diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2384 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2384')
200 files changed, 4113 insertions, 0 deletions
diff --git a/2384/CH1/EX1.1/ex1_1.sce b/2384/CH1/EX1.1/ex1_1.sce new file mode 100755 index 000000000..0d243ea80 --- /dev/null +++ b/2384/CH1/EX1.1/ex1_1.sce @@ -0,0 +1,25 @@ +// Exa 1.1
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1=4;// in ohm
+R2= 6;// in ohm
+R3= 2;// in ohm
+V1= 24;// in V
+V2= 12;// in V
+// Applying KVL in Mesh ABEFA, V1 = (R1+R3)*I1 - R3*I2 (i)
+// Applying KVL in Mesh BCDEB, V2 = R3*I1 - (R2+R3)*I2 (ii)
+A= [(R1+R3) R3;-R3 -(R2+R3)];// assumed
+B= [V1 V2];// assumed
+I= B*A^-1;// Solving equations by matrix multiplication
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The current through 4 ohm resistor in A is");
+// current through 2 ohm resistor
+I= I1-I2;// in A
+disp(I,"The current through 2 ohm resistor in A is");
+disp(I2,"The current through 6 ohm resistor in A is");
+disp("That is "+string(abs(I2))+" A current flows in 6 ohm resistor from C to B")
+
diff --git a/2384/CH1/EX1.10/ex1_10.sce b/2384/CH1/EX1.10/ex1_10.sce new file mode 100755 index 000000000..3fa92acd2 --- /dev/null +++ b/2384/CH1/EX1.10/ex1_10.sce @@ -0,0 +1,25 @@ +// Exa 1.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 5;// in ohm
+R2= 5;// in ohm
+R3= 10;// in ohm
+R4= 10;// in ohm
+R5= 5;// in ohm
+V1= 50;// in V
+V2= 20;// in V
+//Applying KCL at node A: VA*(R1*R3+R3*R2+R2*R1)+VB*-R1*R3 = V1*R2*R3 (i)
+//Applying KCL at node B: VA*R4*R5+VB*-(R2*R4+R4*R5+R5*R2) = -V2*R2*R4 (ii)
+A=[(R1*R3+R2*R3+R2*R1) R4*R5; -R1*R3 -(R2*R4+R4*R5+R5*R2)]
+B= [V1*R2*R3 -V2*R2*R4];
+V= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+VA= V(1);// in V
+VB= V(2);// in V
+I_through_R3= VA/R3;// in A
+I_through_R4= VB/R4;// in A
+disp(I_through_R3,"The current in R3 in A is : ")
+disp(I_through_R4,"The current in R4 in A is : ")
+
diff --git a/2384/CH1/EX1.11/ex1_11.sce b/2384/CH1/EX1.11/ex1_11.sce new file mode 100755 index 000000000..1f4602fc0 --- /dev/null +++ b/2384/CH1/EX1.11/ex1_11.sce @@ -0,0 +1,30 @@ +// Exa 1.11
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 1;// in ohm
+R2= 1;// in ohm
+R3= 0.5;// in ohm
+R4= 2;// in ohm
+R5= 1;// in ohm
+V1= 15;// in V
+V2= 20;// in V
+//Applying KCL at node A: VA*(R1*R2+R2*R3+R3*R1)+VB*-R1*R2 = V1*R2*R3 (i)
+//Applying KCL at node B: VA*R4*R5+VB*-(R3*R4+R4*R5+R5*R3) = V2*R3*R4 (ii)
+A=[(R1*R2+R2*R3+R3*R1) R4*R5; -R1*R2 -(R3*R4+R4*R5+R5*R3)]
+B= [V1*R2*R3 -V2*R3*R4];
+V= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+VA= V(1);// in V
+VB= V(2);// in V
+I1= (VA-V1)/R1;// in A
+I2= VA/R2;// in A
+I3= (VA-VB)/R3;// in A
+I4= VB/R4;// in A
+I5= (VB-V2)/R5;// in A
+disp(I1,"The value of I1 in A is : ")
+disp(I2,"The value of I2 in A is : ")
+disp(I3,"The value of I3 in A is : ")
+disp(I4,"The value of I4 in A is : ")
+disp(I5,"The value of I5 in A is : ")
diff --git a/2384/CH1/EX1.12/ex1_12.sce b/2384/CH1/EX1.12/ex1_12.sce new file mode 100755 index 000000000..7e90d7c89 --- /dev/null +++ b/2384/CH1/EX1.12/ex1_12.sce @@ -0,0 +1,20 @@ +// Exa 1.12
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V1 = 12;// in V
+V2 = 10;// in V
+VB = 0;// in V
+R1 = 2;// in ohm
+R2 = 1;// in ohm
+R3 = 10;// in ohm
+// Using KCL at node A :
+VA= (V1*R2*R3+V2*R3*R1)/(R1*R2+R2*R3+R3*R1);// in V
+I1 = (V1-VA)/R1;// in A
+I2 = (V2-VA)/R2;// in A
+I3 = (VA-VB)/R3;// in A
+disp(I1,"The value of I1 in A is : ")
+disp(I2,"The value of I2 in A is : ")
+disp(I3,"The value of I3 in A is : ")
diff --git a/2384/CH1/EX1.13/ex1_13.sce b/2384/CH1/EX1.13/ex1_13.sce new file mode 100755 index 000000000..1e747b031 --- /dev/null +++ b/2384/CH1/EX1.13/ex1_13.sce @@ -0,0 +1,22 @@ +// Exa 1.13
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 1;// in ohm
+R2= 2;// in ohm
+R3= 2;// in ohm
+R4= 1;// in ohm
+I1= 1;// in A
+I5= 2;// in A
+// Using KCL at node 1: V1*(R2+R3)-V2*R2= I1*R2*R3 (i)
+// Using KCL at node 2: V1*R4-V2*(R3+R4)= -I5*(R3*R4) (ii)
+A= [(R2+R3) R4; -R2 -(R3+R4)];
+B= [I1*R2*R3 -I5*R3*R4];
+V= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+V1= V(1);// in V
+V2= V(2);// in V
+disp(V1,"The voltage at node 1 in volts is : ")
+disp(V2,"The voltage at node 2 in volts is : ")
+
diff --git a/2384/CH1/EX1.14/ex1_14.sce b/2384/CH1/EX1.14/ex1_14.sce new file mode 100755 index 000000000..e626a50a0 --- /dev/null +++ b/2384/CH1/EX1.14/ex1_14.sce @@ -0,0 +1,22 @@ +// Exa 1.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 2;// in ohm
+R2= 6;// in ohm
+R3= 3;// in ohm
+V1= 10;// in V
+V2= 6;// in V
+V3= 2;// in V
+//Applying KVL in ABEFA : I1*(R1+R2) - R2*I2=V1-V2 (i)
+//Applying KVL in BCDEB : -I1*R2+I2*(R2+R3)=V2-V3 (ii)
+A= [(R1+R2) -R2; -R2 (R2+R3)];
+B= [(V1-V2) (V2-V3)];
+I= B*A^-1;// Solving eq(i), and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The value of I1 in A is : ")
+disp(I2,"The value of I2 in A is : ")
+
diff --git a/2384/CH1/EX1.15/ex1_15.sce b/2384/CH1/EX1.15/ex1_15.sce new file mode 100755 index 000000000..bef93d601 --- /dev/null +++ b/2384/CH1/EX1.15/ex1_15.sce @@ -0,0 +1,23 @@ +// Exa 1.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 2;// in ohm
+R2= 6;// in ohm
+R3= 4;// in ohm
+R4= 3;// in ohm
+R5= 5;// in ohm
+V1= 10;// in V
+V2= 6;// in V
+V3= 2;// in V
