summaryrefslogtreecommitdiff
path: root/2492
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2492
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2492')
-rwxr-xr-x2492/CH12/EX12.1/ex12_1.sce10
-rwxr-xr-x2492/CH12/EX12.2/ex12_2.sce26
-rwxr-xr-x2492/CH12/EX12.3/ex12_3.sce12
-rwxr-xr-x2492/CH12/EX12.4/ex12_4.sce11
-rwxr-xr-x2492/CH12/EX12.5/ex12_5.sce17
-rwxr-xr-x2492/CH12/EX12.6/ex12_6.sce12
-rwxr-xr-x2492/CH2/EX2.1/ex2_1.sce31
-rwxr-xr-x2492/CH2/EX2.2/ex2_2.sce26
-rwxr-xr-x2492/CH2/EX2.3/ex2_3.sce25
-rwxr-xr-x2492/CH2/EX2.4/ex2_4.sce20
-rwxr-xr-x2492/CH2/EX2.5/ex2_5.sce23
-rwxr-xr-x2492/CH2/EX2.6/ex2_6.sce20
-rwxr-xr-x2492/CH2/EX2.7/ex2_7.sce26
-rwxr-xr-x2492/CH2/EX2.8/ex2_8.sce22
-rwxr-xr-x2492/CH3/EX3.1/ex3_1.sce33
-rwxr-xr-x2492/CH3/EX3.10/ex3_10.sce34
-rwxr-xr-x2492/CH3/EX3.2/ex3_2.sce26
-rwxr-xr-x2492/CH3/EX3.3/ex3_3.sce24
-rwxr-xr-x2492/CH3/EX3.4/ex3_4.sce25
-rwxr-xr-x2492/CH3/EX3.5/ex3_5.sce20
-rwxr-xr-x2492/CH3/EX3.6/ex3_6.sce17
-rwxr-xr-x2492/CH3/EX3.7/ex3_7.sce22
-rwxr-xr-x2492/CH3/EX3.8/ex3_8.sce19
-rwxr-xr-x2492/CH3/EX3.9/ex3_9.sce20
-rwxr-xr-x2492/CH4/EX4.1/ex4_1.sce38
-rwxr-xr-x2492/CH4/EX4.10/ex4_10.sce38
-rwxr-xr-x2492/CH4/EX4.11/ex4_11.sce12
-rwxr-xr-x2492/CH4/EX4.12/ex4_12.sce14
-rwxr-xr-x2492/CH4/EX4.13/ex4_13.sce21
-rwxr-xr-x2492/CH4/EX4.14/ex4_14.sce15
-rwxr-xr-x2492/CH4/EX4.15/ex4_15.sce13
-rwxr-xr-x2492/CH4/EX4.16/ex4_16.sce14
-rwxr-xr-x2492/CH4/EX4.17/ex4_17.sce14
-rwxr-xr-x2492/CH4/EX4.18/ex4_18.sce20
-rwxr-xr-x2492/CH4/EX4.19/ex4_19.sce19
-rwxr-xr-x2492/CH4/EX4.2/ex4_2.sce37
-rwxr-xr-x2492/CH4/EX4.20/ex4_20.sce16
-rwxr-xr-x2492/CH4/EX4.21/ex4_21.sce22
-rwxr-xr-x2492/CH4/EX4.3/ex4_3.sce16
-rwxr-xr-x2492/CH4/EX4.4/ex4_4.sce35
-rwxr-xr-x2492/CH4/EX4.5/ex4_5.sce26
-rwxr-xr-x2492/CH4/EX4.7/ex4_7.sce26
-rwxr-xr-x2492/CH4/EX4.8/ex4_8.sce23
-rwxr-xr-x2492/CH4/EX4.9/ex4_9.sce28
-rwxr-xr-x2492/CH5/EX5.1/ex5_1.sce24
-rwxr-xr-x2492/CH5/EX5.10/ex5_10.sce36
-rwxr-xr-x2492/CH5/EX5.2/ex5_2.sce21
-rwxr-xr-x2492/CH5/EX5.3/ex5_3.sce20
-rwxr-xr-x2492/CH5/EX5.4/ex5_4.sce16
-rwxr-xr-x2492/CH5/EX5.5/ex5_5.sce14
-rwxr-xr-x2492/CH5/EX5.6/ex5_6.sce16
-rwxr-xr-x2492/CH5/EX5.7/ex5_7.sce29
-rwxr-xr-x2492/CH5/EX5.8/ex5_8.sce33
-rwxr-xr-x2492/CH5/EX5.9/ex5_9.sce19
-rwxr-xr-x2492/CH6/EX6.1/ex6_1.sce16
-rwxr-xr-x2492/CH6/EX6.10/ex6_10.sce28
-rwxr-xr-x2492/CH6/EX6.2/ex6_2.sce23
-rwxr-xr-x2492/CH6/EX6.3/ex6_3.sce26
-rwxr-xr-x2492/CH6/EX6.4/ex6_4.sce14
-rwxr-xr-x2492/CH6/EX6.5/ex6_5.sce18
-rwxr-xr-x2492/CH6/EX6.6/ex6_6.sce16
-rwxr-xr-x2492/CH6/EX6.7/ex6_7.sce12
-rwxr-xr-x2492/CH6/EX6.8/ex6_8.sce23
-rwxr-xr-x2492/CH6/EX6.9/ex6_9.sce35
-rwxr-xr-x2492/CH7/EX7.1/ex7_1.sce22
-rwxr-xr-x2492/CH7/EX7.10/ex7_10.sce24
-rwxr-xr-x2492/CH7/EX7.12/ex7_12.sce15
-rwxr-xr-x2492/CH7/EX7.13/ex7_13.sce28
-rwxr-xr-x2492/CH7/EX7.6/ex7_6.sce16
-rwxr-xr-x2492/CH7/EX7.8/ex7_8.sce27
-rwxr-xr-x2492/CH7/EX7.9/ex7_9.sce18
-rwxr-xr-x2492/CH8/EX8.1/ex8_1.sce12
-rwxr-xr-x2492/CH8/EX8.2/ex8_2.sce11
-rwxr-xr-x2492/CH8/EX8.3/ex8_3.sce11
-rwxr-xr-x2492/CH8/EX8.4/ex8_4.sce10
-rwxr-xr-x2492/CH8/EX8.9/ex8_9.sce28
76 files changed, 1629 insertions, 0 deletions
diff --git a/2492/CH12/EX12.1/ex12_1.sce b/2492/CH12/EX12.1/ex12_1.sce
new file mode 100755
index 000000000..0fe0436fd
--- /dev/null
+++ b/2492/CH12/EX12.1/ex12_1.sce
@@ -0,0 +1,10 @@
+// Exa 12.1
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+RAMbit= 2*4;//K bit RAM IC chip
+// The capacity of the memory chip,
+Capacity = RAMbit*2^10;// in bits
+disp(Capacity,"The capacity (or density) of the memory chip in bits is");
diff --git a/2492/CH12/EX12.2/ex12_2.sce b/2492/CH12/EX12.2/ex12_2.sce
new file mode 100755
index 000000000..8aa9c5c06
--- /dev/null
+++ b/2492/CH12/EX12.2/ex12_2.sce
@@ -0,0 +1,26 @@
+// Exa 12.2
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+// (a) For 1024 number of bits
+No_of_bits= 1024;// bits
+Req_add_bits= log(No_of_bits)/log(2);
+disp(Req_add_bits,"Address bits required for a memory that has 1024 number of bits");
+
+// (b) For 256 number of bits
+No_of_bits= 256;// bits
+Req_add_bits= log(No_of_bits)/log(2);
+disp(Req_add_bits,"Address bits required for a memory that has 256 number of bits");
+
+// (c) For 4098 number of bits
+No_of_bits= 4096;// bits
+// 2^12= 4096, 2^13= 8192, where 4096<4098<8192 or 2^12<4098<2^13, hence
+Req_add_bits= 13;
+disp(Req_add_bits,"Address bits required for a memory that has 4098 number of bits");
+
+// d) For 16384 number of bits
+No_of_bits= 16384;// bits
+Req_add_bits= log(No_of_bits)/log(2);
+disp(Req_add_bits,"Address bits required for a memory that has 16384 number of bits");
diff --git a/2492/CH12/EX12.3/ex12_3.sce b/2492/CH12/EX12.3/ex12_3.sce
new file mode 100755
index 000000000..e02ca9492
--- /dev/null
+++ b/2492/CH12/EX12.3/ex12_3.sce
@@ -0,0 +1,12 @@
+// Exa 12.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+memory = 16;// in K
+memory= memory*1024;// in bits
+// Number of bits of storage,
+Req_add_bits= log(memory)/log(2);
+disp(Req_add_bits,"Number of bits of storage is : ")
+disp(Req_add_bits,"Number of lines in address bus is : ")
diff --git a/2492/CH12/EX12.4/ex12_4.sce b/2492/CH12/EX12.4/ex12_4.sce
new file mode 100755
index 000000000..6f27144bb
--- /dev/null
+++ b/2492/CH12/EX12.4/ex12_4.sce
@@ -0,0 +1,11 @@
+// Exa 12.4
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+memory= 16;// in K
+wordBit= 8;
+// Number of address
+N= log((memory/wordBit)*1024)/log(2);
+disp(N,"The number of address lines is : ")
diff --git a/2492/CH12/EX12.5/ex12_5.sce b/2492/CH12/EX12.5/ex12_5.sce
new file mode 100755
index 000000000..c36c10cf2
--- /dev/null
+++ b/2492/CH12/EX12.5/ex12_5.sce
@@ -0,0 +1,17 @@
+// Exa 12.5
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+memory= 16;// in K
+memory= memory*1024;// in bits
+// Number of words
+N1= memory;
+disp(N1,"The number of words is : ")
+N2= 32;// number of bits per word
+disp(N2,"The number of bits per word is : ")
+// Number of memory cell
+N3= N2*memory;
+disp(N3,"The number of memory cell is : ")
+
diff --git a/2492/CH12/EX12.6/ex12_6.sce b/2492/CH12/EX12.6/ex12_6.sce
new file mode 100755
index 000000000..2bf383dba
--- /dev/null
+++ b/2492/CH12/EX12.6/ex12_6.sce
@@ -0,0 +1,12 @@
+// Exa 12.6
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+N1= 16;// address input
+inputs= 4;
+outputs= 4;
+// Total number of memory cells
+N2= 2^N1*2^inputs;
+disp(N2,"Total number of memory cells is : ")
diff --git a/2492/CH2/EX2.1/ex2_1.sce b/2492/CH2/EX2.1/ex2_1.sce
new file mode 100755
index 000000000..45774bc43
--- /dev/null
+++ b/2492/CH2/EX2.1/ex2_1.sce
@@ -0,0 +1,31 @@
+// Exa 2.1
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10^10;// in /cc
+p = n_i;// in /cc
+n = n_i;// in /cc
+miu_n = 1400;// in cm^2/V-s
+miu_p = 450;//in cm^2/V-s
+q = 1.6 * 10^-19;// in C
+E = 20;// in V/cm
+a= 5;// cross section area of Si bar in cm^2
+sigma_n = n*q*miu_n;// in mho/cm
+sigma_p = n*q*miu_p;// in mho/cm
+// Electron current density
+Jn = sigma_n*E;// in A
+Jn= Jn*10^6;// in µA/cm^2
+disp(Jn,"Electron current density in µA/cm^2 is");
+// The hole current density
+Jp = sigma_p*E;// in A/cm^2
+Jp= Jp*10^6;// in µA/cm^2
+disp(Jp,"The hole current density in µA/cm^2 is");
+//The total current in the bar
+total = (Jn+Jp)*a;// µA/cm^2
+disp(total,"The total current in the bar in µA/cm^2 is");
+format('e',8)
+// The resistivity of the bar
+rho = 1/(n_i*q*(miu_p+miu_n)*10^2);// in ohm-cm
