diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2417/CH11/EX11.22 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2417/CH11/EX11.22')
-rwxr-xr-x | 2417/CH11/EX11.22/Ex11_22.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/2417/CH11/EX11.22/Ex11_22.sce b/2417/CH11/EX11.22/Ex11_22.sce new file mode 100755 index 000000000..5bd77c11f --- /dev/null +++ b/2417/CH11/EX11.22/Ex11_22.sce @@ -0,0 +1,50 @@ +//scilab 5.4.1
+clear;
+clc;
+printf("\t\t\tProblem Number 11.22\n\n\n");
+// Chapter 11 : Heat Transfer
+// Problem 11.22 (page no. 595)
+// Solution
+
+//For brick,concrete,plaster,hot film and cold film,
+A=1; //area //Unit:ft^2
+//For a plane wall,the areas are all the same,and if we use 1 ft^2 of wall surface as the reference area,
+//For Brick,
+deltax=6/12; //6 inch = 6/12 feet //deltax=length //unit:ft
+k=0.40; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table
+brickResistance=deltax/(k*A); //Thermal resistance //Unit:(hr*f)/Btu
+printf("For brick,");
+printf("The resistance is %f (hr*F)/Btu\n",brickResistance);
+
+//For Concrete,
+deltax=(1/2)/12; //(1/2) inch = (1/2)/12 feet //deltax=length //unit:ft
+k=0.80; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table
+concreteResistance=deltax/(k*A); //Thermal resistance //Unit:(hr*f)/Btu
+printf("For Concrete,");
+printf("The resistance is %f (hr*F)/Btu\n",concreteResistance);
+
+//For plaster,
+deltax=(1/2)/12; // (1/2) inch = 6/12 feet //deltax=length //unit:ft
+k=0.30; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity //From the table
+plasterResistance=deltax/(k*A); //Thermal resistance //Unit:(hr*f)/Btu
+printf("For plaster,");
+printf("The resistance is %f (hr*F)/Btu\n",plasterResistance);
+
+//For "hot film",
+h=0.9; //Coefficient of heat transfer //Unit:Btu/(hr*ft^2*F)
+hotfilmResistance=inv(h*A); //Thermal resistance //Unit:(hr*f)/Btu
+printf("For hot film,");
+printf("The resistance is %f (hr*F)/Btu\n",hotfilmResistance);
+
+//For "cold film",
+h=1.5; //Coefficient of heat transfer //Unit:Btu/(hr*ft^2*F)
+coldfilmResistance=inv(h*A); //Thermal resistance //Unit:(hr*f)/Btu
+printf("For cold film,");
+printf("The resistance is %f (hr*F)/Btu\n\n",coldfilmResistance);
+
+totalResistance=brickResistance+concreteResistance+plasterResistance+hotfilmResistance+coldfilmResistance; //the overall resistance //Unit:(hr*f)/Btu
+printf("The overall resistance is %f (hr*F)/Btu\n",totalResistance);
+
+U=inv(totalResistance); //Unit:Btu/(hr*ft^2) //The overall conductance(or overall heat-transfer coefficient)
+printf("The overall conductance(or overall heat-transfer coefficient) is %f Btu/(hr/ft^2)\n",U);
+//In problem 11.21,the solution is straightforward,because the heat-transfer area is constant for all series resistances.
|