+//Applying KVL in ABEFA : I1*(R1+R2+R3) - R2*I2 = V1-V2 (i)
+//Applying KVL in BCDEB : I1*-R2+I2*(R2+R4+R5) =V2-V3 (ii)
+A= [(R1+R2+R3) -R2; -R2 (R2+R4+R5)];
+B= [(V1-V2) (V2-V3)];
+I= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The value of I1 in A is : ")
+disp(I2,"The value of I2 in A is : ")
diff --git a/2384/CH1/EX1.16/ex1_16.sce b/2384/CH1/EX1.16/ex1_16.sce new file mode 100755 index 000000000..5054443f1 --- /dev/null +++ b/2384/CH1/EX1.16/ex1_16.sce @@ -0,0 +1,22 @@ +// Exa 1.16
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 10;// in ohm
+R2= 5;// in ohm
+R3= 5;// in ohm
+R4= 5;// in ohm
+V2= 10;// in V
+I= 1;// in A
+V1= R4*I;// in V
+//Applying KVL in ABEFA : I1*(R1+R2+R3) + R1*I2 = V1 (i)
+//Applying KVL in BCDEB : I1*R1+I2*(R1+R4) =V2 (ii)
+A= [(R1+R2+R3) R1; R1 (R1+R4)];
+B= [V1 V2];
+I= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+I10_ohm= I1+I2;// in A
+disp(I10_ohm,"The current through 10 ohm resistor in A is : ")
diff --git a/2384/CH1/EX1.17/ex1_17.sce b/2384/CH1/EX1.17/ex1_17.sce new file mode 100755 index 000000000..f5caba6a1 --- /dev/null +++ b/2384/CH1/EX1.17/ex1_17.sce @@ -0,0 +1,22 @@ +// Exa 1.17
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 4;// in ohm
+R2= 5;// in ohm
+R3= 10;// in ohm
+R4= 6;// in ohm
+R5= 4;// in ohm
+V1= 15;// in V
+V2= 30;// in V
+//Applying KCL at node A: VA*(R1*R2+R2*R3+R3*R1)+VB*-R1*R2 = V1*R1*R3 (i)
+//Applying KCL at node B: VA*R4*R5+VB*-(R3*R4+R4*R5+R5*R3) = -V2*R3*R4 (ii)
+A=[(R1*R2+R2*R3+R3*R1) R4*R5; -R1*R2 -(R3*R4+R4*R5+R5*R3)]
+B= [V1*R1*R3 -V2*R3*R4];
+V= B*A^-1;// Solving eq(i) and (iii) by Matrix method
+VA= V(1);// in V
+VB= V(2);// in V
+I10_ohm= abs((VA-VB)/R3);// in A
+disp(I10_ohm,"The current through 10 ohm resistor from right to left in A is : ")
diff --git a/2384/CH1/EX1.19/ex1_19.sce b/2384/CH1/EX1.19/ex1_19.sce new file mode 100755 index 000000000..d063200fe --- /dev/null +++ b/2384/CH1/EX1.19/ex1_19.sce @@ -0,0 +1,35 @@ +// Exa 1.19
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 10;// in ohm
+R2= 10;// in ohm
+R3= 20;// in ohm
+R4= 20;// in ohm
+R5= 20;// in ohm
+V= 10;// in V
+I1= 1;// in A
+I7=0.5;// in A
+//Applying KCL at node A: VA*(R1+R2)+VB*-R1 = I1*R1*R2 (i)
+//Applying KCL at node B: VA*R3*R4+VB*-(R2*R3+R3*R4+R4*R2)+VC*R2*R3 = V*R2*R4 (ii)
+//Applying KCL at node C: -VB*R5+VC*(R4+R5)=I7*R4*R5 (iii)
+A=[(R1+R2) R3*R4 0; -R1 -(R2*R3+R3*R4+R4*R2) -R5;0 R2*R3 (R4+R5)]
+B= [I1*R1*R2 V*R2*R4 I7*R4*R5];
+Value= B*A^-1;// Solving eq(i), (ii) and (iii) by Matrix method
+VA= Value(1);// in V
+VB= Value(2);// in V
+VC= Value(3)
+I2= VA/R1;// in A
+I3= (VA-VB)/R2;// in A
+I4= (VB+V)/R3;// in A
+I5= (VC-VB)/R4;// in A
+I6= VC/R5;// in A
+disp(I1,"The value of I1 in A is : ");
+disp(I2,"The value of I2 in A is : ");
+disp(I3,"The value of I3 in A is : ");
+disp(I4,"The value of I4 in A is : ");
+disp(I5,"The value of I5 in A is : ");
+disp(I6,"The value of I6 in A is : ");
+disp(I7,"The value of I7 in A is : ");
diff --git a/2384/CH1/EX1.2/ex1_2.sce b/2384/CH1/EX1.2/ex1_2.sce new file mode 100755 index 000000000..3aabf89ec --- /dev/null +++ b/2384/CH1/EX1.2/ex1_2.sce @@ -0,0 +1,19 @@ +// Exa 1.2
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+V = 100;// in V
+I3= 10;// in A
+R1 = 10;// in ohm
+R2 = 5;// in ohm
+// I1 = (V - V_A)/R1
+// I2 = (V_A-0)/R2
+// Using KCL at note A, I1-I2+I3=0 or
+V_A= (R1*R2)/(R1+R2)*(I3+V/R1);// in V
+I1 = (V - V_A)/R1;// in A
+I2 = (V_A-0)/R2;// in A
+disp(I1,"The current through 10 ohm resistor in A is");
+disp(I2,"The current through 5 ohm resistor in A is");
+disp(I3,"The current through 20 ohm resistor in A is");
diff --git a/2384/CH1/EX1.20/ex1_20.sce b/2384/CH1/EX1.20/ex1_20.sce new file mode 100755 index 000000000..f95ad68ff --- /dev/null +++ b/2384/CH1/EX1.20/ex1_20.sce @@ -0,0 +1,23 @@ +// Exa 1.20
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 3;// in ohm
+R2 = 8;// in ohm
+R3 = 4;// in ohm
+R4 = 12;// in ohm
+R5 = 14;// in ohm
+V1 = 10;// in V
+V2 = 3;// in V
+V3 = 6;// in V
+//Applying KCL at node A: VA*(R1*R2+R2*R3+R3*R1)+VB*-R1*R2 = V1*R2*R3+V2*R1*R2 (i)
+//Applying KCL at node B: VA*R4*R5+VB*-(R3*R4+R4*R5+R5*R3) = V2*R4*R5-V3*R3*R4 (ii)
+A=[(R1*R2+R2*R3+R3*R1) R4*R5; -R1*R2 -(R3*R4+R4*R5+R5*R3)]
+B= [(V1*R2*R3+V2*R1*R2) (V2*R4*R5-V3*R3*R4)];
+V= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+VA= V(1);// in V
+VB= V(2);// in V
+I8_ohm= VA/R2;//The current through 8 ohm resistance in A
+disp(I8_ohm,"The current through 8 ohm resistance in A is : ")
diff --git a/2384/CH1/EX1.21/ex1_21.sce b/2384/CH1/EX1.21/ex1_21.sce new file mode 100755 index 000000000..9d77c1ce4 --- /dev/null +++ b/2384/CH1/EX1.21/ex1_21.sce @@ -0,0 +1,23 @@ +// Exa 1.21
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V= 100;// in V
+R12 = 3;// in ohm
+R31 = 2;// in ohm
+R23 = 4;// in ohm
+R4= 6;// in ohm
+R5=2;// in ohm
+R6= 5;// in ohm
+R1 = (R12*R31)/(R12+R23+R31);// in ohm
+R2 = (R31*R23)/(R12+R23+R31);// in ohm
+R3 = (R23*R12)/(R12+R23+R31);// in ohm
+R_S= R6+R1;// in ohm
+R_P1= R2+R4;// in ohm
+R_P2= R3+R5;// in ohm
+R_P= R_P1*R_P2/(R_P1+R_P2);// in ohm
+R= R_P+R_S;// in ohm
+I= V/R;// in A
+disp(I,"The current drawn from the source in A is : ")
diff --git a/2384/CH1/EX1.22/ex1_22.sce b/2384/CH1/EX1.22/ex1_22.sce new file mode 100755 index 000000000..8de298675 --- /dev/null +++ b/2384/CH1/EX1.22/ex1_22.sce @@ -0,0 +1,31 @@ +// Exa 1.22