+disp(rho,"The resistivity of the bar in ohm-cm is");
diff --git a/2492/CH2/EX2.2/ex2_2.sce b/2492/CH2/EX2.2/ex2_2.sce
new file mode 100755
index 000000000..849b9adbc
--- /dev/null
+++ b/2492/CH2/EX2.2/ex2_2.sce
@@ -0,0 +1,26 @@
+// Exa 2.2
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+V_F = 20;// in V
+Vin = V_F;// in V
+V_BE = 0.7;// in V
+R1 = 500;//resistance in ohm
+R2 = 10;// resistance in ohm
+// Peak current though the diode
+Ifpeak = (V_F-V_BE)/(R1+R2);// in A
+Ifpeak = Ifpeak * 10^3;// in mA
+disp(Ifpeak,"The peak current through the diode in mA is");
+R_L = 500;// in ohm
+// Peak output voltage
+Vpeakout = Ifpeak*10^-3*R_L;// in V
+disp(Vpeakout,"The peak out voltage in V is");
+// For ideal diode
+Ifpeak = V_F/R_L;// in A
+Ifpeak = Ifpeak * 10^3;// in mA
+// The peak output voltage for ideal diode
+Vpeakout= Ifpeak*10^-3*R_L;// in V
+disp(Ifpeak,"The peak current for ideal diode in mA is");
+disp(Vpeakout,"The peak output voltage for ideal diode in V is");
diff --git a/2492/CH2/EX2.3/ex2_3.sce b/2492/CH2/EX2.3/ex2_3.sce
new file mode 100755
index 000000000..66b3e9ed7
--- /dev/null
+++ b/2492/CH2/EX2.3/ex2_3.sce
@@ -0,0 +1,25 @@
+// Exa 2.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+t = 27;// in °C
+t= t+273;// in °K
+q= 1.6*10^-19;// electron charge in C
+v = 200*10^-3;// in V
+kt_by_q= 0.026;// in V
+Io= 3*10^-7;// in A
+// For large reverse bias I= Io*(%e^(q*v/(k*t)))
+I= Io*(%e^(v/kt_by_q)-1);// in A
+I= round(I*10^6);// in µA
+disp(I,"The current flowing through the diode in µA is");
+Idaso = Io*2^7;// in A
+// r_ac = dv/di = 1/( Io*(1/kTdividedq)*(%e^(v/(kTdividedq))) );
+r_ac = 1/( Io*(1/kt_by_q)*(%e^(v/(kt_by_q))) );
+disp(r_ac,"The ac resistance in ohm is : ");
+kt_by_q = 0.032;// in V
+I1 = Idaso * ((%e^(v/(kt_by_q))) - 1);// in A
+I1 = I1 * 10^3;// in mA
+delI = I1-(I*10^-3);// in mA
+disp(delI,"The increase in forward current in mA is");
diff --git a/2492/CH2/EX2.4/ex2_4.sce b/2492/CH2/EX2.4/ex2_4.sce
new file mode 100755
index 000000000..792a9e905
--- /dev/null
+++ b/2492/CH2/EX2.4/ex2_4.sce
@@ -0,0 +1,20 @@
+// Exa 2.4
+format('e',9)
+clc;
+clear;
+close;
+// Given data
+V = 30;//applied forward voltage in V
+R_L = 3;//load resistance in k ohm
+R_L = R_L * 10^3;// in ohm
+Imax = V/R_L;// maximum diode current in A
+Imax = Imax * 10^3;// in mA
+slope = -1/R_L;// in mho
+plot([V,0],[0,Imax]);
+xlabel("V_F in volts");
+ylabel("I_F in mA");
+title("DC load line");
+disp("DC load line shown in figure")
+disp(slope,"The slope of the line in mho is");
+
+// Note: There is calculation error to find the value of slope because -1/3kΩ = -3.33*10^-4 mho, not = -3.33*10^-3 mho
diff --git a/2492/CH2/EX2.5/ex2_5.sce b/2492/CH2/EX2.5/ex2_5.sce
new file mode 100755
index 000000000..db2bb8eb6
--- /dev/null
+++ b/2492/CH2/EX2.5/ex2_5.sce
@@ -0,0 +1,23 @@
+// Exa 2.5
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vp= '[4+0.2*sin(omega*t)]';// in V
+Ip= '[4+0.3*sin(omega*t)]';// in mA
+//The instantaneous power dissipated, P= Vp*Ip = [4+0.2*sind(wt)]*[4+0.3*sind(wt)]
+// and putting, sin^2(omega*t)= 1/2-1/2*cos(2*omega*t)
+P= '[16.03+2*sin(omega*t)-0.03*cos(2*omega*t)]*10^-3';// in W
+disp(P,"The instantaneous power dissipated in the diode in W is : ")
+// Pmax occurs when omega*t=90, so
+omega_t= 90;// in °
+Pmax= [16.03+2*sind(omega_t)-0.03*cosd(2*omega_t)]*10^-3;// in W
+disp(Pmax,"The maximum value of instantaneous power dissipated in W is : ")
+// Pmin occurs when omega*t=-90, so
+omega_t= -90;// in °
+Pmin= [16.03+2*sind(omega_t)-0.03*cosd(2*omega_t)]*10^-3;// in W
+disp(Pmin,"The minimum value of instantaneous power dissipated in W is : ");
+// The average power dissipated
+Pav=(Pmax+Pmin)/2;// in W
+disp(Pav,"The average power dissipated in the diode in W is : ")
diff --git a/2492/CH2/EX2.6/ex2_6.sce b/2492/CH2/EX2.6/ex2_6.sce
new file mode 100755
index 000000000..549de380c
--- /dev/null
+++ b/2492/CH2/EX2.6/ex2_6.sce
@@ -0,0 +1,20 @@
+// Exa 2.6
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+R_L = 50;// in ohm
+V = 10;// in V
+R = 5;// in ohm
+V_D = (V*R)/(R_L+R);// in V
+R_D = (R_L*R)/(R_L+R);// in ohm
+I_D = V_D/R_D;// in A
+I_D = I_D * 10^3;// in mA
+plot([V_D,0],[0,I_D])
+xlabel("V_D in volts");
+ylabel("I_D in mA");
+title("DC load line");
+disp("DC load line shown in figure")
+slope = -1/R_D;
+disp(slope,"The slope of the dc load line is : ");
diff --git a/2492/CH2/EX2.7/ex2_7.sce b/2492/CH2/EX2.7/ex2_7.sce
new file mode 100755
index 000000000..aba6b1ea5
--- /dev/null
+++ b/2492/CH2/EX2.7/ex2_7.sce
@@ -0,0 +1,26 @@
+// Exa 2.7
+format('e',8)
+clc;
+clear;
+close;
+// Given data
+V_T= 26*10^-3;// in V
+T = 300;// in K
+V = 0.25;// in V
+I= 10 * 10^-3;// in A
+// I = I_S*( (%e^(V/(n*kTdividedq)))-1 ) = I_S*( (%e^(V/V_T))-1 );
+I_S= I/(%e^(V/V_T)-1);// in A
+disp(I_S,"The reverse saturate current in amp. is : ")
+format('v',6)
+// For 1 mA current
+I = 1;// in mA
+I = I*10^-3;// in A
+V = (1/38.46)*log(I/I_S);// in V
+disp(V,"The bias voltage needed for 1 mA in V is");
+// For 100 mA current
+I = 100;// in mA
+I = I * 10^-3;// in A
+V = (1/38.46)*log(I/I_S);// in V
+disp(V,"The bias voltage needed for 100 mA in V is");
+
+// Note: Answer in the book is not accurate.
diff --git a/2492/CH2/EX2.8/ex2_8.sce b/2492/CH2/EX2.8/ex2_8.sce
new file mode 100755
index 000000000..e6eabc950
--- /dev/null
+++ b/2492/CH2/EX2.8/ex2_8.sce
@@ -0,0 +1,22 @@
+// Exa 2.8
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_T= 25*10^-3;// in V
+// I = Io*( (%e^(V/V_T))-1 );
+I = 1;// in mA
+I = I * 10^-3;// in A
+V = 0.15;// in V
+Io = I/( (%e^((1/V_T)*V))-1 );// in A
+Io = Io * 10^6;// in µA
+disp(Io,"The reverse saturation current at room temperature in µA is");
+// Io doubles for every 10°C-rise in temperature. Thus at 40°C
+Io_new= 4*Io;//new value of reverse saturation current in µA
+disp(Io_new,"The reverse saturation current at 40 °C in µA is");
+I = 100;// in mA
+I = I * 10^-3;// in A
+// I = Io*( (%e^((1/V_T)*V))-1 );
+V = (1/40)*log( I/(Io*10^-6) );// in V
+disp(V,"The forward bias voltage in V is");
diff --git a/2492/CH3/EX3.1/ex3_1.sce b/2492/CH3/EX3.1/ex3_1.sce
new file mode 100755
index 000000000..d01869370
--- /dev/null
+++ b/2492/CH3/EX3.1/ex3_1.sce
@@ -0,0 +1,33 @@
+// Exa 3.1
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+// V = 50 * snid(omega*t);
+Vm = 50;// in V
+r_d = 20;// in ohm
+R_L = 800;// in ohm
+Im = Vm/(r_d+R_L);// in A
+Im = Im * 10^3;// in mA
+disp(Im,"The value of Im in mA is");
+Idc = Im/%pi;// in mA
+disp(Idc,"The value of Idc in mA is");
+Irms = Im/2;// in mA
+disp(Irms,"The value of Irms in mA is");
+// The ac power input
+P_ac_input = (Irms*10^-3)^2*(r_d+R_L);// in W
+disp(P_ac_input,"The ac power input in W is");
+P_dc_output = (Idc*10^-3)^2*R_L;// in W
+// The dc power output
+disp(P_dc_output,"The dc power output in W is");
+// The dc output voltage
+V_dc_out = Idc*10^-3*R_L;// in V
+disp(V_dc_out,"The dc output voltage in V is");
+//The Efficiency of rectification, Eta = ((Idc^2*R_L)*100)/(Irms^2*(R_L+r_d)) = (8/%pi) * ((R_L*100)/(R_L+r_d))
+Eta = 8/%pi^2 * ((R_L*100)/(R_L+r_d));// in %
+disp(Eta,"The Efficiency of rectification in % is");
+ripplefactor = sqrt( (Irms/Idc)^2 -1 );
+disp(ripplefactor,"The ripple factor is");
+
+// Note: In the book, the calculation to evaluate the value of efficiency of rectification is wrong.
