E=-((DelG*10^3)/(n*F));//in V
+printf('E=%.3f V',E)
+DelH1=-285.85;//in kJ
+DelH2=56.9;//in kJ
+DelH=(DelH1+(n*DelH2));//in kJ
+dEdT_p=((DelH-DelG)*10^3)/(n*F*T);//in V/K
+printf('\ndEdT_p=%.5f V/K',dEdT_p)
+
+//error in solution
+////There are some errors in the solution given in textbook
+//page 484
diff --git a/2495/CH8/EX8.18.7/Ex8_18_7.sce b/2495/CH8/EX8.18.7/Ex8_18_7.sce
new file mode 100644
index 000000000..18df2d633
--- /dev/null
+++ b/2495/CH8/EX8.18.7/Ex8_18_7.sce
@@ -0,0 +1,13 @@
+clear
+clc
+E1=0.771;//in V
+E2=0.150;//in v
+E=(E1-E2);//in V
+n=2;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.1f*10^21',Keq/10^21)
+
+//page 485
diff --git a/2495/CH8/EX8.18.8/Ex8_18_8.sce b/2495/CH8/EX8.18.8/Ex8_18_8.sce
new file mode 100644
index 000000000..630f841f7
--- /dev/null
+++ b/2495/CH8/EX8.18.8/Ex8_18_8.sce
@@ -0,0 +1,13 @@
+clear
+clc
+E1=1.51;//in V
+E2=-0.49;//in v
+E=(E1-E2);//in V
+n=2;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.d10^331',Keq/10^331)
+//There are some errors in the solution given in textbook
+//page 486
diff --git a/2495/CH8/EX8.18.9/Ex8_18_9.sce b/2495/CH8/EX8.18.9/Ex8_18_9.sce
new file mode 100644
index 000000000..ed71a3b3f
--- /dev/null
+++ b/2495/CH8/EX8.18.9/Ex8_18_9.sce
@@ -0,0 +1,13 @@
+clear
+clc
+E1=-0.40;//in V
+E2=-0.61;//in v
+E=(E1-E2);//in V
+n=2;//
+F=96500;//in C/mol
+R=8.314;//in J/Kmol
+T=298;//in K
+Keq=10^((n*F*E)/(2.303*R*T));//equilibrium constant
+printf('Keq=%.2f*10^7',Keq/10^7)
+
+//page 486
diff --git a/2495/CH8/EX8.20.1/Ex8_20_1.sce b/2495/CH8/EX8.20.1/Ex8_20_1.sce
new file mode 100644
index 000000000..f0683a38c
--- /dev/null
+++ b/2495/CH8/EX8.20.1/Ex8_20_1.sce
@@ -0,0 +1,11 @@
+clear
+clc
+RT_F=0.05913;//in V
+m_LHC=0.01;//
+gamma_LHC=0.383;//
+m_RHC=1.0;//
+gamma_RHC=0.042;//
+Ecell=-(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC)));//
+printf('Ecell=%.4f V',Ecell)
+
+//page 525
diff --git a/2495/CH8/EX8.20.3/Ex8_20_3.sce b/2495/CH8/EX8.20.3/Ex8_20_3.sce
new file mode 100644
index 000000000..cee0f479f
--- /dev/null
+++ b/2495/CH8/EX8.20.3/Ex8_20_3.sce
@@ -0,0 +1,11 @@
+clear
+clc
+RT_F=0.05913;//in V
+m_LHC=0.01;//
+gamma_LHC=0.708;//
+m_RHC=0.10;//
+gamma_RHC=0.502;//
+Ecell=((-3/2)*(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC))));//
+printf('Ecell=%.4f V',Ecell)
+
+//page 527
diff --git a/2495/CH8/EX8.21.2/Ex8_21_2.sce b/2495/CH8/EX8.21.2/Ex8_21_2.sce
new file mode 100644
index 000000000..00e205f64
--- /dev/null
+++ b/2495/CH8/EX8.21.2/Ex8_21_2.sce
@@ -0,0 +1,14 @@
+clear
+clc
+RT_F=0.05913;//in V
+m_LHC=0.02;//
+gamma_LHC=0.320;//
+m_RHC=0.2;//
+gamma_RHC=0.110;//
+E1=0.370;//in V
+Ecell_1=(-E1)*(RT_F*log10((m_LHC*gamma_LHC)/(m_RHC*gamma_RHC)));//in V
+printf('Ecell_1=%.4f V',Ecell_1)
+Ecell_2=(Ecell_1)/(2*E1);//in V
