summaryrefslogtreecommitdiff
path: root/2471/CH6
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2471/CH6
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2471/CH6')
-rwxr-xr-x2471/CH6/EX6.1/Ex6_1.sce23
-rwxr-xr-x2471/CH6/EX6.10/Ex6_10.sce46
-rwxr-xr-x2471/CH6/EX6.11/Ex6_11.sce37
-rwxr-xr-x2471/CH6/EX6.12/Ex6_12.sce179
-rwxr-xr-x2471/CH6/EX6.13/Ex6_13.sce57
-rwxr-xr-x2471/CH6/EX6.2/Ex6_2.sce18
-rwxr-xr-x2471/CH6/EX6.3/Ex6_3.sce24
-rwxr-xr-x2471/CH6/EX6.4/Ex6_4.sce49
-rwxr-xr-x2471/CH6/EX6.5/Ex6_5.sce51
-rwxr-xr-x2471/CH6/EX6.6/Ex6_6.sce52
-rwxr-xr-x2471/CH6/EX6.7/Ex6_7.sce72
-rwxr-xr-x2471/CH6/EX6.8/Ex6_8.sce20
-rwxr-xr-x2471/CH6/EX6.9/Ex6_9.sce30
13 files changed, 658 insertions, 0 deletions
diff --git a/2471/CH6/EX6.1/Ex6_1.sce b/2471/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..d111dd953
--- /dev/null
+++ b/2471/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,23 @@
+clear ;
+clc;
+// Example 6.1
+printf('Example 6.1\n\n');
+printf('Page No. 142\n\n');
+
+// given
+L = 2.5;// Length of tubes in metre
+Do = 10*10^-3;// Internal diameter of tubes in metre
+m = 3.46;// mass flow rate in kg/s
+Th = 120;// Temperature of condening steam in degree celcius
+Tl_i = 20;// Inlet temperature of liquid in degree celcius
+Tl_o = 80;// Outlet temperature of liquid in degree celcius
+Cp = 2.35*10^3;// Specific heat capacity of liquid in J/kg-K
+U = 950;// Overall heat transfer coefficent in W/m^2-K
+
+T1 = Th- Tl_i;// in degree celcius
+T2 = Th- Tl_o;// in degree celcius
+Tm = ((T2-T1)/log(T2/T1));// logarithmic mean temperature of pipe in degree celcius
+a = %pi*Do*L;//Surface area per tube in m^2
+A = ((m*Cp*(Tl_o - Tl_i))/(U*Tm));// in m^2
+N = A/a;
+printf('The number of tubes required is %3.0f',N)
diff --git a/2471/CH6/EX6.10/Ex6_10.sce b/2471/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..fde8f8679
--- /dev/null
+++ b/2471/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,46 @@
+clear ;
+clc;
+// Example 6.10
+printf('Example 6.10\n\n');
+printf('Page No. 158\n\n');
+
+// given
+//for Boiler-1
+P_1 = 15;// Boiler pressure in bar
+Ts_1 = 300;// Steam temperature in degree celcius
+Tf_1 = 80;// Feed water temperature in degree celcius
+X_1 = 0;// Steam dryness fraction
+m_s1 = 9000;// steam rate in kg/h
+m_f1 = 700;// Gas rate in kg/h
+G_CV1 = 43.0*10^6;// In J/kg
+//from steam table,at P = 15 bar and at given temperatures
+h2_1 = 3039*10^3;//Specific enthalpy of steam in J/kg
+h1_1 = 335*10^3;//Specific enthalpy of feed steam in J/kg
+
+E_G1 = ((m_s1*(h2_1-h1_1)*100)/(m_f1*G_CV1));//
+printf('The gross efficiency percentage is %.0f \n',E_G1)
+Ee_1 = ((m_s1/m_f1)*(h2_1-h1_1))/(2257*10^3);
+printf('the equivalent evaporation for boiler-1 is %3.1f kg \n\n',Ee_1)
+
+//for Boiler-2
+P_2 = 10;// Boiler pressure in bar
+Ts_2 = 180;// Steam temperature in degree celcius
+Tf_2 = 60;// Feed water temperature in degree celcius
+X_2 = 0.96;// Steam dryness fraction
+m_s2 = 7000;// steam rate in kg/h
+m_f2 = 510;// Gas rate in kg/h
+G_CV2 = 43.0*10^6;// In J/kg
+//from steam table,AT 10 bar and at temperature T = Ts_2
+h2 = (763+(X_2*2013))*10^3;//Specific enthalpy of steam in J/kg
+//At temperature T = Tf_2
+h1 = 251*10^3;//Specific enthalpy of feed steam in J/kg
+
+E_G2 = ((m_s2*(h2-h1)*100)/(m_f2*G_CV2));//
+printf('The gross efficiency percentage is %.0f\n',E_G2)
+Ee_2 = ((m_s2/m_f2)*(h2-h1))/(2257*10^3);
+printf('the equivalent evaporation for boiler-2 is %3.1f kg',Ee_2)
+
+
+
+
+
diff --git a/2471/CH6/EX6.11/Ex6_11.sce b/2471/CH6/EX6.11/Ex6_11.sce
new file mode 100755