diff --git a/2492/CH3/EX3.10/ex3_10.sce b/2492/CH3/EX3.10/ex3_10.sce
new file mode 100755
index 000000000..7723933ca
--- /dev/null
+++ b/2492/CH3/EX3.10/ex3_10.sce
@@ -0,0 +1,34 @@
+// Exa 3.10
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vz1= 10;//voltage across zener diode, Z1 in V
+Vz2= 5;// voltage across zener diode, Z2 in V
+Iz1= 30*10^-3;// current through zener diode, Z1 in A
+Iz2= 15*10^-3;// current through zener diode, Z1 in A
+I_knee= 5*10^-3;//knee current of zener diode,Z1 in A
+R_L=500;//load resistance in ohm
+R= 1*10^3;// in ohm
+V_B= 25;// in V
+// Current through RL,
+I_RL= Vz2/R_L;// in A
+// Current through R2,
+I_R2= Iz2+Vz2/R_L;// in A
+// Voltage across resistance R2,
+V_R2= Vz1-Vz2;// in V
+R2= V_R2/I_R2;// in ohm
+disp(R2,"The value of resistance R2 in ohm is : ")
+// Current through R1,
+I_R1= Iz1+Vz1/R+I_R2;//in A
+// Voltage across R1,
+V_R1= V_B-Vz1;// in V
+R1= V_R1/I_R1;// in ohm
+disp(R1,"The value of resistance R1 in ohm is : ")
+// Current through R1,
+I_R1= I_knee+Vz1/R+I_R2;// in mA
+// Voltage across R1,
+V_R1= I_R1*R1;// in volts
+V_Bmin= Vz1+V_R1;// in V
+disp(V_Bmin,"The lowest power supply voltage in volts is : ")
diff --git a/2492/CH3/EX3.2/ex3_2.sce b/2492/CH3/EX3.2/ex3_2.sce
new file mode 100755
index 000000000..e695c9167
--- /dev/null
+++ b/2492/CH3/EX3.2/ex3_2.sce
@@ -0,0 +1,26 @@
+// Exa 3.2
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vdc = 120;// in V
+Vm = (%pi/2)*Vdc;// in V
+disp(Vm,"The peak value of output voltage in V is");
+Vpeak = 2*Vm;// in V
+disp(Vpeak,"The peak value of voltage at transformer secondary in volts is : ")
+Vrms = Vpeak/sqrt(2);// in V
+disp(Vrms,"The r.m.s. value of voltage at transformer secondary in V is");
+R_L = 250;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Idc = Vdc/R_L;// in A
+Idc= Idc*10^6;// in µA
+disp(Idc,"The average current delivered to load in µA is");
+Io = Idc/2;// in µA
+disp(Io,"The average current through each of the diode in µA is");
+// Peak current through each of the diode in A
+I_peak = Vm/R_L;// in A
+I_peak= I_peak*10^3;// in mA
+disp(I_peak,"The peak current through each of the diode in mA is");
+PIV = 2*Vm;// in V
+disp(PIV,"The PIV required for each of the diode in V is");
diff --git a/2492/CH3/EX3.3/ex3_3.sce b/2492/CH3/EX3.3/ex3_3.sce
new file mode 100755
index 000000000..66e255c08
--- /dev/null
+++ b/2492/CH3/EX3.3/ex3_3.sce
@@ -0,0 +1,24 @@
+// Exa 3.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V = 120;// in V
+Vz = 50;// in V
+R = 5;// in k ohm
+R = R * 10^3;// in ohm
+I = (V-Vz)/R;// in A
+R1 = 10;// in k ohm
+R1 = R1 * 10^3;// in ohm
+I_L = Vz/R1;// in A
+// The maximum value of zener diode current
+I_Zmax = I-I_L;// in A
+I_Zmax= I_Zmax*10^3;// in mA
+disp(I_Zmax,"The maximum value of zener diode current in mA is");
+V2 = 80;// in V
+I = (V2-Vz)/R;// in A
+// The minimum value of zener diode current
+I_Zmin = I-I_L;// in A
+I_Zmin=I_Zmin*10^3;// in mA
+disp(I_Zmin,"The minimum value of zener diode current in mA is");
diff --git a/2492/CH3/EX3.4/ex3_4.sce b/2492/CH3/EX3.4/ex3_4.sce
new file mode 100755
index 000000000..a3ba64bae
--- /dev/null
+++ b/2492/CH3/EX3.4/ex3_4.sce
@@ -0,0 +1,25 @@
+// Exa 3.4
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+R_L = 18;// in ohm
+Vz = 18;// in V
+V1 = 22;// in V
+V2 = 28;// in V
+// Minimum voltage across R,
+V = V1-Vz;// in V
+Izmin = 200;// in mA
+I_Lmax = Vz/R_L;// in A
+I = I_Lmax+Izmin*10^-3;// in A
+R =V/I;// in ohm
+disp(R,"The value of R in ohm is : ")
+I1 = (V2-Vz)/R;;// in A
+// The maximum current through R
+Izmax = I1 - 1;// in A
+Izmax= Izmax*10^3;// in mA
+disp(Izmax,"The maximum current through R in mA is");
+disp("Which is within the limit of Iz (max) provided.")
+pd = Vz*Izmax*10^-3;// maximum power dissipated in W
+disp(pd,"The maximum power dissipated in W is");
diff --git a/2492/CH3/EX3.5/ex3_5.sce b/2492/CH3/EX3.5/ex3_5.sce
new file mode 100755
index 000000000..f47bbafd1
--- /dev/null
+++ b/2492/CH3/EX3.5/ex3_5.sce
@@ -0,0 +1,20 @@
+// Exa 3.5
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V1 = 12;// in V
+Vz = 10;// in V
+V = V1-Vz;// in V
+I_Lmax = 10;// in mA
+I_Zmin = 0.2;// in mA
+I = I_Lmax+I_Zmin;// in mA
+R = V/I;// in k ohm
+Vz1 = 5;// in V
+// The maximum current through R
+Imax = Vz1/R;// in mA
+disp(Imax,"The maximum current through R in mA is");
+// The power rating of zener
+power = Vz*Imax;// in mW
+disp(power,"The power rating of zener in mW is");
diff --git a/2492/CH3/EX3.6/ex3_6.sce b/2492/CH3/EX3.6/ex3_6.sce
new file mode 100755
index 000000000..bbf61931c
--- /dev/null
+++ b/2492/CH3/EX3.6/ex3_6.sce
@@ -0,0 +1,17 @@
+// Exa 3.6
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vo= -6;// in V (for Vi<=-6.6 V)
+Vo= 8;// in V (for Vi>=8.8 V)
+// Vi= 10000*i+100000*i or i= Vi/110000 (i)
+Vi= -6.6:0.1:8.8;
+// Vo= 100000*i
+Vo= 100000*Vi/110000;// (substituting i from eq(i))
+plot(Vi,Vo);
+xlabel("Vi in volts")
+ylabel("Vo in volts")
+title("The overall transfer characteristics")
+disp("The overall transfer characteristics shown in figure.")
diff --git a/2492/CH3/EX3.7/ex3_7.sce b/2492/CH3/EX3.7/ex3_7.sce
new file mode 100755
index 000000000..0aabe0d72
--- /dev/null
+++ b/2492/CH3/EX3.7/ex3_7.sce
@@ -0,0 +1,22 @@
+// Exa 3.7
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vm = 20;// in V
+Idc = 100;// in mA
+Idc = Idc * 10^-3;// in A
+R_S = 5;// in ohm
+R_F = 2;// in ohm
+Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F);// in V
+disp(Vdc,"The output dc voltage at dc load current of 100 mA in V is");
+Idc = 200;// in mA
+Idc = Idc * 10^-3;// in A
+Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F);// in V
+R_L = Vdc/Idc;// in ohm
+// The percentage regulaiton
+Per_reg = ((2*R_F+R_S)/R_L)*100;// in %
+disp(Per_reg,"The percentage regulation for a full load dc current of 200 mA in % is");
+Eta = round((8/(%pi^2)) * ( R_L/(2*R_F+R_S+R_L) )*100);// in %
+disp(Eta,"The efficiency of the rectifier in % is");
diff --git a/2492/CH3/EX3.8/ex3_8.sce b/2492/CH3/EX3.8/ex3_8.sce
new file mode 100755
index 000000000..80b83fafa
--- /dev/null
+++ b/2492/CH3/EX3.8/ex3_8.sce
@@ -0,0 +1,19 @@
+// Exa 3.8
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vz = 20;// in V
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+I_L =Vz/R_L;// in A
+V1 = 30;// in V
+R_S = (V1-Vz)/I_L;// in ohm
+V2 = 50;// in V
+// The maximum current through Rs resistor,
+I_S = (V2-Vz)/R_S;// in A
+I_Smax = V1/R_S;// in A
+I_Zmax = I_Smax-I_L;// in A
+power = I_Zmax*Vz;// in W
+disp(power,"The maximum power rating of the Zener diode in W is");
diff --git a/2492/CH3/EX3.9/ex3_9.sce b/2492/CH3/EX3.9/ex3_9.sce
new file mode 100755
index 000000000..61e40c270
--- /dev/null
+++ b/2492/CH3/EX3.9/ex3_9.sce
@@ -0,0 +1,20 @@
+// Exa 3.9
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vz = 20;// in V
+V1 = 30;// in V
+V2 = 50;// in V
+R_L = 2;// in k ohm
+R_L = R_L * 10^3;// in ohm
+I_L =Vz/R_L;// in A
+I_ZK = 5*10^-3;// in mA
+I_Smin = I_L+I_ZK;// in A
+R_S = (V1-Vz)/I_Smin;// in ohm
+I_Smax = (V2-Vz)/R_S;// in A
+I_Zmax = I_Smax-(I_Smin+I_ZK);// in A
+// The maximum power rating of the zener diode,
+power = I_Zmax*Vz;// in W
+disp(power,"The maximum power rating of the zener diode in W is");
diff --git a/2492/CH4/EX4.1/ex4_1.sce b/2492/CH4/EX4.1/ex4_1.sce
new file mode 100755
index 000000000..19ef9e916
--- /dev/null
+++ b/2492/CH4/EX4.1/ex4_1.sce
@@ -0,0 +1,38 @@
+// Exa 4.1
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_CC = 18;// in V
+V_BB = 6;// in V
+Beta = 75;
+I_CO = 100;// in nA
+I_CO = I_CO * 10^-9;// in A
+R_C = 1;// in k ohm
+R_C = R_C * 10^3;// in ohm
+V_CE = 9;// in V
+I_C = 9;// in mA
+I_C = I_C * 10^-3;// in A
+// I_C = Beta*I_B + (1+Beta)*I_CO;
+I_B = (I_C-((1+Beta)*I_CO))/Beta;// in A
+I_B = I_B * 10^3;// in mA
+disp(I_B,"The value of I_B in mA is");
+V_BE = 0.7;// in V assumed
+R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm
+R_B = R_B * 10^-3;// in k ohm
+disp(R_B,"The value of R_B for Si transistor in k ohm is");
+V_BE = 0.3;// in V
+R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm
+R_B= R_B*10^-3;// in k ohm
+disp(R_B,"The value of R_B for Ge transistor in k ohm is");
+V_CEQ= V_CC-I_C*R_C;// in V
+I_CQ= round(Beta*I_B);// in mA
+I_C= V_CC/R_C;// in A
+I_C= I_C*10^3;// in mA
+plot([V_CC,0],[0,I_C]);
+xlabel("V_CC in volts ");
+ylabel("I_C in mA")
+title("DC load line ")
+disp("DC load line shown in figure")
+disp("Q point : "+string(V_CEQ)+" volts, "+string(I_CQ)+" mA")