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 10;// in ohm
+R2= 5;// in ohm
+R3= 20;// in ohm
+V= 100;// in V
+I2= 10;// in A
+// Applying KVL in ABEFA : -R1*I1-R2*(I1+I2)+V= 0
+I1= (V-R2*I2)/(R1+R2);// in A
+I10_ohm= I1;//current through 10 ohm resistance in A
+I5_ohm= I1+I2;//current through 5 ohm resistance in A
+I20_ohm= I2;//current through 20 ohm resistance in A
+disp("Part (i) : Using by KVL")
+disp(I10_ohm,"The current through 10 ohm resistance in A is : ")
+disp(I5_ohm,"The current through 5 ohm resistance in A is : ")
+disp(I20_ohm,"The current through 20 ohm resistance in A is : ")
+// Applying KCL at node A :
+VA= (V*R2+I2*R1*R2)/(R1+R2);// in V
+I10_ohm= (VA-V)/R1;// in A
+I5_ohm= VA/R2;// in A
+I20_ohm= I2;// in A
+disp("Part (ii) : Using by KVL")
+disp(I10_ohm,"The current through 10 ohm resistance in A is : ")
+disp(I5_ohm,"The current through 5 ohm resistance in A is : ")
+disp(I20_ohm,"The current through 20 ohm resistance in A is : ")
+
+
diff --git a/2384/CH1/EX1.23/ex1_23.sce b/2384/CH1/EX1.23/ex1_23.sce new file mode 100755 index 000000000..2402044ac --- /dev/null +++ b/2384/CH1/EX1.23/ex1_23.sce @@ -0,0 +1,24 @@ +// Exa 1.23
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 5;// in ohm
+R2= 10;// in ohm
+R3= 3;// in ohm
+R4= 2;// in ohm
+V1= 10;// in V
+V2= 20;// in V
+I= 5;// in A
+//Applying KCL at node A: VA*(R1+R2)+VB*-R1 =I*R1*R2+V1*R1 (i)
+//Applying KCL at node B: VA*R3*R4+VB*-(R2*R3+R4*R3+R4*R2) =V1*R3*R4+V2*R2*R3 (ii)
+A=[(R1+R2) R3*R4; -R1 -(R3*R2+R4*R3+R4*R2)]
+B= [(I*R1*R2+V1*R1) (V1*R3*R4+V2*R2*R3)];
+V= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+VA= V(1);// in V
+VB= V(2);// in V
+I4= (VB+V2)/R4;// in A
+V4= R4*I4;// in V
+disp(I4,"The current through 2 ohm resistor in A is : ")
+disp(V4,"The voltage across 2 ohm resistor in V is : ")
diff --git a/2384/CH1/EX1.24/ex1_24.sce b/2384/CH1/EX1.24/ex1_24.sce new file mode 100755 index 000000000..bfb7ff164 --- /dev/null +++ b/2384/CH1/EX1.24/ex1_24.sce @@ -0,0 +1,21 @@ +// Exa 1.24
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 6;// in ohm
+R2= 12;// in ohm
+R3= 2;// in ohm
+R4= 6;// in ohm
+V2= 12;// in V
+V3= 30;// in V
+//Applying KVL in ABEFA : I1*(R1+R2) - R2*I2=V3-V2 (i)
+//Applying KVL in BCDEB : -I1*R2+I2*(R1+R2+R3)=V2 (ii)
+A= [(R1+R2) -R2; -R2 (R1+R2+R3)];
+B= [(V3-V2) (V2)];
+I= B*A^-1;// Solving eq(i), and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+V1= I2*R1;//voltage across 6 ohm resistor in V
+disp(V1,"The voltage across 6 ohm resistor in V is : ")
diff --git a/2384/CH1/EX1.25/ex1_25.sce b/2384/CH1/EX1.25/ex1_25.sce new file mode 100755 index 000000000..2a2c17eda --- /dev/null +++ b/2384/CH1/EX1.25/ex1_25.sce @@ -0,0 +1,18 @@ +// Exa 1.25
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 6;// in ohm
+R2 = 2;// in ohm
+R3 = 2;// in ohm
+R4 = 4;// in ohm
+R5 = 4;// in ohm
+R6 = 6;// in ohm
+R12= R1*R2/(R1+R2);// in ohm
+R34= R3*R4/(R3+R4);// in ohm
+R56= R5*R6/(R5+R6);// in ohm
+// Resistance between the point B and C
+R_BC= (R12+R34)*R56/((R12+R34)+R56);// in ohm
+disp(R_BC,"The resistance between the point B and C in ohm is : ")
diff --git a/2384/CH1/EX1.26/ex1_26.sce b/2384/CH1/EX1.26/ex1_26.sce new file mode 100755 index 000000000..c4e2e938e --- /dev/null +++ b/2384/CH1/EX1.26/ex1_26.sce @@ -0,0 +1,18 @@ +// Exa 1.26
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 10;// in ohm
+R2 = 10;// in ohm
+R4 = 80;// in ohm
+V1= 100;// in V
+I2= 0.5;// in A
+V2= I2*R4;// in V
+// Applying KVL : -R1*I1-V2+V1-R1*I2=0
+I1= (V1-V2)/(R1+R2);// in A
+V_R1= I1*R1;//voltage across R1 resistor in V
+V_R2= I1*R2;//voltage across R2 resistor in V
+disp(V_R1,"The voltage across R1 resistor in V is : ")
+disp(V_R2,"The voltage across R2 resistor in V is : ")
diff --git a/2384/CH1/EX1.27/ex1_27.sce b/2384/CH1/EX1.27/ex1_27.sce new file mode 100755 index 000000000..cfe077017 --- /dev/null +++ b/2384/CH1/EX1.27/ex1_27.sce @@ -0,0 +1,23 @@ +// Exa 1.27
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 8;// in ohm
+R2 = 4;// in ohm
+R3 = 4;// in ohm
+R4 = 4;// in ohm
+R5 = 8;// in ohm
+R6 = 8;// in ohm
+I=10;// in A
+V= 20;// in V
+// Applying KVL in ABEFA : I1*(R1+R2+R3)+I2*(R3)= I*R2-V (i)
+// Applying KVL in BCDEB : I1*R3-I2*(R3+R4+R5)= R4*I+V (ii)
+A= [(R1+R2+R3) R3; R3 -(R3+R4+R5)];
+B= [I*R2-V R4*I+V];
+I= B*A^-1;//// Solving equations by matrix multiplication
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The value of I1 in A is : ");
+disp(I2,"The value of I2 in A is : ");
diff --git a/2384/CH1/EX1.3/ex1_3.sce b/2384/CH1/EX1.3/ex1_3.sce new file mode 100755 index 000000000..1d7c771e6 --- /dev/null +++ b/2384/CH1/EX1.3/ex1_3.sce @@ -0,0 +1,16 @@ +// Exa 1.3
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+// Part (a)
+V = 30;// in V
+R = 6;// in ohm
+I = V/R;// the equivalent current in A
+disp(I,"The equivalent current in A is");
+// Part (b)
+I = 10;// in A
+R = 5;// in ohm
+V = I*R;// the equivalent voltage in V
+disp(V,"The equivalent voltage in V is");
diff --git a/2384/CH1/EX1.4/ex1_4.sce b/2384/CH1/EX1.4/ex1_4.sce new file mode 100755 index 000000000..ddea43e38 --- /dev/null +++ b/2384/CH1/EX1.4/ex1_4.sce @@ -0,0 +1,15 @@ +// Exa 1.4
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 6;// in ohm