index 000000000..f3dfafd79
--- /dev/null
+++ b/2471/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,37 @@
+clear ;
+clc;
+// Example 6.11
+printf('Example 6.11\n\n');
+printf('Page No. 167\n\n');
+
+// given
+m = 10*10^3;// Production of boiler in kg/h
+X = 0.95;//Dryness fraction
+P = 10;//Pressure ib bar
+T_fw = 95;// Feed water temperature in degree celcius
+T_mf = 230;// Mean flue gae temperature in degree celcius
+T_mb = 25;// Mean boiler house temperature in degree celcius
+Coal_c = 900;// Coal consumption in kg/h
+A = 0.08;// Ash content in coal
+C_c = 0.15;//carbon content in coal
+CV_coal = 33.50*10^6;// Calorific value of coal in J
+M = 28;// Mass of flue gas per kg coal in kg
+Cp = 1.05*10^3;// Mean Specific heat capacity of the flue gas in J/kg-K
+CV_c = 34*10^6;// Calorific value of carbon in J/kg
+
+M_s = m/Coal_c;// Mass of steam produced per kg coal in kg
+H_w = (M_s*(763+(X*2013) - 398)*10^3)/10^6;// Heat absorbed by water per kg coal in 10^6 J(from steam table at given pressure and dryness fraction)
+H_f = (M*Cp*(T_mf - T_mb))/10^6;// Heat in flue gas in 10^6 J
+H_uc = (A*C_c*CV_c)/10^6;//Heat in unburnt carbon in 10^6 J
+h_sup = (CV_coal)/10^6;// Heat supplied by coal in 10^6 J
+un_acc = (h_sup - (H_w + H_f + H_uc));// unaccounted heat losses in 10^6 J
+a = (h_sup/h_sup)*100;
+b = (H_w/h_sup)*100;
+c = (H_f/h_sup)*100;
+d = (H_uc/h_sup)*100;
+e = (un_acc/h_sup)*100;
+T = b + c + d + e;
+printf(' THERMAL BALANCE SHEET :\n\t\t\t\t 10^6 J \t percentage \n\n Heat supplied by coal \t\t %.2f \t\t %.0f\n Heat absorbed by water \t %.1f\t\t %.1f\n Heat in flue gas \t\t %.2f \t\t %.0f\n Heat in unburnt carbon \t %.2f \t\t %.1f \n unaccounted heat losses \t %.2f \t\t %.1f\n TOTAL \t\t\t\t %.2f \t\t %.1f',h_sup,a,H_w,b,H_f,c,H_uc,d,un_acc,e,h_sup,T);
+
+
+
diff --git a/2471/CH6/EX6.12/Ex6_12.sce b/2471/CH6/EX6.12/Ex6_12.sce
new file mode 100755
index 000000000..d1d62b85a
--- /dev/null
+++ b/2471/CH6/EX6.12/Ex6_12.sce
@@ -0,0 +1,179 @@
+clear ;
+clc;
+// Example 6.12
+printf('Example 6.12\n\n');
+printf('Page No. 168\n\n');
+
+// given
+C_Rate = 2920;// Coal consumption rate in kg/h
+S_Rate = 22.5*10^3;// Steam consumption rate in kg/h
+Ps = 20;// Steam pressure in bar
+Ts = 350;// Steam Temperature in degree celcius
+Tf_in = 70;// Feed water temperature inlet economiser in degree celcius
+Tf_out = 110;// Feed water temperature outlet economiser in degree celcius
+Tm_b = 25;// Mean Boiler house temperature in degree celcius
+Tm_f = 260;// Mean exit flue gas temperature in degree celcius
+CO2_f = 15.8;// CO2 content of dry exit flue gas by volume
+CO_f = 0;// CO content of dry exit flue gas by volume
+C_ash = 0.025;// Carbon in ash in [%]
+G = 0.005;// Grit produced in [%]
+//Analysis of coal(as fired)
+M = 0.105;// Moisture [%]
+VM = 0.308;//Volatile matter [%]
+FC = 0.497;// FIxed carbon [%]
+Ash =0.09;// ASh [%]
+C = 0.66;// Carbon percentage - [%]
+H2 = 0.042;// Hydrogen percentage - [%]
+S = 0.015;// Sulphur percentage - [%]
+N2 = 0.012;// Nitrogen percentage - [%]
+O2 = 0.076;// Oxygen percentage - [%]
+H20 = 0.105;// Moisture percentage - [%]
+G_CV = 26.90;// Gross Calorific Value in 10^6 J/kg
+CV_C = 33.8*10^6;// Calorif Value of carbon in J/kg
+CV_G = 33.8*10^6;// Calorif Value of Grit in J/kg
+Ps_l = 20;// Pressure of steam leaving the boiler in bar
+
+//(a) Calculation of excess air usage
+//(a.1) Theoretical oxygen requirement
+F = 1;// Fuel feed required in kg
+w_C = 12; // mol. weight of C
+w_H2 = 2; //mol. weight of H2
+w_S = 32; //mol. weight of S
+w_N2 = 28; // mol. weight of N2