diff --git a/2492/CH4/EX4.10/ex4_10.sce b/2492/CH4/EX4.10/ex4_10.sce
new file mode 100755
index 000000000..6dd44dd05
--- /dev/null
+++ b/2492/CH4/EX4.10/ex4_10.sce
@@ -0,0 +1,38 @@
+// Exa 4.10
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_CC = 18;// in V
+V_BB = 6;// in V
+Beta = 75;
+I_CO = 100;// in nA
+I_CO = I_CO * 10^-9;// in A
+R_C = 1;// in k ohm
+R_C = R_C * 10^3;// in ohm
+V_CE = 9;// in V
+I_C = 9;// in mA
+I_C = I_C * 10^-3;// in A
+// I_C = Beta*I_B + (1+Beta)*I_CO;
+I_B = (I_C-((1+Beta)*I_CO))/Beta;// in A
+I_B = I_B * 10^3;// in mA
+disp(I_B,"The value of I_B in mA is");
+V_BE = 0.7;// in V assumed
+R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm
+R_B = R_B * 10^-3;// in k ohm
+disp(R_B,"The value of R_B for Si transistor in k ohm is");
+V_BE = 0.3;// in V
+R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm
+R_B= R_B*10^-3;// in k ohm
+disp(R_B,"The value of R_B for Ge transistor in k ohm is");
+V_CEQ= V_CC-I_C*R_C;// in V
+I_CQ= round(Beta*I_B);// in mA
+I_C= V_CC/R_C;// in A
+I_C= I_C*10^3;// in mA
+plot([V_CC,0],[0,I_C]);
+xlabel("V_CC in volts ");
+ylabel("I_C in mA")
+title("DC load line ")
+disp("DC load line shown in figure")
+disp("Q point : "+string(V_CEQ)+" volts, "+string(I_CQ)+" mA")
diff --git a/2492/CH4/EX4.11/ex4_11.sce b/2492/CH4/EX4.11/ex4_11.sce
new file mode 100755
index 000000000..da3da4af0
--- /dev/null
+++ b/2492/CH4/EX4.11/ex4_11.sce
@@ -0,0 +1,12 @@
+// Exa 4.11
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+alpha = 0.9;
+I_E = 1;// mA
+I_C = alpha * I_E;// in mA
+// The base current,
+I_B = I_E - I_C;// in mA
+disp(I_B,"The value of base current in mA is");
diff --git a/2492/CH4/EX4.12/ex4_12.sce b/2492/CH4/EX4.12/ex4_12.sce
new file mode 100755
index 000000000..320e69616
--- /dev/null
+++ b/2492/CH4/EX4.12/ex4_12.sce
@@ -0,0 +1,14 @@
+// Exa 4.12
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+bita = 50;
+I_B= 20;// in µA
+I_B=I_B*10^-6;// in A
+I_C= bita*I_B;// in A
+// The emitter current,
+I_E= I_C+I_B;// in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The Emitter current in mA is");
diff --git a/2492/CH4/EX4.13/ex4_13.sce b/2492/CH4/EX4.13/ex4_13.sce
new file mode 100755
index 000000000..96f973d1d
--- /dev/null
+++ b/2492/CH4/EX4.13/ex4_13.sce
@@ -0,0 +1,21 @@
+// Exa 4.13
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+beta_dc = 90;
+// The base current,
+I_C = 15;// in mA
+I_C = I_C * 10^-3;// in A
+I_B = I_C/beta_dc;// in A
+I_B= I_B*10^6;// in µA
+disp(I_B,"The base current in µA is");
+I_B= I_B*10^-6;// in A
+// The emitter current,
+I_E = I_C + I_B;// in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The Emitter current in mA is");
+alpha_dc = beta_dc/(1+beta_dc);
+disp(alpha_dc,"The value of alpha_dc is");
+
diff --git a/2492/CH4/EX4.14/ex4_14.sce b/2492/CH4/EX4.14/ex4_14.sce
new file mode 100755
index 000000000..fd0013cb2
--- /dev/null
+++ b/2492/CH4/EX4.14/ex4_14.sce
@@ -0,0 +1,15 @@
+// Exa 4.14
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+del_ic = 1.8;// in mA
+del_ie = 1.89;// in mA
+alpha = del_ic / del_ie;
+bita = alpha/(1 - alpha);
+// Change in base current,
+del_ib = del_ic/bita;// in mA
+del_ib = del_ib * 10^3;// in µA
+disp(del_ib,"The change in I_B in µA is");
+
diff --git a/2492/CH4/EX4.15/ex4_15.sce b/2492/CH4/EX4.15/ex4_15.sce
new file mode 100755
index 000000000..56884ca0d
--- /dev/null
+++ b/2492/CH4/EX4.15/ex4_15.sce
@@ -0,0 +1,13 @@
+//Exa 4.15
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+bita = 100;
+I_CBO = 4;// in µA
+I_B = 40;// in µA
+// The collector current,
+I_C = (bita * I_B) + ((1+bita) * I_CBO);// in µA
+I_C = I_C * 10^-3;// in msA
+disp(I_C,"The collector current in mA is");
diff --git a/2492/CH4/EX4.16/ex4_16.sce b/2492/CH4/EX4.16/ex4_16.sce
new file mode 100755
index 000000000..28d70f255
--- /dev/null
+++ b/2492/CH4/EX4.16/ex4_16.sce
@@ -0,0 +1,14 @@
+//Exa 4.16
+format('v',7)
+clc;
+clear;
+close;
+//Given data
+I_CEo = 21;// in µA
+I_CBO = 1.1;// in µA
+// Value of beta_dc
+beta_dc = round((I_CEo/I_CBO) - 1);
+disp(beta_dc,"Value of beta_dc is");
+// The value of alpha_dc
+alpha_dc = beta_dc/(1 + beta_dc);
+disp(alpha_dc,"The value of alpha_dc is");
diff --git a/2492/CH4/EX4.17/ex4_17.sce b/2492/CH4/EX4.17/ex4_17.sce
new file mode 100755
index 000000000..a753cd679
--- /dev/null
+++ b/2492/CH4/EX4.17/ex4_17.sce
@@ -0,0 +1,14 @@
+// Exa 4.17
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+I_CBO = 3;//in µA
+I_CBO= I_CBO*10^-3;// in mA
+I_C= 15;// in mA
+// But it is given that I_C= 99.5% of I_E, SO
+I_E= I_C/99.5*100;// in mA
+alpha_dc= I_C/I_E;
+disp(alpha_dc,"The value of alpha_dc is : ")
+disp(I_E,"The value of I_E in mA is : ")
diff --git a/2492/CH4/EX4.18/ex4_18.sce b/2492/CH4/EX4.18/ex4_18.sce
new file mode 100755
index 000000000..14c41eaf0
--- /dev/null
+++ b/2492/CH4/EX4.18/ex4_18.sce
@@ -0,0 +1,20 @@
+//Exa 4.18
+format('v',5)
+clc;
+clear;
+close;
+//Given data
+alpha_dc = 0.99;
+I_CBO = 10;// in µA
+I_CBO= I_CBO*10^-6;// in A
+I_E = 10;// in mA
+I_E= I_E*10^-3;// in A
+// The collector current,
+I_C = (alpha_dc * I_E) + I_CBO;// in A
+I_C=I_C*10^3;// in mA
+disp(I_C,"The value of I_C in mA is");
+I_C=I_C*10^-3;// in A
+// The base current,
+I_B = I_E - I_C;// in A
+I_B = I_B * 10^6;// in µA
+disp(I_B,"The value of I_B in µA is");
diff --git a/2492/CH4/EX4.19/ex4_19.sce b/2492/CH4/EX4.19/ex4_19.sce
new file mode 100755
index 000000000..2d1a79392
--- /dev/null
+++ b/2492/CH4/EX4.19/ex4_19.sce
@@ -0,0 +1,19 @@
+// Exa 4.19
+format('v',5)
+clc;
+clear;
+close;
+format('v',9)
+// Given data
+alpha_dc = 0.99;
+I_C = 6;// in mA
+I_C= I_C*10^-3;// in A
+I_CBO = 15;// in µA
+I_CBO= I_CBO*10^-6;// in A
+// The emitter current,
+I_E = (I_C - I_CBO)/alpha_dc;// in A
+// The base current,
+I_B = I_E - I_C;// in A
+I_B= I_B*10^6;// in µA
+I_B= round(I_B)
+disp(I_B,"The value of I_B in µA is");
diff --git a/2492/CH4/EX4.2/ex4_2.sce b/2492/CH4/EX4.2/ex4_2.sce
new file mode 100755
index 000000000..b6ccc2a35
--- /dev/null
+++ b/2492/CH4/EX4.2/ex4_2.sce
@@ -0,0 +1,37 @@
+// Exa 4.2
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+V_BB = 15;// in V
+V_CC = 15;// in V
+I_CO = 0.1;// in µA
+I_CO = I_CO * 10^-6;// in A
+Beta = 60;
+I_B = 50;// in µA
+I_B = I_B * 10^-6;// in A
+V_CE = 8;// in V
+I_C = (Beta*I_B)+((1+Beta)*I_CO);// in A
+I_C = round(I_C * 10^3);// in mA
+disp("Part (i) : ")
+disp(I_C,"The value of I_C in mA is");
+R_C = (V_CC-V_CE)/(I_C*10^-3);// in ohm
+R_C = R_C * 10^-3;// in k ohm
+disp(R_C,"The value of R_C in k ohm is");
+V_BE = 0.3;// in V
+R_BGe = (V_BB-V_BE)/I_B;// in ohm
+R_BGe = R_BGe * 10^-3;// in k ohm
+disp(R_BGe,"The value of R_B for Ge in k ohm is");
+V_BE = 0.7;// in V
+R_BSi = (V_BB-V_BE)/I_B;// in ohm
+R_BSi = R_BSi * 10^-3;// in k ohm
+disp(R_BSi,"The value of R_B for Si in k ohm is");
+P_RC = ((I_C*10^-3)^2)*(7/3)*10^3;// in W
+P_RC = P_RC * 10^3;// in mW
+disp("Part (ii) : ")
+disp(P_RC,"The power dissipations in RC in mW is");
+// The power dissipations in the transistor
+P_TRANS = V_CE*I_C;// in mW
+disp(P_TRANS,"The power dissipations in the transistor in mW is");
+disp("Part (iii) : For RC= 1 kΩ, V_CE increase, shifting the Q-point ot right and I_C increase slightly")
diff --git a/2492/CH4/EX4.20/ex4_20.sce b/2492/CH4/EX4.20/ex4_20.sce
new file mode 100755
index 000000000..73f27aa39
--- /dev/null
+++ b/2492/CH4/EX4.20/ex4_20.sce
@@ -0,0 +1,16 @@
+//Exa 4.20
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+alpha_dc = 0.98;
+I_CBO = 12;// in µA
+I_CBO = I_CBO * 10^-6;// in A
+I_B = 120;// in µA
+I_B = I_B * 10^-6;// in A
+beta_dc = alpha_dc/(1-alpha_dc);
+// The emitter current,
+I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO);//in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The value of I_E in mA is");
diff --git a/2492/CH4/EX4.21/ex4_21.sce b/2492/CH4/EX4.21/ex4_21.sce
new file mode 100755
index 000000000..f42b4e7c7
--- /dev/null
+++ b/2492/CH4/EX4.21/ex4_21.sce
@@ -0,0 +1,22 @@
+// Exa 4.21
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+beta_dc = 90;
+// The base current,
+I_C = 15;// in mA
+I_C = I_C * 10^-3;// in A
+I_B = I_C/beta_dc;// in A
+I_B=I_B*10^6;// in µA
+disp(I_B,"The base current in µA is");
+I_B=I_B*10^-6;// in A
+// The emitter current,
+I_E = I_C + I_B;// in A
+I_E = I_E * 10^3;// in mA
+disp(I_E,"The Emitter current in mA is");
+alpha_dc = beta_dc/(1+beta_dc);
+disp(alpha_dc,"The value of alpha_dc is");
+
+// Note: There is printing mistake in the book in this example.