+printf('\nEcell_2=%.5f V',Ecell_2)
+
+//page 536
diff --git a/2495/CH8/EX8.23.1/Ex8_23_1.sce b/2495/CH8/EX8.23.1/Ex8_23_1.sce
new file mode 100644
index 000000000..1f28ef5e2
--- /dev/null
+++ b/2495/CH8/EX8.23.1/Ex8_23_1.sce
@@ -0,0 +1,10 @@
+clear
+clc
+E1=-0.277;//in V
+E2=-0.744;//in V
+Ecell_1=(E2-E1);//in V
+printf('Ecell_1=%.3f V',Ecell_1)
+Ecell_2=(E1-E2);//in V
+printf('\nEcell_2=%.3f V',Ecell_2)
+
+//page 539
diff --git a/2495/CH8/EX8.23.2/Ex8_23_2.sce b/2495/CH8/EX8.23.2/Ex8_23_2.sce
new file mode 100644
index 000000000..d4996e71f
--- /dev/null
+++ b/2495/CH8/EX8.23.2/Ex8_23_2.sce
@@ -0,0 +1,25 @@
+clear
+clc
+E1=-0.74;//in V
+E2=-0.40;//in V
+E3=-0.91;//in V
+n1=3;//
+n2=1;//
+n3=6;//
+n=2;//
+E=((n1*E1)-(n2*E2))/n;//in V
+printf('E=%.2f V',E)
+E=E2-E1;//in V
+DelG1=n1*E;//
+printf('\nDelG1=%.2f V',DelG1)
+E=E1-E3;//in V
+DelG2=n3*E;//
+printf('\nDelG2=%.2f V',DelG2)
+E=E2-E3;//in V
+DelG3=n*E;//
+printf('\nDelG3=%.2f V',DelG3)
+RT_F=0.05913;//in V
+Keq=10^(DelG1/RT_F);//
+printf('\nKeq=%.2f*10^17',Keq/10^17)
+
+//page 540
diff --git a/2495/CH8/EX8.23.3/Ex8_23_3.sce b/2495/CH8/EX8.23.3/Ex8_23_3.sce
new file mode 100644
index 000000000..6d2c09d62
--- /dev/null
+++ b/2495/CH8/EX8.23.3/Ex8_23_3.sce
@@ -0,0 +1,25 @@
+clear
+clc
+Ecell=0;//in V
+E1=0;//in V
+E2=-0.40;//in V
+E=(E1-E2);//in V
+T=298;//in K
+RT_F=0.05913;//in V
+Kw=10^-14;//in moldm^3
+Ksp=Kw^2*(10^((-2/RT_F)*(-E)));//in (moldm^3)^2
+printf('Ksp=%.2f*10^-15 (moldm^3)^2',Ksp/10^-15 )
+
+dEdT_p=0.002;//in V/K
+n=2
+F=96500;//inC
+DelG=n*F*E1;//change in gibbs energy
+printf('\nDelG=%.1d ',DelG)
+
+DelS=n*F*dEdT_p;//change in entropy in J/K
+printf('\nDelS=%.1d J/K',DelS)
+
+DelH=DelG+(T*DelS)*10^-3;//change in enthalpy in kJ
+printf('\nDelH=%.3f kJ',DelH)
+
+//page 543
diff --git a/2495/CH8/EX8.23.4/Ex8_23_4.sce b/2495/CH8/EX8.23.4/Ex8_23_4.sce
new file mode 100644
index 000000000..47f17da5f
--- /dev/null
+++ b/2495/CH8/EX8.23.4/Ex8_23_4.sce
@@ -0,0 +1,15 @@
+clear
+clc
+K1=1;//
+K2=1.66*10^6;//in dm^3/mol
+Keq=(K1/K2);//equilibrium constant in mol/dm^3
+RT_F=0.05913;//in V
+n=1;//
+Ecell=RT_F/n*(log10(Keq))
+printf('Ecell=%.4f V',Ecell)
+E_h=0.337;//
+n2=2
+Ecell_2=n2*E_h
+printf('\nEcell_2=%.3f V',Ecell_2)
+
+//page 544
diff --git a/2495/CH8/EX8.23.5/Ex8_23_5.sce b/2495/CH8/EX8.23.5/Ex8_23_5.sce
new file mode 100644
index 000000000..efbb820d4
--- /dev/null
+++ b/2495/CH8/EX8.23.5/Ex8_23_5.sce
@@ -0,0 +1,16 @@
+clear
+clc
+RT_F=0.05913;//in V
+Ecell=0.1185//in V
+K1=0.379*10^-3//
+K2=37.9*10^-3//
+m=-(RT_F/Ecell)*log10(K1/K2);//
+printf('m=%.1f',m)
+K3=0.1;//
+K4=1;//
+Ecell_1=0.1263;//in V
+n=(-(Ecell_1*m)/RT_F)/log10(K3/K4);//
+printf('\nn=%.1d',n)
+
+//page 545
+
diff --git a/2495/CH8/EX8.23.6/Ex8_23_6.sce b/2495/CH8/EX8.23.6/Ex8_23_6.sce