+R2= 2;// in ohm
+R3= 5;// in ohm
+I2= 4;// in A
+V=24;//in V
+// Applying KVL to the loop ABCDA, -R1*I1-R3*I+V=0 (i)
+// but I1= I+I2 , so from eq(i)
+I= (V-R1*I2)/(R1+R3);// in A
+disp(I,"The current in A is");
diff --git a/2384/CH1/EX1.5/ex1_5.sce b/2384/CH1/EX1.5/ex1_5.sce new file mode 100755 index 000000000..876934d22 --- /dev/null +++ b/2384/CH1/EX1.5/ex1_5.sce @@ -0,0 +1,23 @@ +// Exa 1.5
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 40;// in ohm
+R2= 20;// in ohm
+R3= 25;// in ohm
+R4= 60;// in ohm
+R5= 50;// in ohm
+V1= 120;// in V
+V2= 60;// in V
+V3= 40;// in V
+// Applying KVL in Mesh ABEFA, we get -I1*(R1+R2+R3)+I2*R3=V2-V1 (i)
+// Applying KVL in Mesh BCEDB, we get R3*I1-I2*(R3+R4+R5)= V3-V2 (ii)
+A= [-(R1+R2+R3) R3; R3 -(R3+R4+R5)];
+B= [V2-V1 V3-V2];
+I= B*A^-1;//Solving eq(i) and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The value of I1 in A is : ");
+disp(I2,"The value of I2 in A is : ");
diff --git a/2384/CH1/EX1.6/ex1_6.sce b/2384/CH1/EX1.6/ex1_6.sce new file mode 100755 index 000000000..42785e8f0 --- /dev/null +++ b/2384/CH1/EX1.6/ex1_6.sce @@ -0,0 +1,22 @@ +// Exa 1.6
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 2;// in ohm
+R2= 4;// in ohm
+R3= 6;// in ohm
+V1= 4;// in V
+V2= 44;// in V
+//Applying KVL in ABEFA : -R1*I1 + R2*I2 = V1 (i)
+//Applying KVL in BCDEB: R3*I1 + I2*(R2+R3)=V2 (ii)
+A= [-R1 R3; R2 (R2+R3)]; // assumed
+B= [V1 V2];// assumed
+I= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+I_L= I1+I2;// in A
+disp(I1,"The value of I1 in A is : ");
+disp(I2,"The value of I2 in A is : ");
+disp(I_L,"The value of I_L in A is : ");
diff --git a/2384/CH1/EX1.7/ex1_7.sce b/2384/CH1/EX1.7/ex1_7.sce new file mode 100755 index 000000000..7cec9c189 --- /dev/null +++ b/2384/CH1/EX1.7/ex1_7.sce @@ -0,0 +1,22 @@ +// Exa 1.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 1;// in ohm
+R2= 1;// in ohm
+R3= 2;// in ohm
+R4= 1;// in ohm
+R5= 1;// in ohm
+V1= 1.5;// in V
+V2= 1.1;// in V
+//Applying KVL in ABCFA : I1*(R1+R2+R3) + R3*I2 = V1 (i)
+//Applying KVL in BCDEB: R3*I1 + I2*(R3+R4+R5)=V2 (ii)
+A= [(R1+R2+R3) R3; R3 (R3+R4+R5)];
+B= [V1 V2];
+I= B*A^-1;// Solving eq(i) and (ii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+disp(I1,"The value of I1 in A is : ");
+disp(I2,"The value of I2 in A is : ");
diff --git a/2384/CH1/EX1.8/ex1_8.sce b/2384/CH1/EX1.8/ex1_8.sce new file mode 100755 index 000000000..c7e7556d7 --- /dev/null +++ b/2384/CH1/EX1.8/ex1_8.sce @@ -0,0 +1,24 @@ +// Exa 1.8
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1= 2;// in ohm
+R2= 4;// in ohm
+R3= 1;// in ohm
+R4= 6;// in ohm
+R5= 4;// in ohm
+V1= 10;// in V
+V2= 20;// in V
+//Applying KVL in ABGHA : I1*(R1+R2) - R2*I2 = V1 (i)
+//Applying KVL in BCFGB : I1*R5-I2*(R3+R4+R5)+I3*R4 = 0 (ii)
+//Applying KVL in CDEFC: R4*I2-I3*(R2+R4)=V2 (iii)
+A= [(R1+R2) R5 0; -R2 -(R3+R4+R5) R4; 0 R4 -(R2+R4)];
+B= [V1 0 V2];
+I= B*A^-1;// Solving eq(i), (ii) and (iii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+I3= I(3);// in A
+I6_ohm_resistor= I2-I3;//The current through 6 ohm resistance in A
+disp(I6_ohm_resistor,"The current through 6 ohm resistance in A is : ")
diff --git a/2384/CH1/EX1.9/ex1_9.sce b/2384/CH1/EX1.9/ex1_9.sce new file mode 100755 index 000000000..ea281fc9d --- /dev/null +++ b/2384/CH1/EX1.9/ex1_9.sce @@ -0,0 +1,36 @@ +// Exa 1.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1= 30;// in ohm
+R2= 40;// in ohm
+R3= 20;// in ohm
+R4= 60;// in ohm
+R5= 50;// in ohm
+V= 240;// in V
+//Applying KVL in ABDA : I1*-(R1+R2+R3) + R2*I2+R3*I3 =0 (i)
+//Applying KVL in BCDB : I1*R2+I2*-(R2+R4+R5)+I3*R5 = 0 (ii)
+//Applying KVL in CFEADC: I1*R3+ R5*I2+I3*-(R3+R5)=-V (iii)
+A= [-(R1+R2+R3) R2 R3; R2 -(R2+R4+R5) R5; R3 R5 -(R3+R5)];
+B= [0 0 -V];
+I= B*A^-1;// Solving eq(i), (ii) and (iii) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+I3= I(3);// in A
+I30_ohm_resistor= I1;// in A
+I60_ohm_resistor= I2;// in A
+I50_ohm_resistor= I2-I3;// in A
+I20_ohm_resistor= I1-I3;// in A
+I40_ohm_resistor= I1-I2;// in A
+disp(I30_ohm_resistor,"The current through 30 ohm resistance in A is : ")
+disp(I60_ohm_resistor,"The current through 60 ohm resistance in A is : ")
+disp(I50_ohm_resistor,"The current through 50 ohm resistance in A is : ")
+disp(I20_ohm_resistor,"The current through 20 ohm resistance in A is : ")
+disp(I40_ohm_resistor,"The current through 40 ohm resistance in A is : ")
+
+// Note: In the book there is a mistake in eq(iii), the R.H.S of eq(iii) should be -24 not -240. Since they divide the L.H.S of eq(iii) by 10 and R.H.S not divided, So the answer in the book is wrong
+
+
+
diff --git a/2384/CH10/EX10.1/ex10_1.sce b/2384/CH10/EX10.1/ex10_1.sce new file mode 100755 index 000000000..fc7c489ff --- /dev/null +++ b/2384/CH10/EX10.1/ex10_1.sce @@ -0,0 +1,15 @@ +// Exa 10.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+A = 2;// in wavewound
+N = 1200;// in rpm
+phi = 0.02;// in Wb
+n = 65;// no of slots
+P = 4;
+Z = n*12;// total number of conductor
+// Emf equation
+Eg = (N*P*phi*Z)/(60*A);// in V
+disp(Eg,"The emf generated in V is");
diff --git a/2384/CH10/EX10.10/ex10_10.sce b/2384/CH10/EX10.10/ex10_10.sce new file mode 100755 index 000000000..32fcebb8c --- /dev/null +++ b/2384/CH10/EX10.10/ex10_10.sce @@ -0,0 +1,16 @@ +// Exa 10.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V = 250;// in V