diff --git a/2492/CH4/EX4.3/ex4_3.sce b/2492/CH4/EX4.3/ex4_3.sce
new file mode 100755
index 000000000..ae1325b54
--- /dev/null
+++ b/2492/CH4/EX4.3/ex4_3.sce
@@ -0,0 +1,16 @@
+// Exa 4.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_CE = 9;// in V
+R_C = 10;// in Mohm
+R_C = R_C * 10^6;// in ohm
+V = 10;// in V
+I_CEO = (V - V_CE)/R_C;// in A
+// When R_C is changed to 10 k ohm
+R_C = 10;// in k ohm
+R_C = R_C * 10^3;// in ohm
+V_CE = (V - (I_CEO*R_C));// in V
+disp(V_CE,"The new value of V_CE in V is");
diff --git a/2492/CH4/EX4.4/ex4_4.sce b/2492/CH4/EX4.4/ex4_4.sce
new file mode 100755
index 000000000..ab2ecdae6
--- /dev/null
+++ b/2492/CH4/EX4.4/ex4_4.sce
@@ -0,0 +1,35 @@
+// Exa 4.4
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_CC = 20;// in V
+V_BB = 10;// in V
+V_BE= 0.7;// in V
+V_CEsat = 0.3;// in V
+R_B = 47;// in k ohm
+R_B = R_B * 10^3;// in ohm
+R_C = 1;// in k ohm
+R_C = R_C * 10^3;// in ohm
+I_C =V_CC/R_C;// in A
+I_C = I_C * 10^3;// in mA
+plot([V_CC,0],[0,I_C]);
+xlabel("V_CE in volts");
+ylabel("I_C in mA");
+title("DC load line")
+I_BQ = (V_BB-V_BE)/R_B;// in A
+Beta = 80;
+I_CQ = Beta*I_BQ*10^3;// in mA
+V_CEQ = V_CC - (I_CQ*10^-3*R_C);// in V
+disp("DC load line shown in figure")
+disp("Q points : "+string(V_CEQ)+" volts, "+string(I_CQ)+" mA")
+I_Csat = (V_CC-V_CEsat)/R_C;// in A
+I_B = I_Csat/Beta;// in A
+V_BE = 0.7;// in V
+R_B = (V_BB-V_BE)/I_B;// in ohm
+disp(R_B*10^-3,"The value of R_B in k ohm is");
+R_C = 500;// in ohm
+V_CE = V_CC - (I_Csat*R_C);// in V
+disp(V_CE,"The value of V_CE in volts is : ")
+disp("The transistor will come out of saturation and enter the active region of the transistors.");
diff --git a/2492/CH4/EX4.5/ex4_5.sce b/2492/CH4/EX4.5/ex4_5.sce
new file mode 100755
index 000000000..9655d765e
--- /dev/null
+++ b/2492/CH4/EX4.5/ex4_5.sce
@@ -0,0 +1,26 @@
+// Exa 4.5
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Beta_dc = 80;
+V_CC = 25;// in V
+V_BE = 0.7;// in V
+R_B = 180;// in k ohm
+R_B = R_B * 10^3;// in ohm
+R_E = 200;// in ohm
+R_C = 820;// in ohm
+I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E));// in A
+I_C = Beta_dc*I_B;// in A
+V_CG = V_CC - (I_C*R_C);// in V
+disp(V_CG,"The voltage between collector and ground in volts is : ")
+V_CEsat = 0.3;// in V
+// V_CC - V_CEsat = I_Csat*R_C + I_Csat/Beta_dc*(Beta_dc+1)*R_E;
+I_C = (V_CC-V_CEsat)/(R_C+R_E);// in A
+//I_B = V_CC - ((I_E*R_E)+V_BE)/R_B = V_CC - ((I_C*R_E)+V_BE)/R_B;
+I_B = (V_CC-I_C*R_E+V_BE)/R_B;// in A
+Beta_dc = I_C/I_B;
+disp(Beta_dc,"The value of Beta_dc on which transistor is saturate is");
+
+// Note: There is some difference between the value of Beta_dc in the book and coding output because the correct values of I_C and I_B are 24.215 mA and 0.1158
diff --git a/2492/CH4/EX4.7/ex4_7.sce b/2492/CH4/EX4.7/ex4_7.sce
new file mode 100755
index 000000000..cbb128090
--- /dev/null
+++ b/2492/CH4/EX4.7/ex4_7.sce
@@ -0,0 +1,26 @@
+// Exa 4.7
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Beta_dc = 80;
+V_CC = 25;// in V
+V_BE = 0.7;// in V
+R_B = 180;// in k ohm
+R_B = R_B * 10^3;// in ohm
+R_E = 200;// in ohm
+R_C = 820;// in ohm
+I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E));// in A
+I_C = Beta_dc*I_B;// in A
+V_CG = V_CC - (I_C*R_C);// in V
+disp(V_CG,"The voltage between collector and ground in volts is : ")
+V_CEsat = 0.3;// in V
+// V_CC - V_CEsat = I_Csat*R_C + I_Csat/Beta_dc*(Beta_dc+1)*R_E;
+I_C = (V_CC-V_CEsat)/(R_C+R_E);// in A
+//I_B = V_CC - ((I_E*R_E)+V_BE)/R_B = V_CC - ((I_C*R_E)+V_BE)/R_B;
+I_B = (V_CC-I_C*R_E+V_BE)/R_B;// in A
+Beta_dc = I_C/I_B;
+disp(Beta_dc,"The value of Beta_dc on which transistor is saturate is");
+
+// Note: There is some difference between the value of Beta_dc in the book and coding output because the correct values of I_C and I_B are 24.215 mA and 0.1158
diff --git a/2492/CH4/EX4.8/ex4_8.sce b/2492/CH4/EX4.8/ex4_8.sce
new file mode 100755
index 000000000..d362f919b
--- /dev/null
+++ b/2492/CH4/EX4.8/ex4_8.sce
@@ -0,0 +1,23 @@
+// Exa 4.8
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_CE = 8;// in V
+I_C = 1;// in mA
+I_C = I_C * 10^-3;// in A
+V_CC = 12;// in V
+Beta = 100;
+R_C = (V_CC-V_CE)/I_C;// in ohm
+I_B = I_C/Beta;// in A
+V_BE = 0.3;// in V
+R_B = ((V_CC-(I_C*R_C))-V_BE)/I_B;// in ohm
+// For Beta= 50;
+V_CE= 9.6;// in V
+I_C= 0.6;// in mA
+R_C= R_C*10^-3;// in k ohm
+R_B= R_B*10^-3;// in k ohm
+disp(R_C,"The value of R_C in k ohm is");
+disp(R_B,"The value of R_B in k ohm is");
+disp("New Q point : "+string(V_CE)+" volts, "+string(I_C)+" mA")
diff --git a/2492/CH4/EX4.9/ex4_9.sce b/2492/CH4/EX4.9/ex4_9.sce
new file mode 100755
index 000000000..c3f9348b1
--- /dev/null
+++ b/2492/CH4/EX4.9/ex4_9.sce
@@ -0,0 +1,28 @@
+// Exa 4.9
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+V_BE= 0.7;
+bita = 100;
+V_CC = 20;// in V
+R_E = 1 * 10^3;// in ohm
+V_CEQ = 10;// in V
+I_CQ = 2* 10^-3;// in A
+S_ICO = 10;
+I_BQ = I_CQ/bita;// in A
+// R_B= R1*R2/(R1+R2) (i)
+// V_B= R2*V_CC/(R1+R2) (ii)
+R_B= (S_ICO-1)*R_E;// in ohm
+// V_CC= I_CQ*R_C+V_CEQ+(1+bita)*I_C/bita*R_E
+R_C= (V_CC-V_CEQ-I_CQ*R_E)/I_CQ;// in ohm
+I_B= I_CQ/bita;// in A
+V_B= I_B*R_B+V_BE+(1+bita)*R_E*I_B;// in V
+// From eq (i) and (ii)
+R2= (V_B*R_B+R_B*(V_CC-V_B))/(V_CC-V_B);// in ohm
+R1= R2*R_B/(R2-R_B);// in ohm
+R1= R1*10^-3;// in k ohm
+R2= R2*10^-3;// in k ohm
+disp(R1,"The value of R1 in k ohm is : ")
+disp(R2,"The value of R2 in k ohm is : ")
diff --git a/2492/CH5/EX5.1/ex5_1.sce b/2492/CH5/EX5.1/ex5_1.sce
new file mode 100755
index 000000000..5222fa41e
--- /dev/null
+++ b/2492/CH5/EX5.1/ex5_1.sce
@@ -0,0 +1,24 @@
+// Exa 5.1
+format('v',6)
+clc;
+clear;
+close;
+R1= 10;// in ohm
+R2= 20;// in ohm
+R3=30;// in ohm
+v2= 50;// in V
+v1= 20;// in V
+i1= -2.5;//in V
+i2= 1;// in A
+h11= R1+(R2*R3/(R2+R3));// in ohm
+// h-parameters
+disp("h-parameters : ")
+disp(h11,"The value of h11 in ohm is : ")
+// From vi= h11*i1+h12*V1 and i2= h21*i1+h22*v2
+h12= v1/v2;
+disp(h12,"The value of h12 is : ")
+h21= i2/i1;
+disp(h21,"The value of h21 is : ")
+h22= i2/v2;// in mho
+disp(h22,"The value of h22 in mho is : ")
+
diff --git a/2492/CH5/EX5.10/ex5_10.sce b/2492/CH5/EX5.10/ex5_10.sce
new file mode 100755
index 000000000..c33336e3b
--- /dev/null
+++ b/2492/CH5/EX5.10/ex5_10.sce
@@ -0,0 +1,36 @@
+// Exa 5.10
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+V = 5.7;// in V
+V_BE = 0.7;// in V
+R1 =10 * 10^3;// in ohm
+R2 = 100 * 10^3;// in ohm
+I_BQ = (V-V_BE)/(R1+R2);// in A
+I_BQ = I_BQ * 10^3;// in mA
+I_EQ = 100*I_BQ;// in mA
+R1= 2;// in k ohm
+R_L= 100*10^-3;// in k ohm
+disp(I_EQ,"The value of I_EQ in mA is");
+V_T = 0.026;// in V assumed
+r_E = V_T/(I_EQ*10^-3);// in ohm
+disp(r_E,"The value of r_E in ohm is");
+Beta = 100;
+h_fe= Beta;
+r_pi = Beta*r_E;// in ohm
+disp(r_pi,"The value of r_pi in ohm is : ")
+ib= poly(0,'ib');
+vb_by_ib= 0.572+101*1;// in k ohm
+Ri= 10;// in k ohm
+i1_by_ib= vb_by_ib/Ri;
+is_by_ib= 1+i1_by_ib;
+iL_by_ib= -h_fe*R1/(R1+R_L);
+// Ai= iL/is = iL_by_ib/is_by_ib;
+Ai= iL_by_ib/is_by_ib;
+Rin= vb_by_ib/is_by_ib;// in k ohm
+disp(Ai,"The value of Ai is : ")
+disp(Rin,"The value of Rin in k ohm is : ")
+
+
diff --git a/2492/CH5/EX5.2/ex5_2.sce b/2492/CH5/EX5.2/ex5_2.sce
new file mode 100755
index 000000000..9b9e24ea0
--- /dev/null
+++ b/2492/CH5/EX5.2/ex5_2.sce
@@ -0,0 +1,21 @@
+// Exa 5.2
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+R1 = 30;// in ohm
+R2 = 40;// in ohm
+R3 = 60;// in ohm
+R4 = 40;// in ohm
+R5 = 70;// in ohm
+h11 = (R1+(R2*R5/(R2+R5)));// in ohm
+disp(h11,"The numericals values of h11 in ohm is");
+h12 =R2*R4/(R4+R5)*1/(R3+R4*R5/(R4+R5))
+disp(h12,"The numericals values of h12 is");
+h21 =-R4*R2/(R5+R2)*1/(R3+R5*R2/(R5+R2))
+disp(h21,"The numericals values of h21 is");
+h22 = 1/(R3+(R2*R5/(R2+R5)))
+disp(h22,"The numericals values of h22 in mho is");
+
+// Note : In the book the calculated value of h11 i.e 30+(40 || 70) = 53 is wrong. correct value is 55.45 so the answer in the book is wrong.