+w_O2 = 32; // mol. weight of O2
+//Basis- Per kg of fuel
+mol_C = C / w_C;// kmol of C
+mol_H2 = H2 /w_H2;//kmol of H2
+mol_S = S /w_S;//kmol of S
+mol_N2 = N2 /w_N2;//kmol of N2
+mol_O2 = O2 /w_O2;//kmol of O2
+//Calculation of excess air
+C_req = mol_C*1;//O2 required by entering C given by reaction C+O2->CO2 in kmol
+H_req = mol_H2*0.5;//O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol
+S_req = mol_S*1;//O2 required by entering S given by reaction S+O2->SO2 in kmol
+O2_req = (C_req + H_req + S_req) - mol_O2;// in kmol
+N2_air = (O2_req*76.8)/23.2;// in kmol (considering air consists of 76.8% N2 and 23.2% O2 )
+printf('(a.1) \n')
+printf('Total number of kmol of O2 required per kg of fuel is %3.4f kmol \n',O2_req)
+printf('N2 associated with O2 is %3.4f kmol \n',N2_air)
+
+//(a.2) Theoretical CO2 content of dry flue gas
+T = C_req + S_req + mol_N2 + N2_air;// Total flue gas in kmol
+CO2 = (C_req/T)*100;// in [%]
+printf('(a.2) \n')
+printf('Theoretical CO2 content of dry flue gas in percentage is %3.1f \n',CO2)
+
+//(a.3)Excess air based on CO2 content
+Ex_air = ((CO2 - CO2_f)/CO2_f)*100;// in [%]
+printf('(a.3) \n')
+printf('Excess air based on CO2 content in percentage is %.0f \n\n',floor(Ex_air))
+
+
+//(b) Fuel gas components
+//(b.1) Composition per kg fuel
+w_CO2 = 44;// mol. weight of CO2
+w_SO2 = 64;// mol. weight of SO2
+// FOR DRY GAS
+CO2_d = C_req * w_CO2;// In kg/kg
+SO2_d = S_req * w_SO2;// In kg/kg
+N2_d = mol_N2 * w_N2;// N2 from fuel In kg/kg
+N2_air_d = N2_air * w_N2;// N2 from air In kg/kg
+T_N2 = N2_d + N2_air_d;// In kg/kg
+T_dry = CO2_d + SO2_d + T_N2;// In kg/kg
+printf('(b.1) \n')
+printf('Composition of dry gas \n')
+printf('CO2 %.3f \n',CO2_d)
+printf('SO2 %.2f \n',SO2_d)
+printf('N2 from fuel %.2f \n',N2_d)
+printf('N2 from air %.2f \n',N2_air_d)
+printf('Total dry air %.2f kg/kg \n\n',T_dry)
+
+//FOR WET GAS
+w_H2O = 18;// mol. weight of H2O
+H2O_f = M;// H2O from fuel
+H2O_H2 = mol_H2 * w_H2O;// H2O from H2
+T_H2O = H2O_f + H2O_H2;// in kg/kg
+printf('Composition of wet gas \n')
+printf('H2O from fuel %.3f \n',H2O_f)
+printf('H2O from H2 %.3f \n',H2O_H2)
+printf('Total H2O in wet gas %.3f kg/kg \n\n',T_H2O)
+
+//FOR DRY EXCESS AIR
+O2_dry_ex = O2_req * w_O2 *0.3;//in kg/kg
+N2_dry_ex = N2_air * w_N2 *0.3;//in kg/kg
+T_dry_ex = O2_dry_ex + N2_dry_ex;// in kg/kg
+printf('Composition of dry excess air \n')
+printf('O2 %.3f \n',O2_dry_ex)
+printf('N2 %.3f \n',N2_dry_ex)
+printf('Total dry excess air %.3f kg/kg \n\n',T_dry_ex)
+
+//(b.2) Enthalpy
+// From steam table or from the appendix C.2; at the given pressure and temperatures, the following specific heat capacity for different gases are obtained
+Cp_CO2_T1 = 1.04*10^3;// Specific heat Capacity of CO2 at temperature Tm_f in J/kg-K
+Cp_CO2_T2 = 0.85*10^3;// Specific heat Capacity of CO2 at temperature Tm_b in J/kg-K
+Cp_SO2_T1 = 0.73*10^3;// Specific heat Capacity of SO2 at temperature Tm_f in J/kg-K
+Cp_SO2_T2 = 0.62*10^3;// Specific heat Capacity of SO2 at temperature Tm_b in J/kg-K
+Cp_N2_T1 = 1.07*10^3;// Specific heat Capacity of N2 at temperature Tm_f in J/kg-K
+Cp_N2_T2 = 1.06*10^3;// Specific heat Capacity of N2 at temperature Tm_b in J/kg-K
+Cp_O2_T1 = 0.99*10^3;// Specific heat Capacity of O2 at temperature Tm_f in J/kg-K
+Cp_O2_T2 = 0.91*10^3;// Specific heat Capacity of O2 at temperature Tm_b in J/kg-K
+
+Cp_dry_T1 = ((CO2_d * Cp_CO2_T1) + (SO2_d * Cp_SO2_T1) + (T_N2 * Cp_N2_T1))/T_dry;// in J/kg-K
+Cp_dry_T2 = ((CO2_d * Cp_CO2_T2) + (SO2_d * Cp_SO2_T2) + (T_N2 * Cp_N2_T2))/T_dry;// in J/kg-K