new file mode 100644
index 000000000..620bec07e
--- /dev/null
+++ b/2495/CH8/EX8.23.6/Ex8_23_6.sce
@@ -0,0 +1,17 @@
+clear
+clc
+E1=0.6994;//in V
+RT_F=0.05913;//in V
+E=0.7314;//in V
+kRHE_kLHE=10^((E-E1)/RT_F);//
+printf('kRHE_kLHE=%.3f',kRHE_kLHE)
+K=0.1;//in mol/dm^3
+K2=2.1*10^-4;//in mol/dm^3
+K1=(K2/(kRHE_kLHE^2));//in mol/dm^3
+printf('\nK1=%.2f*10^-5 mol/dm^3',K1/10^-5)
+pH1=-log10(sqrt(K2*K))
+printf('\npH1=%.3f',pH1)
+pH2=-log10(sqrt(K1*K))
+printf('\npH2=%.3f',pH2)
+
+//page 545
diff --git a/2495/CH8/EX8.23.7/Ex8_23_7.sce b/2495/CH8/EX8.23.7/Ex8_23_7.sce
new file mode 100644
index 000000000..d5fb188fb
--- /dev/null
+++ b/2495/CH8/EX8.23.7/Ex8_23_7.sce
@@ -0,0 +1,12 @@
+clear
+clc
+Ecell=-0.188;//in V
+RT_F=0.05913;//in V
+H=10^(Ecell/RT_F);//in mol/dm^3
+M=1/32;//
+alpha=(H/M);//degree of freedom
+printf('alpha=%.3f*10^-2',alpha/10^-2)
+Kh=(M*alpha^2)/(1-alpha);//
+printf('\nKh=%.2f*10^-5 mol/dm^3',Kh/10^-5)
+
+//page 547
diff --git a/2495/CH8/EX8.9.2/Ex8_9_2.sce b/2495/CH8/EX8.9.2/Ex8_9_2.sce
new file mode 100644
index 000000000..d1cb7b08b
--- /dev/null
+++ b/2495/CH8/EX8.9.2/Ex8_9_2.sce
@@ -0,0 +1,52 @@
+clear
+clc
+EFe_Pt=0.771;//in V
+EFe=-0.440;//in V
+Ecell=(EFe_Pt-EFe);//in V
+printf('Ecell=%.3f V',Ecell)
+E1=1.510;//in V
+E2=1.223;//in V
+Ecell=(E1-E2);//in V
+printf('\nEcell=%.3f V',Ecell)
+E3=0.401;//in V
+E4=-0.601;//in V
+Ecell=(E3-E4);//in V
+printf('\nEcell=%.3f V',Ecell)
+E5=0.337;//in V
+E6=0.799;//in V
+Ecell=(E5-E6);//in V
+printf('\nEcell=%.3f V',Ecell)
+E7=1.44;//in V
+E8=0.5355;//in V
+Ecell=(E7-E8);//in V
+printf('\nEcell=%.4f V',Ecell)
+E9=0.7991;//in V
+E10=-0.126;//in V
+Ecell=(E9-E10);//in V
+printf('\nEcell=%.4f V',Ecell)
+E11=1.51;//in V
+E12=-0.49;//in V
+Ecell=(E11-E12);//in V
+printf('\nEcell=%.3f V',Ecell)
+E13=1.33;//in V
+E14=0.771;//in V
+Ecell=(E13-E14);//in V
+printf('\nEcell=%.3f V',Ecell)
+E15=0.771;//in V
+E16=0.150;//in V
+Ecell=(E15-E16);//in V
+printf('\nEcell=%.3f V',Ecell)
+E17=0.771;//in V
+E18=0.76;//in V
+Ecell=(E17-E18);//in V
+printf('\nEcell=%.3f V',Ecell)
+E19=0.771;//in V
+E20=1.080;//in V
+Ecell=(E19-E20);//in V
+printf('\nEcell=%.3f V',Ecell)
+
+//page 448
+
+
+
+
diff --git a/2495/CH8/EX8.9.3/Ex8_9_3.sce b/2495/CH8/EX8.9.3/Ex8_9_3.sce
new file mode 100644
index 000000000..38c29a7eb
--- /dev/null
+++ b/2495/CH8/EX8.9.3/Ex8_9_3.sce
@@ -0,0 +1,29 @@
+clear
+clc
+E1=1.3595;//in V
+E2=0.337;//in V
+Ecell=(E1-E2);//in V
+printf('\nEcell=%.4f V',Ecell)
+E3=1.510;//in V
+E4=0.337;//in V
+Ecell=(E3-E4);//in V
+printf('\nEcell=%.3f V',Ecell)
+E5=0.7791;//in V
+E6=0.337;//in V
+Ecell=(E5-E6);//in V
+printf('\nEcell=%.4f V',Ecell)
+E7=0.771;//in V
+E8=0.150;//in V
+Ecell=(E7-E8);//in V
+printf('\nEcell=%.3f V',Ecell)