diff --git a/2492/CH5/EX5.3/ex5_3.sce b/2492/CH5/EX5.3/ex5_3.sce
new file mode 100755
index 000000000..ffc1ef5ef
--- /dev/null
+++ b/2492/CH5/EX5.3/ex5_3.sce
@@ -0,0 +1,20 @@
+// Exa 5.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+R1 = 30;// in ohm
+R2 = 40;// in ohm
+R3 = 60;// in ohm
+R4 = 40;// in ohm
+R5 = 70;// in ohm
+// z-parameters
+z11= R1+(R2*(R1+R2)/(R2+(R1+R2)))
+disp(z11,"The value of z11 in ohm is : ");
+z22= R3+R4*R5/(R4+R5);
+disp(z22,"The value of z22 is : ");
+z12= R2*R4/(R1+R2+R4);
+disp(z12,"The value of z12 is : ");
+z21= R2*R4/(R1+R2+R4);
+disp(z21,"The value of z21 in mho is : ");
diff --git a/2492/CH5/EX5.4/ex5_4.sce b/2492/CH5/EX5.4/ex5_4.sce
new file mode 100755
index 000000000..9ba52df3a
--- /dev/null
+++ b/2492/CH5/EX5.4/ex5_4.sce
@@ -0,0 +1,16 @@
+// Exa 5.4
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Avint = 100;
+Ri = 1;// in k ohm
+Ro = 200;// in ohm
+Ro = Ro * 10^-3;// in k ohm
+R_S = 50;// in ohm
+R_S = R_S * 10^-3;// in k ohm
+R_L = 2;// in k ohm
+// Avext = V_L/V_S =Avint*(Ri/(RiR_S))*(R_L/(R_L+Ro));
+Avext = Avint*(Ri/(Ri+R_S))*(R_L/(R_L+Ro));
+disp(Avext,"The external voltage gain is");
diff --git a/2492/CH5/EX5.5/ex5_5.sce b/2492/CH5/EX5.5/ex5_5.sce
new file mode 100755
index 000000000..cc6c7a023
--- /dev/null
+++ b/2492/CH5/EX5.5/ex5_5.sce
@@ -0,0 +1,14 @@
+// Exa 5.5
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+Ri = 1;// in k ohm
+Ro = 80;// in k ohm
+Aiint = 150;
+R_S = 5;// in k ohm
+R_L = 1;// in k ohm
+//Aiext = i1/i2 = (R_S/(R_S+Ri)) * (Ro/(Ro+R_L))*Aiint;
+Aiext = (R_S/(R_S+Ri)) * (Ro/(Ro+R_L))*Aiint;
+disp(Aiext,"The external current gain is");
diff --git a/2492/CH5/EX5.6/ex5_6.sce b/2492/CH5/EX5.6/ex5_6.sce
new file mode 100755
index 000000000..07be656fe
--- /dev/null
+++ b/2492/CH5/EX5.6/ex5_6.sce
@@ -0,0 +1,16 @@
+// Exa 5.6
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+// Vo = -R_L*Io = ( (-R_L*Rc)/(Rc+R_L+(1/SC)) )*h_fe*Ib;
+R_C = 4;// in k ohm
+R_L = 2;// in k ohm
+R = R_C+R_L;// in k ohm
+R= R*10^3;// in ohm
+C_L = 10;// in µF
+C_L = C_L * 10^-6;// in F
+// Vo/Ib =Aos/(S+(1/R*C_L));
+f_L = 1/(2*%pi*R*C_L);// in Hz
+disp(f_L,"The lower 3-dB frequency in Hz is");
diff --git a/2492/CH5/EX5.7/ex5_7.sce b/2492/CH5/EX5.7/ex5_7.sce
new file mode 100755
index 000000000..b2a8c17d2
--- /dev/null
+++ b/2492/CH5/EX5.7/ex5_7.sce
@@ -0,0 +1,29 @@
+// Exa 5.7
+format('v',5)
+clc;
+clear;
+close;
+// GIven data
+R_L= 10*10^3;// in ohm
+h_ie = 1.1;// in k ohm
+h_ie = h_ie * 10^3;// in ohm
+h_re = 2.5*10^-4;
+h_fe = 50;
+h_oe = 24;// in µA/V
+h_oe = h_oe * 10^-6;// in A/V
+R_S = 1;// in k ohm
+R_S = R_S * 10^3;// in ohm
+Rc = 10;// in k ohm
+Rc = Rc * 10^3;// in ohm
+Ai = round(-h_fe/(1+(h_oe*R_L)));
+disp(Ai,"The value of Ai is");
+Ri = h_ie+(h_re*Ai*R_L);// in ohm
+Ri= Ri*10^-3;// k ohm
+disp(Ri,"The value of Ri in k ohm is");
+Ri= Ri*10^3;// ohm
+Av = (Ai*R_L)/Ri;
+disp(Av,"The value of Av is");
+Avs = (Av*Ri)/(Ri+R_S);
+disp(Avs,"The value of Avs is");
+Ais = (Ai*R_S)/(Ri+R_S);
+disp(Ais,"The value of Ais is");
diff --git a/2492/CH5/EX5.8/ex5_8.sce b/2492/CH5/EX5.8/ex5_8.sce
new file mode 100755
index 000000000..4b8318d8c
--- /dev/null
+++ b/2492/CH5/EX5.8/ex5_8.sce
@@ -0,0 +1,33 @@
+// Exa 5.8
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+I_C = 1 ;// in A
+bita= 200;
+h_fe = bita;
+R_C = 5*10^3;// in ohm
+R_E = 2*10^3;// in ohm
+R_S =600;// in ohm
+R_L = 600;// in ohm
+C1=10*10^-6;// in F
+C2= C1;// in F
+f_L= 20;// in Hz (lower cut-off frequency)
+// R1||R2= 6;// in k ohm
+r_e = 25/I_C;// in ohm
+h_i = bita*r_e;// in ohm
+// R_B= R1||R2=6;// in k ohm
+R_B= 6*10^3;// in ohm
+r_i = 5*10^3;// in ohm
+Ri = (R_B*r_i)/(R_B+r_i);// in ohm
+// The cut off frequency due to C1
+f1= 1/(2*%pi*(Ri+R_S)*C1);// in Hz
+disp(f1,"The cut-off frequency due to C1 in Hz is : ")
+// The cut off frequency due to C2
+f2= 1/(2*%pi*(R_C+R_L)*C2);// in Hz
+disp(f2,"The cut-off frequency due to C1 in Hz is : ")
+// The cut off frequency due to C_E, f_L= (1+h_fe)/(2*%pi*C_E*(R_S+h_ie)) or
+C_E = (1+h_fe)/(2*%pi*f_L*(R_S+h_i));// in F
+C_E =round(C_E * 10^6);// in µF
+disp(C_E,"The value of C_E in µF is");
diff --git a/2492/CH5/EX5.9/ex5_9.sce b/2492/CH5/EX5.9/ex5_9.sce
new file mode 100755
index 000000000..adcfd15af
--- /dev/null
+++ b/2492/CH5/EX5.9/ex5_9.sce
@@ -0,0 +1,19 @@
+// Exa 5.9
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+h_fe = 100;
+h_ie = 1;// in k ohm
+h_ie = h_ie * 10^3;// in ohm
+vo_by_I= -100*10^3;// in ohm
+vi_by_I= 1100+101*0.1*10^3;// in ohm
+Av= vo_by_I/vi_by_I;
+Av= round(Av);
+Av= abs(Av);
+disp(Av,"The mid-band voltage gain is");
+//Ri =Vi/Ii;
+Ri= vi_by_I;// in ohm
+Ri= Ri*10^-3;// in k ohm
+disp(Ri,"The input impedance in k ohm is");
diff --git a/2492/CH6/EX6.1/ex6_1.sce b/2492/CH6/EX6.1/ex6_1.sce
new file mode 100755
index 000000000..d1f3c73d5
--- /dev/null
+++ b/2492/CH6/EX6.1/ex6_1.sce
@@ -0,0 +1,16 @@
+// Exa 6.1
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+BWf = 5;// in MHz
+BWf= BWf * 10^6;// in Hz
+Av = 100;
+BW = 500;// in kHz
+BW = BW * 10^3;// in Hz
+// BWf = (1+(B*Av))*BW;
+B = ((BWf/BW)-1)/Av;
+disp(B,"The amount of negative feed back is");
+Avf = Av/(1+(Av*B));
+disp(Avf,"The new gain after negative feed back is");
diff --git a/2492/CH6/EX6.10/ex6_10.sce b/2492/CH6/EX6.10/ex6_10.sce
new file mode 100755
index 000000000..e3675e53a
--- /dev/null
+++ b/2492/CH6/EX6.10/ex6_10.sce
@@ -0,0 +1,28 @@
+// Exa 6.10
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+h_fe = 50;
+h_ie = 1.2;// in k ohm
+h_ie = h_ie * 10^3;// in ohm
+R_C = 1;// in k ohm
+R_C = R_C * 10^3;// in ohm
+R_E = 200;// in ohm
+R_B = 2;// in k ohm
+R_B = R_B * 10^3;// in ohm
+Av = (-h_fe*R_C)/h_ie;
+disp(Av,"The voltage gain (Av) is");
+Ri = (h_ie*R_B)/(h_ie+R_B);// in ohm
+disp(Ri,"The input resistance (Ri) in ohm is");
+// vi= vs (on neglecting Rs), hence i_E= i_B+h_fe*i_B = (1+h_fe)*i_B (i)
+// vo= -i_C*R_C = -h_fe*i_B*R_C (As i_C= h_fe*i_B) (ii)
+// From eq (i) : vi= i_B*h_ie+i_E*R_E= i_B*(h_ie+(1+h_fe)*R_E) (iii)
+// i_L= i_B (iv)
+// Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));
+Avf = (-h_fe*R_C)/( h_ie+(1+h_fe)*R_E );
+disp(Avf,"The voltage gain (Avf) is");
+Rif = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie + ((1+h_fe)*R_E)));// in ohm
+Rif= Rif*10^-3;// in k ohm
+disp(Rif,"The input resistance (Rif) in k ohm is");
diff --git a/2492/CH6/EX6.2/ex6_2.sce b/2492/CH6/EX6.2/ex6_2.sce
new file mode 100755
index 000000000..1b0a9f3ed
--- /dev/null
+++ b/2492/CH6/EX6.2/ex6_2.sce
@@ -0,0 +1,23 @@
+// Exa 6.2
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+h11 = 2;// in k ohm
+h11 = h11 * 10^3;// in ohm