+Cp_air_T1 = ((O2_dry_ex * Cp_O2_T1) + (N2_dry_ex * Cp_N2_T1))/T_dry_ex;// in J/kg-K
+Cp_air_T2 = ((O2_dry_ex * Cp_O2_T2) + (N2_dry_ex * Cp_N2_T2))/T_dry_ex;// in J/kg-K
+printf('(b.2) \n')
+printf('Specific heat Capacity of dry gas at 260 deg C is %.0f J/kg-K \n',Cp_dry_T1)
+printf('Specific heat Capacity of dry gas at 25 deg C is %.0f J/kg-K \n',Cp_dry_T2)
+printf('Specific heat Capacity of dry excess air at 260 deg C is %.0f J/kg-K \n',Cp_air_T1)
+printf('Specific heat Capacity of dry excess air at 25 deg C is %.0f J/kg-K \n\n',Cp_air_T2)
+
+// From Steam table or Appendix B.3, Enthalpy of superheated steam is obtained at 260 deg C and 1 bar
+E_s = 2995*10^3;//in J/kg-K
+
+//(c) Heat transferred to water
+E_w = S_Rate / C_Rate;// Evaporation of water per kg of fuel in kg
+E = (E_w*(461 - 293)*10^3)/10^6;// in 10^6 J
+B = (E_w*(2797 - 461)*10^3)/10^6;// in 10^6 J
+S = (E_w*(3139 - 2797)*10^3)/10^6;// in 10^6 J
+printf('(c) \n')
+printf('Heat to water in Economiser is %.1f *10^6 J \n',E)
+printf('Heat to water in Boiler is %.2f *10^6 J \n',B)
+printf('Heat to water in Superheater is %.2f *10^6 J \n\n',S)
+
+//(d) Heat loss in flue gas
+hl = 105*10^3;// Enthalpy of steam at 25 deg C (from steam table) in J/kg-K
+loss_dry = T_dry*((Tm_f*Cp_dry_T1) - (Tm_b*Cp_dry_T2))/10^6;// in 10^6 J
+loss_wet = T_H2O*(E_s - hl)/10^6;// in 10^6 J
+loss_ex_air = T_dry_ex*((Tm_f*Cp_air_T1) - (Tm_b*Cp_air_T2))/10^6;// in 10^6 J
+printf('(d) \n')
+printf('Heat loss in dry flue gas is %.2f *10^6 J \n',loss_dry)
+printf('Heat loss in wet flue gas is %.2f *10^6 J \n',loss_wet)
+printf('Heat loss in dry excess air is %.2f *10^6 J \n\n',loss_ex_air)
+
+//(e) Heat loss in combustile matter in ash
+loss_ash = (Ash * C_ash * CV_C)/10^6;// in 10^6 J
+printf('(e) Heat loss in combustile matter in ash is %.2f *10^6 J \n',loss_ash)
+
+//(f) Heat loss in grit
+loss_grit = (G * CV_G)/10^6;// in 10^6 J
+printf('(f) Heat loss in grit is %.2f *10^6 J \n\n',loss_grit)
+
+//(g) Radiation and unaccounted heat loss
+h_sup = G_CV;// Heat supplied by the coal in 10^6 J
+loss_rad = (h_sup - (E + B + S + loss_dry + loss_wet + loss_ex_air + loss_ash + loss_grit));// Radiation and unaccounted loss in 10^6 J
+a = (h_sup/h_sup)*100;
+b = (E/h_sup)*100;
+c = (B/h_sup)*100;
+d = (S/h_sup)*100;
+e = (loss_dry/h_sup)*100;
+f = (loss_wet/h_sup)*100;
+g = (loss_ex_air/h_sup)*100;
+h = (loss_ash/h_sup)*100;
+i = (loss_grit/h_sup)*100;
+j = (loss_rad/h_sup)*100;
+T = b + c + d + e + f + g + h + i + j;
+printf('(g) THERMAL BALANCE SHEET :\n\t\t\t\t 10^6 J \t percentage \n Heat supplied by coal \t\t %.2f \t\t %.0f\n Heat to loss in : economiser \t %.2f \t\t %.1f\n \t\t boiler \t %.2f \t\t %.0f\n \t\t superheater %.2f \t\t %.1f\n Heat loss in : dry flue gas %.2f \t\t %.1f\n \t\t wet flue gas %.2f \t\t %.1f\n \t dry eecess air %.2f \t\t %.1f\n Heat loss in ash \t\t %.2f \t\t %.1f\n Heat loss in grit \t\t %.2f \t\t %.1f\n Radiation and unaccounted loss %.1f \t\t %.1f\n TOTAL \t\t\t\t %.2f \t\t %.1f',h_sup,a,E,b,B,c,S,d,loss_dry,e,loss_wet,f,loss_ex_air,g,loss_ash,h,loss_grit,i,loss_rad,j,h_sup,T)
+
+
+
diff --git a/2471/CH6/EX6.13/Ex6_13.sce b/2471/CH6/EX6.13/Ex6_13.sce
new file mode 100755
index 000000000..b03877cd9
--- /dev/null
+++ b/2471/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,57 @@
+clear ;
+clc;
+// Example 6.13
+printf('Example 6.13\n\n');
+printf('Page No. 188\n\n');
+
+// given
+P = 1.5;// Pressure in bar
+T = 111;// Temperature in degree celcius
+m = 2;// mass flow rate of process liquid in kg/s
+Cp = 4.01*10^3;// Mean Specific heat capacity in J/kg_K