+I_L = 20;// in A
+Ra = 0.3;// in ohm
+Rsh = 200;// in ohm
+Ish = V/Rsh;// in A
+// I_L = Ia+Ish;
+Ia = I_L-Ish;// inA
+disp(Ia,"The armature current in A is");
+Eb = V-(Ia*Ra);// in V
+disp(Eb,"The back emf in V is");
diff --git a/2384/CH10/EX10.11/ex10_11.sce b/2384/CH10/EX10.11/ex10_11.sce new file mode 100755 index 000000000..082eef373 --- /dev/null +++ b/2384/CH10/EX10.11/ex10_11.sce @@ -0,0 +1,21 @@ +// Exa 10.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+A = 2;//(wave connected)
+Z = 200;
+V=250;// in V
+phi = 25;// in mWb
+phi = phi * 10^-3;// in Wb
+Ia = 60;// in A
+I_L = 60;// in A
+Ra = 0.15;// in ohm
+Rse = 0.2;// in ohm
+//V = Eb + (Ia*Ra) + (Ia*Rse);
+Eb = V - (Ia*Ra) - (Ia*Rse);// in V
+// Eb = (phi*P*N*Z)/(60*A);
+N = (Eb*60*A)/(phi*P*Z);// in rpm
+disp(N,"The speed in rpm is");
diff --git a/2384/CH10/EX10.12/ex10_12.sce b/2384/CH10/EX10.12/ex10_12.sce new file mode 100755 index 000000000..bd302c8ee --- /dev/null +++ b/2384/CH10/EX10.12/ex10_12.sce @@ -0,0 +1,17 @@ +// Exa 10.12
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Eb = 227;// in V
+Rsh = 160;// in ohm
+Ish = 1.5;// in A
+I_L = 39.5;// in A
+V = Ish*Rsh;// in V
+Ia = I_L-Ish;// in A
+//V = Eb + (Ia*Ra);
+Ra = (V-Eb)/Ia;// in ohm
+disp(Ra,"The armature resistance in ohm is");
+Ia = V/Ra;// in A
+disp(Ia,"The armature current in A is");
diff --git a/2384/CH10/EX10.13/ex10_13.sce b/2384/CH10/EX10.13/ex10_13.sce new file mode 100755 index 000000000..e750effb6 --- /dev/null +++ b/2384/CH10/EX10.13/ex10_13.sce @@ -0,0 +1,18 @@ +// Exa 10.13
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 230;// in V
+Ra = 0.115;// in ohm
+Rsh = 115;// in ohm
+I_L = 100;// inA
+Ish =V/Rsh;// in A
+Ia = I_L + Ish;// in A
+Eg = V + (Ia*Ra);// in V
+Ia = I_L-Ish;// in A
+Eb = V - (Ia*Ra);// in V
+// The ratio of speed as a generator to speed as a motor
+NgBYNm = Eg/Eb;
+disp(NgBYNm,"The ratio of speed as a generator to speed as a motor is");
diff --git a/2384/CH10/EX10.14/ex10_14.sce b/2384/CH10/EX10.14/ex10_14.sce new file mode 100755 index 000000000..e7186d6d0 --- /dev/null +++ b/2384/CH10/EX10.14/ex10_14.sce @@ -0,0 +1,18 @@ +// Exa 10.14
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+P = 4;
+slots = 144;
+phi = 20;// in mWb
+phi = phi * 10^-3;// in Wb
+N = 720;// in rpm
+A = 4;
+P =4;
+n1 = 2;// in coil/slot
+n2 = 2;// in turns/coil
+Z = slots*n1*n2;// total number of conductor
+Eg = (N*P*phi*Z)/(60*A);// in V
+disp(Eg,"The induced voltage in V is");
diff --git a/2384/CH10/EX10.15/ex10_15.sce b/2384/CH10/EX10.15/ex10_15.sce new file mode 100755 index 000000000..3515949c1 --- /dev/null +++ b/2384/CH10/EX10.15/ex10_15.sce @@ -0,0 +1,16 @@ +// Exa 10.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 8;
+phi = 0.1;// in Wb
+Z = 400;
+N =300;// in rpm
+Eg = (N*phi*Z)/(60);// in V (A = p)
+disp(Eg,"The emf when lap is connected in V is");
+// For A=2, connected armature
+A = 2;
+Eg = (N*phi*P*Z)/(60*A);// in V
+disp(Eg,"The emf when wave is connected in V is");
diff --git a/2384/CH10/EX10.16/ex10_16.sce b/2384/CH10/EX10.16/ex10_16.sce new file mode 100755 index 000000000..ad6380bbe --- /dev/null +++ b/2384/CH10/EX10.16/ex10_16.sce @@ -0,0 +1,19 @@ +// Exa 10.16
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P_L = 20;// in kW
+P_L = P_L * 10^3;// in W
+V = 200;// in V
+Ra = 0.05;// in ohm
+Rsh = 200;// in ohm
+// P_L = V*I_L;
+I_L = P_L/V;// in A
+Ish = V/Rsh;// in A
+Ia = I_L+Ish;// in A
+Eg = V + (Ia*Ra);// in V
+Pa = Eg*Ia;// in W
+Pa = Pa * 10^-3;// in kW
+disp(Pa,"The power developed in armature in kW is");
diff --git a/2384/CH10/EX10.17/ex10_17.sce b/2384/CH10/EX10.17/ex10_17.sce new file mode 100755 index 000000000..b0d87b2d4 --- /dev/null +++ b/2384/CH10/EX10.17/ex10_17.sce @@ -0,0 +1,19 @@ +// Exa 10.17
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+N1 = 600;// inrpm
+I_L1 = 60;// in A
+V = 230;// in V
+Rsh = 115;// in ohm
+Ra= 0.2;// in ohm
+Ia2 = 30;// in A
+Ish = V/Rsh;// in A
+Ia1 = I_L1 - Ish;// in A
+Eb1 = V-(Ia1*Ra);// in V
+Eb2 = V - (Ia2*Ra);// in V
+// N1/N2 = Eb1/Eb2;
+N2 = (N1*Eb2)/Eb1;// in rpm
+disp(N2,"The speed when 30 A current through the armature in rpm is");
diff --git a/2384/CH10/EX10.18/ex10_18.sce b/2384/CH10/EX10.18/ex10_18.sce new file mode 100755 index 000000000..b471b6bed --- /dev/null +++ b/2384/CH10/EX10.18/ex10_18.sce @@ -0,0 +1,20 @@ +// Exa 10.18
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 6;
+A = 6;
+Z = 500;
+Ra = 0.05;// in ohm
+Rsh =25;// in ohm
+V = 100;// in V
+I_L = 120;// in A
+phi = 2*10^-2;// in Wb
+Ish = V/Rsh;// in A
+Ia = I_L-Ish;// in A
+Eb = V - (Ia*Ra);// in V
+// Eb = (N*P*phi*Z)/(60*A);
+N = (Eb*60*A)/(P*phi*Z);// in rpm
+disp(N,"The speed of the motor in rpm is");
diff --git a/2384/CH10/EX10.19/ex10_19.sce b/2384/CH10/EX10.19/ex10_19.sce new file mode 100755 index 000000000..735e90d64 --- /dev/null +++ b/2384/CH10/EX10.19/ex10_19.sce @@ -0,0 +1,16 @@ +// Exa 10.19
+clc;
+clear;
+close;
+format('v',6)
+// Given ata
+N1 = 1;
+N2 = 1.2*N1;
+phi1 = 1;
+phi2 = 0.8*phi1;
+Eg1BYEg2 = (N1/N2) * (phi1/phi2);
+Eg1 = 1;// assumed
+// The change in emf
+Eg2 = (Eg1*phi2*N2)/(phi1*N1);
+Eg2 = Eg2 * 100;// in %
+disp(Eg2,"The change in emf in % is");