+h12 = 0;
+h21 = 80;
+h22= 1*10^-3;// in mho
+R_L= 10*10^3;// in ohm
+B= 10/100;
+Ri= 2;// in k ohm
+R_Ldesh= (R_L*1/h22)/(R_L+1/h22);// in ohm
+Av= h21*R_Ldesh/h11;
+disp(Av,"Part (a) : The value of Av of the basic amplifier is : ")
+D= 1+Av*B;
+disp(D,"The value of densitivity factor is : ")
+Avf= Av/(1+B*Av);
+disp(Avf,"The value of Avf is : ")
+Rif= (1+Av*B)*Ri;// in k ohm
+disp(Rif,"The value of Rif in k ohm is : ")
diff --git a/2492/CH6/EX6.3/ex6_3.sce b/2492/CH6/EX6.3/ex6_3.sce
new file mode 100755
index 000000000..4571c86db
--- /dev/null
+++ b/2492/CH6/EX6.3/ex6_3.sce
@@ -0,0 +1,26 @@
+// Exa 6.3
+format('e',8)
+clc;
+clear;
+close;
+// Given data
+f_osc = 6.5;// in kHz
+f_osc = f_osc * 10^3;// in Hz
+// f_osc = 1/(2*%pi*sqrt(6)*RC);
+RC = 1/(2*%pi*sqrt(6)*f_osc);// in sec
+disp(RC,"The value of RC in sec is : ")
+format('v',5)
+// Possible selection of R and C may be
+R= 1;// in k ohm
+C= RC/R;// in mF
+C= C*10^3;// in µF
+disp("The posible selection of R and C : ")
+disp("(a) : "+string(R)+" kΩ and "+string(C)+" µF")
+format('v',6)
+R= 10;// in k ohm
+C= RC/R;// in mF
+C= C*10^3;// in µF
+disp("The posible selection of R and C : ")
+disp("(a) : "+string(R)+" kΩ and "+string(C)+" µF")
+
+
diff --git a/2492/CH6/EX6.4/ex6_4.sce b/2492/CH6/EX6.4/ex6_4.sce
new file mode 100755
index 000000000..d70dc8a34
--- /dev/null
+++ b/2492/CH6/EX6.4/ex6_4.sce
@@ -0,0 +1,14 @@
+// Exa 6.4
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+A= 1000;
+dA= 100;
+dAbyAf= 0.1/100;
+// dAf/Af = 1/|1+B*A| * dA/A or
+B= (dA-dAbyAf*A)/(dAbyAf*A^2)
+disp(B,"The reverse transmission factor of the feedback networks used is : ");
+Af = A/(1+(B*A));
+disp(Af,"The gain with feed back is");
diff --git a/2492/CH6/EX6.5/ex6_5.sce b/2492/CH6/EX6.5/ex6_5.sce
new file mode 100755
index 000000000..391dbd729
--- /dev/null
+++ b/2492/CH6/EX6.5/ex6_5.sce
@@ -0,0 +1,18 @@
+// Exa 6.5
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Vout = 36;// in V
+Vs = 0.028;// in V
+B = 1.2/100;
+A = Vout/Vs;
+Af = A/(1+(B*A));
+Vo =Af*Vs;// in V
+disp(Vo,"The output voltage in V is");
+// 1+BA = 7 or
+BA= 6;
+Af= A/(1+BA);
+Vin = Vout/Af;// in V
+disp(Vin,"The input voltage in V is");
diff --git a/2492/CH6/EX6.6/ex6_6.sce b/2492/CH6/EX6.6/ex6_6.sce
new file mode 100755
index 000000000..7ff825339
--- /dev/null
+++ b/2492/CH6/EX6.6/ex6_6.sce
@@ -0,0 +1,16 @@
+// Exa 6.6
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+f_L = 20;// in Hz
+f_H = 50;// in kHz
+f_H = f_H * 10^3;// in Hz
+Ao = 1000;
+B = 10/100;
+f_HF =f_H*(1+(B*Ao));// in Hz
+f_HF = f_HF * 10^-6;// in MHz
+disp(f_HF,"The value of f_HF in MHz is");
+f_LF = f_L/(1+(B*Ao));// in Hz
+disp(f_LF,"The value of f_LF in Hz is");
diff --git a/2492/CH6/EX6.7/ex6_7.sce b/2492/CH6/EX6.7/ex6_7.sce
new file mode 100755
index 000000000..c71465340
--- /dev/null
+++ b/2492/CH6/EX6.7/ex6_7.sce
@@ -0,0 +1,12 @@
+// Exa 6.7
+format('e',9)
+clc;
+clear;
+close;
+// Given data
+f_o = 1;// in kHz
+f_o = f_o * 10^3;// in Hz
+// f_o = 1/(2*%pi*Rc);
+RC = 1/(2*%pi*f_o);
+disp(RC,"The value of RC is : ")
+disp("So R and C can be choosen as 15.9 kΩ and 0.01 µF respectively.")
diff --git a/2492/CH6/EX6.8/ex6_8.sce b/2492/CH6/EX6.8/ex6_8.sce
new file mode 100755
index 000000000..1ba3886fb
--- /dev/null
+++ b/2492/CH6/EX6.8/ex6_8.sce
@@ -0,0 +1,23 @@
+// Exa 6.8
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+h11 = 2;// in k ohm
+h11 = h11 * 10^3;// in ohm
+h12 = 0;
+h21 = 80;
+h22= 1*10^-3;// in mho
+R_L= 10*10^3;// in ohm
+B= 10/100;
+Ri= 2;// in k ohm
+R_Ldesh= (R_L*1/h22)/(R_L+1/h22);// in ohm
+Av= h21*R_Ldesh/h11;
+disp(Av,"Part (a) : The value of Av of the basic amplifier is : ")
+D= 1+Av*B;
+disp(D,"The value of densitivity factor is : ")
+Avf= Av/(1+B*Av);
+disp(Avf,"The value of Avf is : ")
+Rif= (1+Av*B)*Ri;// in k ohm
+disp(Rif,"The value of Rif in k ohm is : ")
diff --git a/2492/CH6/EX6.9/ex6_9.sce b/2492/CH6/EX6.9/ex6_9.sce
new file mode 100755
index 000000000..90278909e
--- /dev/null
+++ b/2492/CH6/EX6.9/ex6_9.sce
@@ -0,0 +1,35 @@
+// Exa 6.9
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+h_ie = 1.5 * 10^3;// in ohm
+h_fe = 100;
+// R = R1||R2 = 20;// in k ohm
+R = 20 * 10^3;// in ohm
+R_E = 560;// in ohm
+R_S = 600;// in ohm
+Avf = (h_fe*R_E)/(h_ie+(h_fe*R_E));
+VoByVs = Avf;
+disp(VoByVs,"The value of midband voltage gain (vo/vs) is :");
+Ri = h_ie + ((1+h_fe)*R_E);// in ohm
+Ri= Ri*10^-3;// in k ohm
+disp(Ri,"The value of input impedance (Ri) in k ohm is : ")
+Ri= Ri*10^3;// in ohm
+Ro = (R_S+h_ie)/(1+h_fe);// in ohm
+disp(Ro,"The value of output impedance (Ro) in ohm is : ")
+R_desh_i = (R*Ri)/(R+Ri);// in ohm
+R_desh_i=R_desh_i*10^-3;// in k ohm
+disp(R_desh_i,"The value of R''i in k ohm is");
+// For load resistance of 10 k ohm
+R_L = 10;// in k ohm
+R_L = R_L * 10^3;// in ohm
+R_desh_o = (Ro*R_L)/(Ro+R_L);// in ohm
+disp(R_desh_o,"The value of R''o for load resistance of 10 k ohm in ohm is");
+// For load resistance of 220 ohm
+R_L = 220;// in ohm
+R_desh_o = (Ro*R_L)/(Ro+R_L);// in ohm
+disp(R_desh_o,"The value of R''o for load resistance of 220 ohm in ohm is");
+
+// Note: There is a calculation mistake to evaluate the value of R_desh_i (R'i)
diff --git a/2492/CH7/EX7.1/ex7_1.sce b/2492/CH7/EX7.1/ex7_1.sce
new file mode 100755
index 000000000..7d7e48e90
--- /dev/null
+++ b/2492/CH7/EX7.1/ex7_1.sce
@@ -0,0 +1,22 @@
+// Exa 7.1
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Ac = 35;//common mode gain in dB
+Ac = 10^(Ac/20);
+CMRR = 72;// in dB
+CMRR = 10^(CMRR/20);
+// CMRR = Ad/Ac
+Ad = CMRR*Ac;
+V1 = 0.16;// in mV
+V2 = 0.18;// in mV
+// Common mode signal
+Vc = 1/2*(V1+V2);// in mV
+// Difference mode signal
+Vd = V2-V1;// in mV
+// The output voltage
+Vo = Ac*Vc+Ad*Vd;// in mV
+Vo= Vo*10^-3;// in V
+disp(Vo,"The output voltage in V is");
diff --git a/2492/CH7/EX7.10/ex7_10.sce b/2492/CH7/EX7.10/ex7_10.sce
new file mode 100755
index 000000000..04783a82f
--- /dev/null
+++ b/2492/CH7/EX7.10/ex7_10.sce
@@ -0,0 +1,24 @@
+// Exa 7.10
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+Ad = 100000;
+Ac = 25;
+CMRR = Ad/Ac;
+CMRR_indB= 20*log10(CMRR);// in dB
+disp(CMRR_indB,"Part (a) : The value of CMRR in dB is");
+format('e',8)
+R2 = 100;// in k ohm
+R1 = 10;// in k ohm
+V_B = 0.18;// in mV
+V_A = 0.16;// in mV
+// The output from the amplifier,
+Vo = ((R2/R1)*(V_B-V_A)*10^-3) + ((R2/R1)*V_B*10^-3*(1/CMRR));// in V
+disp(Vo,"Part (b) : The output from the amplifier in V is");
+V_B = 2.00018;// in V
+V_A = 2.00016;// in V
+// The output from the amplifier,
+Vo = ((R2/R1)*(V_B-V_A)) + ((R2/R1)*V_B*(1/CMRR));// in V
+disp(Vo,"Part (c) : The output from the amplifier in V is");