+Tl_i = 20;// Inlet temperature of liquid in degree celcius
+Tl_o = 90;// Outlet temperature of liquid in degree celcius
+Ps = 15;// Pressure of steam in bar
+X = 0.97;// Dryness fraction of steam
+Pa = 1.5;//Pressure after adiabatic expansion in bar
+Ta = 80;// Temperature of injecting condensate in degree celcius
+
+//(a)
+Q = m*Cp*(Tl_o - Tl_i);// in W
+L = 2227*10^3;// Latent heat of 1.5 bar steam in J/kg
+m_a = Q/L;
+printf('(a) Mass flow rate of 1.5 bar steam is %.3f kg/s \n',m_a)
+
+//(b)
+//from steam table, Specific enthalpy of 0.97 dry 15 bar absolute steam
+h = ((843+(X*1946))*10^3);// in J/kg
+//the balance for the desuperheater,when y is the mass flow rate(kg/s) of condensate at 80 deg C is,on the basis of 1kg/s of superheated steam: => (1*2731*10^3)+(335*10^3*y)=(1+y)*2693*10^3
+y = (((2731-2693)*10^3)/((2693-335)*10^3))// in kg/s
+m_b = m_a/(1+y);// in kg/s
+printf('(b) Mass flow rate of 15 bar steam is %.3f kg/s \n',m_b)
+
+//(c)
+m_c = y*m_b;//in kg/s
+printf('(c) Mass flow rate of condensateis %.3f kg/s\n',m_c)
+
+//(d)
+v = 30;// steam velocity in m/s
+//from steam table
+V = 1.16;// Specific volum of 1.5 bar saturated steam in m^3/kg
+V_d = V*m_a;// in m^3/s
+d = ((V_d*4)/(v*%pi))^0.5;// im m
+printf('(d) The vapour main diameter is %3.2f m \n',d)
+
+//(e)
+l = 2.5;// Length of tubes in m
+d_i = 10*10^-3;// Internal Diameter of tube in m
+U = 1500;// Overall heat transfer coefficent in W/m^2-K
+
+a = %pi*d_i*l;// in m^2
+T1 = T - Tl_i;// in degree celcius
+T2 = T - Tl_o;// in degree celcius
+Tm = ((T2-T1)/log(T2/T1));// logarithmic mean temperature of pipe in degree celcius
+A = Q/(U*Tm);// in m^2
+N = A/a;
+printf('(e) The number of tubes required is %3.0f \n',N)
+
diff --git a/2471/CH6/EX6.2/Ex6_2.sce b/2471/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..a4605e6df
--- /dev/null
+++ b/2471/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,18 @@
+clear ;
+clc;
+// Example 6.2
+printf('Example 6.2\n\n');
+printf('Page No. 142\n\n');
+
+// given
+v = 1.50;// velocity in m/s
+N_t = 100;// Number of tubes
+Do = 10*10^-3;// Internal diameter of tubes in metre
+m = 3.46;// mass flow rate in kg/s
+p = 1180;// density in kg/m^3
+
+A = (N_t*%pi*Do^2)/4;// otal cross-sectional area in m^2
+V = m/p;//Volumetric flow rate in m^3/s
+Fv = V/A;// Fluid velocity in m/s
+N_p = v/Fv;
+printf('the number of passes is %.0f',N_p)
diff --git a/2471/CH6/EX6.3/Ex6_3.sce b/2471/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..7308da1ce
--- /dev/null
+++ b/2471/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,24 @@
+clear ;
+clc;
+// Example 6.3
+printf('Example 6.3\n\n');
+printf('Page No. 144\n\n');
+
+// given
+Th_i = 130;//Inlet temperature of hot liquid in degree celcius
+Th_o = 90;// Outlet temperature of hot liquid in degree celcius
+Tc_i = 20;// Inlet temperature of cold liquid in degree celcius
+Tc_o = 50;// Outlet temperature of cold liquid in degree celcius
+
+//For Couter-current flow
+T1 = Th_i - Tc_o;
+T2 = Th_o - Tc_i;
+Tm_1 = ((T2-T1)/log(T2/T1));
+printf('The logarithmic mean temperature difference for counter-current flow is %.0f degree celcius \n',Tm_1)
+
+
+//For Co-current flow
+T3 = Th_i - Tc_i;
+T4 = Th_o - Tc_o;
+Tm_2 = ((T3-T4)/log(T3/T4));
+printf('The logarithmic mean temperature difference for co-current flow is %.0f degree celcius \n',Tm_2)
diff --git a/2471/CH6/EX6.4/Ex6_4.sce b/2471/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..aa883d858
--- /dev/null
+++ b/2471/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,49 @@