diff --git a/2384/CH10/EX10.2/ex10_2.sce b/2384/CH10/EX10.2/ex10_2.sce new file mode 100755 index 000000000..5245aee3e --- /dev/null +++ b/2384/CH10/EX10.2/ex10_2.sce @@ -0,0 +1,19 @@ +// Exa 10.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 8;
+N = 1200;// in rpm
+phi = 25;// in mWb
+phi = phi * 10^-3;// in Wb
+Eg = 440;// in V
+A = P;
+// Eg = (N*P*phi*Z)/(60*A);
+Z = (Eg*60*A)/(phi*N*P);// in conductors
+disp(Z,"The numbers of conductors when armature is lap wound");
+A = 2;
+// Eg = (N*P*phi*Z)/(60*A);
+Z = (Eg*60*A)/(phi*N*P);// in conductors
+disp(Z,"The numbers of conductors when armature is wave wound ");
diff --git a/2384/CH10/EX10.20/ex10_20.sce b/2384/CH10/EX10.20/ex10_20.sce new file mode 100755 index 000000000..a6ec10caf --- /dev/null +++ b/2384/CH10/EX10.20/ex10_20.sce @@ -0,0 +1,26 @@ +// Exa 10.20
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Pout = 25;// in kW
+Pout = Pout*10^3;// in W
+Vt = 250;// in V
+Ra = 0.06;// in ohm
+Rsh = 100;// in ohm
+// Pout = Vt*I_L;
+I_L = Pout/Vt;// in A
+Ish = Vt/Rsh;// in A
+Ia = I_L+Ish;// in A
+Eg = Vt + (Ia*Ra);// in V
+// Total armature power developed when working as a generator
+Pdeveloped = Eg*Ia;// in W
+Pdeveloped = Pdeveloped * 10^-3;// in kW
+disp(Pdeveloped,"Total armature power developed in kW is");
+Ia = I_L-Ish;// in A
+Eb = Vt - (Ia*Ra);// in V
+// Total armature power developed when working as a motor
+Pdeveloped = Eb*Ia;// in W
+Pdeveloped = Pdeveloped * 10^-3;// in kW
+disp(Pdeveloped,"Total armature power developed when working as a motor in kW is");
diff --git a/2384/CH10/EX10.21/ex10_21.sce b/2384/CH10/EX10.21/ex10_21.sce new file mode 100755 index 000000000..ecce69c28 --- /dev/null +++ b/2384/CH10/EX10.21/ex10_21.sce @@ -0,0 +1,20 @@ +// Exa 10.21
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+A = 4;
+Turns = 100;
+N = 600;// in rpm
+Eg = 220;// in V
+n = 2;// no of total conductors
+Z = n*Turns;
+// Eg = (N*P*phi*Z)/(60*A);
+phi = (Eg*60*A)/(N*P*Z);// in Wb
+disp(phi,"The useful flux per mole when armature is LAP connected in Wb is");
+A = 2;
+// Eg = (N*P*phi*Z)/(60*A);
+phi = (Eg*60*A)/(N*P*Z);// in Wb
+disp(phi,"The useful flux per mole when armature is WAVE connected in Wb is");
diff --git a/2384/CH10/EX10.3/ex10_3.sce b/2384/CH10/EX10.3/ex10_3.sce new file mode 100755 index 000000000..9094e51db --- /dev/null +++ b/2384/CH10/EX10.3/ex10_3.sce @@ -0,0 +1,19 @@ +// Exa 10.3
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+P = 4;
+phi = 20;// in mWb
+phi = phi * 10^-3;// in Wb
+A = 4;
+P = A;
+N =720;// in rpm
+n = 144;// no of slots in slots
+n1 = 2;// no of coils
+n2 = 2;// no of turns in turns
+Z = n*n1*n2;// total number of conductor
+// Generated emf
+E = (N*P*phi*Z)/(60*A);// in V
+disp(E,"The induced voltage in V is");
diff --git a/2384/CH10/EX10.4/ex10_4.sce b/2384/CH10/EX10.4/ex10_4.sce new file mode 100755 index 000000000..a5e915b26 --- /dev/null +++ b/2384/CH10/EX10.4/ex10_4.sce @@ -0,0 +1,20 @@ +// Exa 10.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Eg1 = 100;// in V
+phi1 = 20;// in mWb
+phi1 = phi1 * 10^-3;// in Wb
+N1 = 800;// in rpm
+N2 = 1000;// in rpm
+// Eg1/Eg2 = (phi1/phi2) * (N1/N2) but phi1 = phi2
+Eg2 = (Eg1*N2)/N1;// in V
+disp(Eg2,"Part (i) : The generated emf in V is");
+phi2 = 24;// in mWb
+phi2 = phi2 * 10^-3;// in Wb
+N2 = 900;// in rpm
+// Eg1/Eg2 = (phi1/phi2) * (N1/N2) ;
+Eg2 = (Eg1*N2*phi2)/(N1*phi1);// in V
+disp(Eg2,"Part (ii) : The generated emf in V is");
diff --git a/2384/CH10/EX10.5/ex10_5.sce b/2384/CH10/EX10.5/ex10_5.sce new file mode 100755 index 000000000..2fdd632c0 --- /dev/null +++ b/2384/CH10/EX10.5/ex10_5.sce @@ -0,0 +1,20 @@ +// Exa 10.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 30;// in kW
+P = P * 10^3;// in W
+V = 300;// in V
+Ra = 0.05;// in ohm
+Rsh = 100;// in ohm
+// p = V*I_L;
+I_L = P/V;// in A
+Ish = V/Rsh;// in A
+Ia = I_L+Ish;// in A
+Eg = V + (Ia*Ra);// in V
+// power developed by armature
+power = (Eg*Ia);// in W
+power = power * 10^-3;// in kW
+disp(power,"The total power developed by the armature in kW is");
diff --git a/2384/CH10/EX10.6/ex10_6.sce b/2384/CH10/EX10.6/ex10_6.sce new file mode 100755 index 000000000..8a4cf9458 --- /dev/null +++ b/2384/CH10/EX10.6/ex10_6.sce @@ -0,0 +1,20 @@ +// Exa 10.6
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 200;// in V
+Ra = 0.5;// in ohm
+Rsh = 200;// in ohm
+P = 20;// in kW
+P = P * 10^3;// in W
+// P = V*I_L;
+I_L =P/V;// in A
+Ish = V/Rsh;// in A
+Ia = I_L+Ish;// in A
+Eg = V + (Ia*Ra);// in V
+// power developed in the armature
+power = Eg*Ia;// in W
+power = power * 10^-3;// in kW
+disp(power,"The power developed in the armature in kW is");
diff --git a/2384/CH10/EX10.7/ex10_7.sce b/2384/CH10/EX10.7/ex10_7.sce new file mode 100755 index 000000000..e10dc44c7 --- /dev/null +++ b/2384/CH10/EX10.7/ex10_7.sce @@ -0,0 +1,21 @@ +// Exa 10.7
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+P = 60;
+A =P;
+Vbrush = 2;// in V/brush
+Vt = 100;// in V
+Ra = 0.1;// in ohm
+Rsh = 80;// in ohm
+Ish = Vt/Rsh;// in A
+Ilamp = P/Vt;// in A
+I_L = 50*Ilamp;// in A
+// Armature current
+Ia = I_L+Ish;// in A
+disp(Ia,"The total armature current in A is");
+// Evaluation of generated emf
+Eg = Vt + (Ia*Ra) + Vbrush;// in V
+disp(Eg,"The generated emf in V is");