diff --git a/2492/CH7/EX7.12/ex7_12.sce b/2492/CH7/EX7.12/ex7_12.sce
new file mode 100755
index 000000000..75957c969
--- /dev/null
+++ b/2492/CH7/EX7.12/ex7_12.sce
@@ -0,0 +1,15 @@
+// Exa 7.12
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+R1 = 10;// in k ohm
+Rf = 30;// in k ohm
+Vs = 4;// in V
+V_A = 2;// in V
+V_B = 2;// in V
+I = (Vs-V_B)/(R1);// in mA
+Vo = (-I*Rf)+V_B;// in V
+// The output voltage,
+disp(Vo,"The value of Vo in V is");
diff --git a/2492/CH7/EX7.13/ex7_13.sce b/2492/CH7/EX7.13/ex7_13.sce
new file mode 100755
index 000000000..14120b92a
--- /dev/null
+++ b/2492/CH7/EX7.13/ex7_13.sce
@@ -0,0 +1,28 @@
+// Exa 7.13
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+h_fe = 50;
+h_ie = 1.2;// in k ohm
+h_ie = h_ie * 10^3;// in ohm
+R_C = 1;// in k ohm
+R_C = R_C * 10^3;// in ohm
+R_E = 200;// in ohm
+R_B = 2;// in k ohm
+R_B = R_B * 10^3;// in ohm
+Av = (-h_fe*R_C)/h_ie;
+disp(Av,"The voltage gain (Av) is");
+Ri = (h_ie*R_B)/(h_ie+R_B);// in ohm
+disp(Ri,"The input resistance (Ri) in ohm is");
+// vi= vs (on neglecting Rs), hence i_E= i_B+h_fe*i_B = (1+h_fe)*i_B (i)
+// vo= -i_C*R_C = -h_fe*i_B*R_C (As i_C= h_fe*i_B) (ii)
+// From eq (i) : vi= i_B*h_ie+i_E*R_E= i_B*(h_ie+(1+h_fe)*R_E) (iii)
+// i_L= i_B (iv)
+// Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));
+Avf = (-h_fe*R_C)/( h_ie+(1+h_fe)*R_E );
+disp(Avf,"The voltage gain (Avf) is");
+Rif = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie + ((1+h_fe)*R_E)));// in ohm
+Rif= Rif*10^-3;// in k ohm
+disp(Rif,"The input resistance (Rif) in k ohm is");
diff --git a/2492/CH7/EX7.6/ex7_6.sce b/2492/CH7/EX7.6/ex7_6.sce
new file mode 100755
index 000000000..ce3efb306
--- /dev/null
+++ b/2492/CH7/EX7.6/ex7_6.sce
@@ -0,0 +1,16 @@
+// Exa 7.6
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+Ro = 10;// in k ohm
+R1 = 10;// in k ohm
+R2 = 2.2;// in k ohm
+R3 = 3.3;// in k ohm
+V1 = 6;// in V
+V2 = -3;// in V
+V3 = -0.75;// in V
+// Output voltage,
+Vo = -( ((Ro/R1)*V1) + ((Ro/R2)*V2) + ((Ro/R3)*V3) );// in V
+disp(Vo,"The value of Vo in V is");
diff --git a/2492/CH7/EX7.8/ex7_8.sce b/2492/CH7/EX7.8/ex7_8.sce
new file mode 100755
index 000000000..0033a33dc
--- /dev/null
+++ b/2492/CH7/EX7.8/ex7_8.sce
@@ -0,0 +1,27 @@
+// Exa 7.8
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+R = 100;// in k ohm
+R = R * 10^3;// in ohm
+C = 2;// in µF
+C = C * 10^-6;// in F
+f = 10;// in kHz
+f = f * 10^3;// in Hz
+omega = 2*%pi*f;// in Krad
+// The open loop voltage gain,
+A = R*omega*C;
+disp(A,"The open loop voltage gain is");
+format('e',9)
+//The feedback function, B is evaluated as, A_F = -R/Z_C*( 1/(1+(1/(A*B))) );
+B = 1/( sqrt( 1+((R*omega*C)^2) ) );
+disp(B,"The feed back function is");
+format('v',7)
+//A_F = -R/Z_C*(1/( 1+(1/(A*B)) ));
+Av = 10^3;
+A_F = round(A*(1/(1+(1/(Av*B)))));
+disp(A_F,"The overall gain is");
+
+// Note: The open loop voltage gain in the book is not accurate.
diff --git a/2492/CH7/EX7.9/ex7_9.sce b/2492/CH7/EX7.9/ex7_9.sce
new file mode 100755
index 000000000..958a8c54b
--- /dev/null
+++ b/2492/CH7/EX7.9/ex7_9.sce
@@ -0,0 +1,18 @@
+// Exa 7.9
+format('v',7)
+clc;
+clear;
+close;
+// GIven data
+R1 = 10;// in k ohm
+R2 = 100;// in k ohm
+R3 = 10.1;// in k ohm
+R4 = 99;// in k ohm
+// Vdaso = Vo2 = V2*(-R2/R1)
+//Vdaso = Vo1 = V1*(R4/(R3+R4))*(1+(R2/R1))
+//Vo = Vo1+Vo2 = (V1*(R4/(R3+R4))*(1+(R2/R1))) - (V2*(-R2/R1))
+//Vo = (R2/R1) * ( -V2 + ( 1+(R1/R2) )/(1+(R3/R4))*V1 )
+A1 = (1+(R1/R2))/(1+(R3/R4))*(R2/R1);// (on comparing vo= A1*V1+A2*V2)
+disp(A1,"The value of A1 is");
+A2 = -R2/R1;
+disp(A2,"The value of A2 is");
diff --git a/2492/CH8/EX8.1/ex8_1.sce b/2492/CH8/EX8.1/ex8_1.sce
new file mode 100755
index 000000000..8d48771cb
--- /dev/null
+++ b/2492/CH8/EX8.1/ex8_1.sce
@@ -0,0 +1,12 @@
+// Exa 8.1
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+str= '3BF';// given number in hexadecimal to convert into binary
+str_in_dec= hex2dec(str);// decimal equivalent
+str_in_bin= dec2bin(str_in_dec);// binary equivalent
+disp(str_in_bin,"The binary equivalent of 3BF is : ")
+
+// Note : The answer in the book is wrong because binary equivalent of B = 1011 and in the book they used 1101 which is wrong.
diff --git a/2492/CH8/EX8.2/ex8_2.sce b/2492/CH8/EX8.2/ex8_2.sce
new file mode 100755
index 000000000..8eb87018b
--- /dev/null
+++ b/2492/CH8/EX8.2/ex8_2.sce
@@ -0,0 +1,11 @@
+// Exa 8.2
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+str= '527';// given number in octal to convert into binary
+str_in_dec= oct2dec(str);// decimal equivalent
+str_in_bin= dec2bin(str_in_dec);// binary equivalent
+disp(str_in_bin,"The binary equivalent of 527 is : ")
+
diff --git a/2492/CH8/EX8.3/ex8_3.sce b/2492/CH8/EX8.3/ex8_3.sce
new file mode 100755
index 000000000..d7d390e9a
--- /dev/null
+++ b/2492/CH8/EX8.3/ex8_3.sce
@@ -0,0 +1,11 @@
+// Exa 8.3
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+str= '256';// given number in octal to convert into hexadecimal
+str_in_dec= oct2dec(str);// decimal equivalent
+str_in_hex= dec2hex(str_in_dec);// hexadecimal equivalent
+disp(str_in_hex,"The hexadecimal equivalent of 256 is : ")
+
diff --git a/2492/CH8/EX8.4/ex8_4.sce b/2492/CH8/EX8.4/ex8_4.sce
new file mode 100755
index 000000000..a5381259b
--- /dev/null
+++ b/2492/CH8/EX8.4/ex8_4.sce
@@ -0,0 +1,10 @@
+// Exa 8.4
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+str= 450;// given number in decimal to convert into octal
+str_in_oct= dec2oct(str);// octal equivalent
+disp(str_in_oct,"The octal equivalent of 450 is : ")
+
diff --git a/2492/CH8/EX8.9/ex8_9.sce b/2492/CH8/EX8.9/ex8_9.sce
new file mode 100755
index 000000000..f8faee15a
--- /dev/null
+++ b/2492/CH8/EX8.9/ex8_9.sce
@@ -0,0 +1,28 @@
+// Exa 8.9
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+R_C= 1;// in k ohm
+V_CC= 5;// in V
+V_CEsat= 0;// in V
+V_BE= 0.7;// in V
+bita_min= 50;
+bita_max= 100;
+// For the transistor to go to saturation,
+I_C= (V_CC-V_CEsat)/R_C;// in mA
+bita= bita_min;// for driving the transistor into saturation
+I_Bmin= I_C/bita;//minimum base current in mA
+// So, (V_CC-V_BE)/R_B >= I_B or
+R_B= (V_CC-V_BE)/I_Bmin;// in k ohm
+disp(R_B,"The maximum permissible value of R_B in k ohm is : ")
+// For actual calculation one may take V_CEsat= 0.3 V
+V_CEsat= 0.3;// in V
+I_C= (V_CC-V_CEsat)/R_C;// in mA
+bita= bita_min;// for driving the transistor into saturation
+I_Bmin= I_C/bita;//minimum base current in mA
+// So, (V_CC-V_BE)/R_B >= I_B or
+R_B= (V_CC-V_BE)/I_Bmin;// in k ohm
+disp("For actual calculation at V_CE(sat) = 0.3 V, the maximum value ")
+disp(R_B,"of R_B in k ohm is : ")