+clear ;
+clc;
+// Example 6.4
+printf('Example 6.4\n\n');
+printf('Page No. 147\n\n');
+
+// given
+F = 1;// Fuel feed required in kg
+//By ultimate analysis of feed
+C = 0.86;// Carbon percentage - [%]
+H2 = 0.05;// Hydrogen percentage - [%]
+S = 0.001;// Sulphur percentage - [%]
+O2 = 0.08;// Oxygen percentage - [%]
+
+w_C = 12; // mol. weight of C
+w_H2 = 2; //mol. weight of H2
+w_O2 = 32; // mol. weight of O2
+w_S = 32; //mol. weight of S
+//Basis- Per kg of fuel
+mol_C = C / w_C;// kmol of C
+mol_H2 = H2 /w_H2;//kmol of H2
+mol_O2 = O2 /w_O2;//kmol of O2
+mol_S = S /w_S;//kmol of S
+//Calculation of excess air
+C_req = mol_C*1;//O2 required by entering C given by reaction C+O2->CO2 in kmol
+H_req = mol_H2*0.5;//O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol
+S_req = mol_S*1;//O2 required by entering S given by reaction S+O2->SO2 in kmol
+O2_req = (C_req + H_req + S_req) - mol_O2;// in kmol
+printf('Total number of kmol of O2 required per kg of fuel is %3.3f kmol \n',O2_req)
+m_O2 = O2_req*w_O2;// Mass of O2 required per kg of fuel
+printf('Mass of O2 required per kg of fuel is %3.1f kg \n\n',m_O2)
+//Calculation of air
+m_air = m_O2/0.232;// in kg
+printf('Mass of air required per kg of fuel is %3.1f kg \n',m_air')
+//Considering air as an ideal gas,calculating volume of air by ideal gas equation-P*V = n*R*T
+R = 8310;//Universal gas constant in J/kmol-K
+T = (273+20);// in K
+P = 1.013*10^5;// in N/m^2
+n = 1;// 1 kmol of air
+V_kmol = (n*R*T)/P;// In m^3/kmol
+M_air = 29;// Mol. weight of air
+V_kg = V_kmol/M_air;// in m^3/kg
+V_air = m_air*V_kg;// in m^3
+printf('Volume of air required is %3.1f m^3 \n',V_air')
+//Deviation in answer is due to some approximation in calculation in the book
+
+
+
+
diff --git a/2471/CH6/EX6.5/Ex6_5.sce b/2471/CH6/EX6.5/Ex6_5.sce
new file mode 100755
index 000000000..865d480c1
--- /dev/null
+++ b/2471/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,51 @@
+clear ;
+clc;
+// Example 6.5
+printf('Example 6.5\n\n');
+printf('Page No. 148\n\n');
+
+// given
+F = 1;// Weight of coal in kg
+//By analysis of coal in weight basis
+C = 0.74;// Carbon percentage - [%]
+H2 = 0.05;// Hydrogen percentage - [%]
+S = 0.01;// Sulphur percentage - [%]
+N2 = 0.001;// Nitrogen percentage - [%]
+O2 = 0.05;// Oxygen percentage - [%]
+H20 = 0.09;// Moisture percentage - [%]
+Ash = 0.05;// Ash percentage - [%]
+
+w_C = 12; // mol. weight of C
+w_H2 = 2; //mol. weight of H2
+w_O2 = 32; // mol. weight of O2
+w_S = 32; //mol. weight of S
+//Basis- Per kg of fuel
+mol_C = C / w_C;// kmol of C
+mol_H2 = H2 /w_H2;//kmol of H2
+mol_O2 = O2 /w_O2;//kmol of O2
+mol_S = S /w_S;//kmol of S
+//Calculation of excess air
+C_req = mol_C*1;//O2 required by entering C given by reaction C+O2->CO2 in kmol
+H_req = mol_H2*0.5;//O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol
+S_req = mol_S*1;//O2 required by entering S given by reaction S+O2->SO2 in kmol
+O2_req = (C_req + H_req + S_req) - mol_O2;// Total number of kmol of O2 required per kg of fuel in kmol
+m_O2 = O2_req*w_O2;// Mass of O2 required per kg of fuel
+printf('Mass of O2 required per kg of fuel is %3.2f kg \n',m_O2)
+//Calculation of air
+m_air = m_O2/0.232;// in kg
+printf('Mass of air required per kg of fuel is %3.1f kg \n',m_air')
+//Considering air as an ideal gas,calculating volume of air by ideal gas equation-P*V = n*R*T
+R = 8310;//Universal gas constant in J/kmol-K
+T = (273+0);// in K
+P = 1.013*10^5;// in N/m^2
+n = 1;// 1 kmol of air
+V_kmol = (n*R*T)/P;// In m^3/kmol
+M_air = 29;// Mol. weight of air