diff --git a/2384/CH10/EX10.8/ex10_8.sce b/2384/CH10/EX10.8/ex10_8.sce new file mode 100755 index 000000000..cf3b5c360 --- /dev/null +++ b/2384/CH10/EX10.8/ex10_8.sce @@ -0,0 +1,21 @@ +// Exa 10.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 440;// in V
+I_L =40;// in A
+Rse = 1;// in ohm
+Rsh = 200;// in ohm
+Ra = 0.5;// in ohm
+Ish = V/Rsh;// in A
+Ia = I_L+Ish;// in A
+Eg = V + (Ia*(Ra+Rse));// in V
+disp(Eg,"The generated voltage for long shunt in V is");
+//Voltage across shunt field, Vsh = V + Ise*Rse = V + (I_L*Rse);
+Vsh = V+(I_L*Rse);// in V
+Ish = Vsh/Rsh;// in A
+Ia =I_L+Ia;// in A
+Eg = V + (I_L*Rse) + (Ia*Ra);// in V
+disp(Eg,"The generated voltage for short shunt in V is");
diff --git a/2384/CH10/EX10.9/ex10_9.sce b/2384/CH10/EX10.9/ex10_9.sce new file mode 100755 index 000000000..b96479924 --- /dev/null +++ b/2384/CH10/EX10.9/ex10_9.sce @@ -0,0 +1,15 @@ +// Exa 10.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 440;// in V
+I = 80;// in A
+Rse = 0.025;// in ohm
+Ra = 0.1;// in ohm
+Bd = 2;// brush drop in V
+Ia = I;// in A
+Ise = I;// in A
+Eb = V - (Ia*(Ra+Rse)) - Bd;// in V
+disp(Eb,"The back emf in V is");
diff --git a/2384/CH11/EX11.1/ex11_1.sce b/2384/CH11/EX11.1/ex11_1.sce new file mode 100755 index 000000000..0f939d54b --- /dev/null +++ b/2384/CH11/EX11.1/ex11_1.sce @@ -0,0 +1,18 @@ +// Exa 11.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+f = 50;// in Hz
+Ns = (120*f)/P;// in rpm
+disp(Ns,"The synchronous speed in rpm is");
+s = 4;
+//s = ((Ns-N)/Ns)*100;
+N = Ns - ( (s*Ns)/100 );// in rpm
+disp(N,"The speed of the motor in rpm is");
+N = 1000;// in rpm
+s = ((Ns-N)/Ns);
+f_desh= s*f;// in Hz
+disp(f_desh,"The rotor current frequency in Hz is");
diff --git a/2384/CH11/EX11.10/ex11_10.sce b/2384/CH11/EX11.10/ex11_10.sce new file mode 100755 index 000000000..504520e3d --- /dev/null +++ b/2384/CH11/EX11.10/ex11_10.sce @@ -0,0 +1,15 @@ +// Exa 11.10
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R2 = 0.024;// in per phase
+X2 = 0.6;// in ohm per phase
+s = R2/X2;
+f = 50;// in Hz
+P = 4;
+Ns = (120*f)/P;// in rpm
+// Speed corresponding to maximum torque
+N = Ns*(1-s);// in rpm
+disp(N,"The speed at which maximum torque is developed in rpm is");
diff --git a/2384/CH11/EX11.11/ex11_11.sce b/2384/CH11/EX11.11/ex11_11.sce new file mode 100755 index 000000000..7d264f1bb --- /dev/null +++ b/2384/CH11/EX11.11/ex11_11.sce @@ -0,0 +1,18 @@ +// Exa 11.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+f =60;// in Hz
+s = 0.03;
+Ns = (120*f)/P;// in rpm
+N = Ns*(1-s);// in rpm
+disp(Ns,"The synchronous speed in rpm is : ")
+disp(N,"The rotor speed in rpm is");
+f_r = s*f;// in Hz
+disp(f_r,"The rotor current frequency in Hz is");
+// Rotor magnetic field rorats at speed
+Rm = (120*f_r)/P;// in rpm
+disp(Rm,"The rotor magnetic field rotates at speed in rpm is");
diff --git a/2384/CH11/EX11.12/ex11_12.sce b/2384/CH11/EX11.12/ex11_12.sce new file mode 100755 index 000000000..ab2451463 --- /dev/null +++ b/2384/CH11/EX11.12/ex11_12.sce @@ -0,0 +1,19 @@ +// Exa 11.12
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+N = 960;// in rpm
+f = 50;// in Hz
+Ns = 1000;// in rpm
+s = ((Ns-N)/Ns)*100;// %s in %
+disp(s,"The slip in % is");
+f_r = (s/100)*f;// in Hz
+disp(f_r,"The frequency of rotor induced emf in Hz is");
+// Ns = (120*f)/P;
+P = (120*f)/Ns;
+disp(P,"The number of ploes is");
+// Speed of rotor field with respect to rotor structure
+s1 = (120*f_r)/P;//in rpm
+disp(s1,"Speed of rotor field with respect to rotor structure in rpm is");
diff --git a/2384/CH11/EX11.13/ex11_13.sce b/2384/CH11/EX11.13/ex11_13.sce new file mode 100755 index 000000000..0efe959e7 --- /dev/null +++ b/2384/CH11/EX11.13/ex11_13.sce @@ -0,0 +1,13 @@ +// Exa 11.13
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+f = 50;// in Hz
+Sfl = 4/100;
+Ns = (120*f)/P;// in rpm
+//The full load speed, Sfl = (Ns-Nfl)/Ns;
+Nfl = Ns - (Sfl*Ns);// in rpm
+disp(Nfl,"The full load speed in rpm is");
diff --git a/2384/CH11/EX11.2/ex11_2.sce b/2384/CH11/EX11.2/ex11_2.sce new file mode 100755 index 000000000..b4581fddb --- /dev/null +++ b/2384/CH11/EX11.2/ex11_2.sce @@ -0,0 +1,16 @@ +// Exa 11.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+f = 50;// in Hz
+P = 4;
+f_DASH = 2;// in Hz
+// f_DASH = s*f;
+s = (f_DASH/f)*100;// in %
+disp(s,"The slip in % is");
+N_S = (120*f)/P;// in rpm
+// s = (N_S-N)/N_S;
+N = N_S - (s/100*N_S);// in rpm
+disp(N,"The speed of the motor in rpm is");
diff --git a/2384/CH11/EX11.3/ex11_3.sce b/2384/CH11/EX11.3/ex11_3.sce new file mode 100755 index 000000000..568918ee7 --- /dev/null +++ b/2384/CH11/EX11.3/ex11_3.sce @@ -0,0 +1,25 @@ +// Exa 11.3
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 6;
+f = 50;// in Hz
+Snl = 1/100;
+Sfl = 3/100;
+N_S = (120*f)/P;// in rpm
+disp(N_S,"The synchronous speed in rpm is");
+Nnl = N_S*(1-Snl);// in rpm
+disp(Nnl,"No load speed in rpm is");
+Nfl = N_S*(1-Sfl);// in rpm.. correction
+disp(Nfl,"The full load speed in rpm is");
+// frequency of rotor current
+s = 1;
+Sf = s*f;// in Hz
+disp(Sf,"The frequency of rotor current in Hz is");
+// frequency of rotor current at full load
+f_r = Sfl * f;// in Hz
+disp(f_r,"The frequency of rotor current at full load in Hz is");
+
+// Note : The calculated value of Nnl is wrong and value of Nfl is correct but at last they printed wrong.