+E9=0.771;//in V
+E10=1.51;//in V
+Ecell=(E9-E10);//in V
+printf('\nEcell=%.3f V',Ecell)
+E11=0.771;//in V
+E12=-0.126;//in V
+Ecell=(E11-E12);//in V
+printf('\nEcell=%.3f V',Ecell)
+
+//All the positive values of Ecell gives forward reaction,negative values of Ecell gives backward reaction
+//page 451
diff --git a/2495/CH8/EX8.9.4/Ex8_9_4.sce b/2495/CH8/EX8.9.4/Ex8_9_4.sce
new file mode 100644
index 000000000..f8398ae8d
--- /dev/null
+++ b/2495/CH8/EX8.9.4/Ex8_9_4.sce
@@ -0,0 +1,28 @@
+clear
+clc
+E1=1.3595;//in V
+E2=0.337;//in V
+Ecell=(E1-E2);//in V
+printf('\nEcell=%.4f V',Ecell)
+E3=1.510;//in V
+E4=0.337;//in V
+Ecell=(E3-E4);//in V
+printf('\nEcell=%.3f V',Ecell)
+E5=0.7791;//in V
+E6=0.337;//in V
+Ecell=(E5-E6);//in V
+printf('\nEcell=%.4f V',Ecell)
+E7=0.771;//in V
+E8=0.150;//in V
+Ecell=(E7-E8);//in V
+printf('\nEcell=%.3f V',Ecell)
+E9=0.771;//in V
+E10=1.51;//in V
+Ecell=(E9-E10);//in V
+printf('\nEcell=%.3f V',Ecell)
+E11=0.771;//in V
+E12=-0.126;//in V
+Ecell=(E11-E12);//in V
+printf('\nEcell=%.3f V',Ecell)
+
+//page 451
diff --git a/2495/CH8/EX8.9.6/Ex8_9_6.sce b/2495/CH8/EX8.9.6/Ex8_9_6.sce
new file mode 100644
index 000000000..81497964b
--- /dev/null
+++ b/2495/CH8/EX8.9.6/Ex8_9_6.sce
@@ -0,0 +1,12 @@
+clear
+clc
+E1=1.07;//in V
+E2=0.45;//in V
+Ecell=(E1-E2);//in V
+printf('\nEcell=%.2f V',Ecell)
+E3=0.71;//in V
+E4=0.54;//in V
+Ecell=(E3-E4);//in V
+printf('\nEcell=%.2f V',Ecell)
+
+//page 454
diff --git a/2495/CH8/EX8.9.7/Ex8_9_7.sce b/2495/CH8/EX8.9.7/Ex8_9_7.sce
new file mode 100644
index 000000000..6f2788224
--- /dev/null
+++ b/2495/CH8/EX8.9.7/Ex8_9_7.sce
@@ -0,0 +1,31 @@
+clear
+clc
+E_RHE=(0.5335-(-2.363));//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F/2)*log10(0.1*0.2^2));//reduction reaction at LHE in V
+Ecell=E_RHE-E_LHE;//cell reaction in V
+printf('Ecell=%.4f V',Ecell)
+E_RHE=(0.0-0.0713);//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F)*log10((0.5^(1/2))/(0.02*0.02)));//reduction reaction at LHE in V
+Ecell=E_RHE-E_LHE;//cell reaction in V
+printf('\nEcell=%.4f V',Ecell)
+E_RHE=(0.337-(-0.441));//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F/2)*log10(0.05/0.01));//reduction reaction at LHE in V
+Ecell=E_RHE-E_LHE;//cell reaction in V
+printf('\nEcell=%.4f V',Ecell)
+E_RHE=(0.0-0.0);//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F/2)*log10(6.43/0.127));//reduction reaction at LHE in V
+Ecell=E_RHE-E_LHE;//cell reaction in V
+printf('\nEcell=%.4f V',Ecell)
+E_RHE=(-0.763-0.337);//reduction reaction at RHE in V
+RT_F=0.05915;//
+E_LHE=((RT_F/2)*log10((0.1^2)*0.732));//reduction reaction at LHE in V
+Ecell=E_RHE+E_LHE;//cell reaction in V
+printf('\nEcell=%.3f V',Ecell)
+
+//There are some errors in the solution given in textbook
+//page 455
+