+V_kg = V_kmol/M_air;// in m^3/kg
+V_air = m_air*V_kg;// in m^3
+printf('Volume of air required is %3.1f m^3\n',V_air')
+
+
+
+
+
diff --git a/2471/CH6/EX6.6/Ex6_6.sce b/2471/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 000000000..e5c4db907
--- /dev/null
+++ b/2471/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,52 @@
+clear ;
+clc;
+// Example 6.6
+printf('Example 6.6\n\n');
+printf('Page No. 149\n\n');
+
+// given
+F = 1;// Fuel feed in kg
+C = 0.86;// Mass of Carbon in kg
+H2 = 0.05;// Mass of Hydrogen in kg
+S = 0.01;// Mass of Sulphur in kg
+O2 = 0.08;// Mass of Oxygen in kg
+
+w_C = 12; // mol. weight of C
+w_H2 = 2; //mol. weight of H2
+w_O2 = 32; // mol. weight of O2
+w_S = 32; //mol. weight of S
+//Basis- Per kg of fuel
+mol_C = C / w_C;// kmol of C
+mol_H2 = H2 /w_H2;//kmol of H2
+mol_O2 = O2 /w_O2;//kmol of O2
+mol_S = S /w_S;//kmol of S
+//By kmol of product
+CO2 = mol_C*1;// CO2 formed by the reaction C + O2 -> CO2
+H2O = mol_H2*1;// H2O formed by the reaction H2 + (1/2)O2 -> H2O
+SO2 = mol_S*1;// SO2 formed by the reaction S + O2 -> SO2
+Pdt = CO2 + H2O + SO2;// Total kmol of combustion products in kmol
+//Calculation of excess air
+C_req = mol_C*1;//O2 required by entering C given by reaction C+O2->CO2 in kmol
+H_req = mol_H2*0.5;//O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol
+S_req = mol_S*1;//O2 required by entering S given by reaction S+O2->SO2 in kmol
+O2_req = (C_req + H_req + S_req) - mol_O2// Total number of kmol of O2 required per kg of fuel in kmol
+
+N2 = (O2_req*79)/21;// in kmol (considering air consists of 79% N2 and 21% O2 by moles)
+Wet_pdts = Pdt + N2;// Wet combustion products in kmol
+
+//Considering air as an ideal gas,calculating volume of air by ideal gas equation-P*V = n*R*T
+R = 8310;//Universal gas constant in J/kmol-K
+T = (273+0);// in K
+P = 1.013*10^5;// in N/m^2
+n_wet = Wet_pdts;// in kmol
+V_wet = (n_wet*R*T)/P;// In m^3
+n_dry = n_wet - H2O;//in kmol
+V_dry = (n_dry*R*T)/P;// In m^3
+
+printf('Volume of wet flue gas is %3.2f m^3 \n',V_wet)
+printf('Volume of dry flue gas is %3.2f m^3',V_dry)
+
+
+
+
+
diff --git a/2471/CH6/EX6.7/Ex6_7.sce b/2471/CH6/EX6.7/Ex6_7.sce
new file mode 100755
index 000000000..b97e66a3b
--- /dev/null
+++ b/2471/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,72 @@
+clear ;
+clc;
+// Example 6.7
+printf('Example 6.7\n\n');
+printf('Page No. 150\n\n');
+
+// given
+F = 1;// Weight of fuel in kg
+e = 0.5;// excess air percentage
+C = 0.74;// Mass of Carbon in kg
+H2 = 0.05;// Mass of Hydrogen in kg
+S = 0.01;// Mass of Sulphur in kg
+N2 = 0.001;//Mass of Nitrogen in kg
+O2 = 0.05;// Mass of Oxygen in kg
+H2O = 0.09;// Mass of Moisture in kg
+Ash = 0.05;// Mass of Ash in kg
+
+w_C = 12; // mol. weight of C
+w_H2 = 2; //mol. weight of H2
+w_O2 = 32; // mol. weight of O2
+w_S = 32; //mol. weight of S
+w_N2 = 28;// mol. weight of N2
+w_H20 = 18;// mol. weight of H2O
+//Basis- Per kg of fuel
+mol_C = C / w_C;// kmol of C
+mol_H2 = H2 /w_H2;//kmol of H2
+mol_O2 = O2 /w_O2;//kmol of O2
+mol_S = S /w_S;//kmol of S
+mol_N2 = N2 /w_N2;//kmol of N2
+mol_H2O = H2O /w_H20;//kmol of H20
+
+//By kmol of product
+CO2 = mol_C*1;// CO2 formed by the reaction C + O2 -> CO2
+H2O_air = mol_H2*1;// H2O formed by the reaction H2 + (1/2)O2 -> H2O
+SO2 = mol_S*1;// SO2 formed by the reaction S + O2 -> SO2
+Pdt = CO2 + H2O_air + SO2 + mol_N2 + mol_H2O;// Total kmol of combustion products in kmol
+//Calculation of excess air
+C_req = mol_C*1;//O2 required by entering C given by reaction C+O2->CO2 in kmol
+H_req = mol_H2*0.5;//O2 required by entering H2 given by reaction H2+(1/2)O2->H20 in kmol
+S_req = mol_S*1;//O2 required by entering S given by reaction S+O2->SO2 in kmol
+O2_req = (C_req + H_req + S_req) - mol_O2;// Total number of kmol of O2 required per kg of fuel in kmol
+
+Ex_O2 = O2_req*e;// Amount of excess oxygen in kmol
+
+N2_air = (O2_req*(1+e)*79)/21;// in kmol (considering air consists of 79% N2 and 21% O2 by moles)
+N2_flue = mol_N2 + N2_air;// Total N2 in flue gas in kmol
+H2O_flue = mol_H2O+ H2O_air;// Total H2O in flue gas in kmol
+
+T_wet = CO2 + H2O_flue + SO2 + Ex_O2 + N2_flue;//Total components of flue gas on a wet basis in kmol
+T_dry = CO2 + SO2 + Ex_O2 + N2_flue;//Total components of flue gas on a dry basis in kmol
+H2O_dry = 0;
+C_wet = ((CO2 / T_wet)*100);// in percentage
+H_wet = ((H2O_flue/T_wet)*100);// in percentage
+S_wet = ((SO2/T_wet)*100);// in percentage
+N_wet = ((N2_flue/T_wet)*100);// in percentage
+O_wet = ((Ex_O2/T_wet)*100);// in percentage
+
+C_dry = ((CO2 / T_dry)*100);// in percentage
+H_dry = ((H2O_dry/T_dry)*100);// in percentage
+S_dry = ((SO2/T_dry)*100);// in percentage
+N_dry = ((N2_flue/T_dry)*100);// in percentage
+O_dry = ((Ex_O2/T_dry)*100);// in percentage
+T1 = C_wet + H_wet + S_wet + N_wet + O_wet;// in percentage
+T2 = C_dry + S_dry + N_dry + O_dry;// in percentage
+printf('\t\t kmol \t\t percent composition by volume\n Component \t Wet \t Dry \t\t Wet \t Dry \n CO2 \t %.4f %.4f \t\t %.1f \t %.1f \n H2O \t %.4f %.0f \t\t\t %.1f \t\t %.1f \n SO2 \t %.4f %.4f \t\t %.1f \t\t %.1f \n N2 \t\t %.4f %.4f \t\t %.1f \t %.1f \n O2 \t\t %.4f %.4f \t\t %.1f \t\t %.1f \n TOTAL \t %.4f %.4f \t\t %.0f \t\t %.0f',CO2,CO2,C_wet,C_dry,H2O_flue, H2O_dry,H_wet,H_dry,SO2,SO2,S_wet,S_dry,N2_flue, N2_flue,N_wet,N_dry,Ex_O2,Ex_O2,O_wet,O_dry,T_wet,T_dry,T1,T2)
+//Deviation in answes is due to some calculation approxiamation in the book.
+
+
+
+
+
+
diff --git a/2471/CH6/EX6.8/Ex6_8.sce b/2471/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..01467a716
--- /dev/null
+++ b/2471/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,20 @@
+clear ;
+clc;
+// Example 6.8
+printf('Example 6.8\n\n');
+printf('Page No. 156\n\n');
+
+// given
+H = 0.05;// Hydrogen percentage - [%]
+O = 0.08;// Oxygen percentage - [%]
+C = 0.86;// Carbon percentage - [%]
+S = 0.001;// Sulphur percentage - [%]
+
+G_CV = ((33.9*C)+143*(H-(O/8))+(9.1*S))*10^6;
+printf('The gross calorific value is %3.2e J/kg \n',G_CV)
+
+
+N_CV = ((33.9*C)+121*(H-(O/8))+(9.1*S))*10^6;
+printf('The net calorific value is %3.1e J/kg',N_CV)
+
+
diff --git a/2471/CH6/EX6.9/Ex6_9.sce b/2471/CH6/EX6.9/Ex6_9.sce
new file mode 100755
index 000000000..72f78c3f3
--- /dev/null
+++ b/2471/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,30 @@
+clear ;
+clc;
+// Example 6.9
+printf('Example 6.9\n\n');
+printf('Page No. 157\n\n');
+
+// given
+P = 10;// Boiler pressure in bar
+Ts = 180;// Steam temperature in degree celcius
+Tf = 80;// Feed water temperature in degree celcius
+X = 0.95;// Steam dryness fraction
+m_s = 4100;// steam rate in kg/h
+m_f = 238;// Gas rate in kg/h
+G_CV = 53.5*10^6;// In J/kg
+N_CV = 48*10^6;//in J/kg
+
+//from steam table,AT 10 bar and at temperature T = Ts
+h2 = (763+(X*2013))*10^3;//Specific enthalpy of steam in J/kg
+//At temperature T = Tf
+h1 = 335*10^3;//Specific enthalpy of feed steam in J/kg
+
+E_G = ((m_s*(h2-h1)*100)/(m_f*G_CV));//
+printf('The gross efficiency percentage is %.0f \n',E_G)
+
+
+E_N = ((m_s*(h2-h1)*100)/(m_f*N_CV));//
+printf('The net efficiency percentage is %.0f',E_N)
+
+
+