diff --git a/2384/CH11/EX11.4/ex11_4.sce b/2384/CH11/EX11.4/ex11_4.sce new file mode 100755 index 000000000..3ce9b8477 --- /dev/null +++ b/2384/CH11/EX11.4/ex11_4.sce @@ -0,0 +1,17 @@ +// Exa 11.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Pa= 12;
+N= 1440;// in rpm
+Na= 500;// in rpm
+Nm= 1450;// in rpm
+fa= Pa*Na/120;// in Hz
+Pm= round(120*fa/Nm);
+// Synchronous speed of motor
+Ns= 120*fa/Pm;// in rpm
+s= (Ns-N)/Ns*100;// in %
+disp(Pm,"The numbers of pole is : ")
+disp(s,"The percentage slip is : ")
diff --git a/2384/CH11/EX11.5/ex11_5.sce b/2384/CH11/EX11.5/ex11_5.sce new file mode 100755 index 000000000..ccf25972d --- /dev/null +++ b/2384/CH11/EX11.5/ex11_5.sce @@ -0,0 +1,22 @@ +// Exa 11.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+K = 1/2;
+P = 4;
+f = 50;// in Hz
+N = 1445;// in rpm
+E1line = 415;// in V
+Ns = (120*f)/P;// in rpm
+N = 1455;// in rpm
+s = (Ns-N)/Ns*100;// in %
+f_r = s/100*f;// in Hz
+disp(f_r,"The frequency of rotor in Hz is");
+E1ph = E1line/sqrt(3);// in V
+//E2ph/E1ph = K;
+E2ph = E1ph*K;// in V
+disp(E2ph,"The magnitude of induced emf in V is");
+E2r = s/100*E2ph;// in V
+disp(E2r,"The magnitude of induced emf in the running condition in V is");
diff --git a/2384/CH11/EX11.6/ex11_6.sce b/2384/CH11/EX11.6/ex11_6.sce new file mode 100755 index 000000000..5556100fc --- /dev/null +++ b/2384/CH11/EX11.6/ex11_6.sce @@ -0,0 +1,19 @@ +// Exa 11.6
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 4;
+S =4/100;
+f = 50;// in Hz
+Ns = (120*f/P);// in rpm
+disp(Ns,"The value of Ns in rpm is");
+// The rotor speed when slip is 4 %
+N = Ns*(1-S);// in rpm
+disp(N,"The rotor speed when slip is 4% in rpm is");
+// The rotor speed when rotor runs at 600 rpm
+N1 = 600;// in rpm
+s1 = ((Ns-N1)/Ns)*100;// in %
+f_r = (s1/100)*f;// in Hz
+disp(f_r,"The rotor frequency when rotor runs at 600 rpm in Hz is");
diff --git a/2384/CH11/EX11.7/ex11_7.sce b/2384/CH11/EX11.7/ex11_7.sce new file mode 100755 index 000000000..a30573d2e --- /dev/null +++ b/2384/CH11/EX11.7/ex11_7.sce @@ -0,0 +1,22 @@ +// Exa 11.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V_L = 230;// in V
+f = 50;// in Hz
+N = 950;// in rpm
+E2 = 100;// in V
+Ns =1000;// in rpm
+// Ns = 120*f/P;
+P = (120*f)/Ns;
+disp(P,"The Number of ploes is");
+s = ((Ns-N)/Ns)*100;// %s in %
+disp(s,"The percentage of full load slip in % is");
+// The rotor induced voltage at full load
+E2r = (s/100)*E2;// in V
+disp(E2r,"The rotor induced voltage in V is");
+// The rotor frequency at full load
+f_r = (s/100)*f;// in Hz
+disp(f_r,"The frequency at full load in Hz is");
diff --git a/2384/CH11/EX11.8/ex11_8.sce b/2384/CH11/EX11.8/ex11_8.sce new file mode 100755 index 000000000..3ba593e49 --- /dev/null +++ b/2384/CH11/EX11.8/ex11_8.sce @@ -0,0 +1,24 @@ +// Exa 11.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 440;// in V
+f = 50;// in Hz
+N = 1450;// in rpm
+Ns = 1450;// in rpm
+Nr = 1450;// in rpm
+P = round((120*f)/Ns);
+disp(P,"The number of poles in the machine is");
+P = 4;
+Ns = (120*f)/P;// in rpm
+disp(Ns,"Speed of rotation air gap field in rpm is");
+k = 0.8/1;
+//Pemf = k*E1 = k*V;
+Pemf = k*V;// produced emf in rotor in V
+disp(Pemf,"Produced emf in rotor in V is");
+s = ((Ns-Nr)/Ns)*100;// in %
+Ivoltage = k*(s/100)*V;// rotor induces voltage in V
+f_r = (s/100)*f;// in Hz
+disp(f_r,"The frequency of rotor current in Hz is ");
diff --git a/2384/CH11/EX11.9/ex11_9.sce b/2384/CH11/EX11.9/ex11_9.sce new file mode 100755 index 000000000..014b6e6a2 --- /dev/null +++ b/2384/CH11/EX11.9/ex11_9.sce @@ -0,0 +1,16 @@ +// Exa 11.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 8;
+f = 50;// in Hz
+f_r = 2;// in Hz
+// f_r = s*f;
+s = (f_r/f)*100;// in %
+disp(s,"The full load slip in % is");
+// s = Ns-N/Ns;
+Ns = (120*f)/P;// in rpm
+N = Ns*(1-(s/100));// in rpm
+disp(N,"The corresponding speed in rpm is");
diff --git a/2384/CH2/EX2.1/ex2_1.sce b/2384/CH2/EX2.1/ex2_1.sce new file mode 100755 index 000000000..9e5e05ce0 --- /dev/null +++ b/2384/CH2/EX2.1/ex2_1.sce @@ -0,0 +1,18 @@ +// Exa 2.1
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 6;// in ohm
+R2 = 6;// in ohm
+R3 = 6;// in ohm
+V = 24;// in V
+R_T =R1+R1*R2/(R1+R2);// in ohm
+I_T = V/R_T;// in A
+I1 = (R1/(R1+R2))*I_T;// in A
+V = 12;// in V
+I_T = V/R_T;// in A
+I2 = (R1/(R1+R2))*I_T;// in A
+I = I1+I2;// in A
+disp(I,"The current in A is");
diff --git a/2384/CH2/EX2.10/ex2_10.sce b/2384/CH2/EX2.10/ex2_10.sce new file mode 100755 index 000000000..ba374e843 --- /dev/null +++ b/2384/CH2/EX2.10/ex2_10.sce @@ -0,0 +1,20 @@ +// Exa 2.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 8;// in ohm
+R2 = 5;// in ohm
+R3 = 2;// in ohm
+R_L = 10;// in ohm
+V1= 20;// in V
+V2= 12;// in V
+// V1-R3*I - R2*I = 0;
+I = V1/(R2+R3);// in A
+// Vth + V2 - R3*I = 0;
+Vth = R3*I - V2;// in V
+Rth = ((R2*R3)/(R2+R3)) + R1;// in ohm
+// current through 10 ohm resistance
+I_L = abs(Vth)/(Rth+R_L);// in A
+disp(I_L,"The current through 10 ohm resistance in A is");
diff --git a/2384/CH2/EX2.11/ex2_11.sce b/2384/CH2/EX2.11/ex2_11.sce new file mode 100755 index 000000000..b653481b3 --- /dev/null +++ b/2384/CH2/EX2.11/ex2_11.sce @@ -0,0 +1,20 @@ +// Exa 2.11
+clc;
+clear;
+close;
+format('v',4)
+// Given data
+R1 = 4;// in ohm
+R2 = 3;// in ohm
+R3 = 2;// in ohm
+R_L = 5;// in ohm
+I = 6;// in A
+V = 15;// in V
+// V-R1*I1-R3*(I1+I) = 0;
+I1 = (V-R3*I)/(R1+R3);// in A
+I = I1 + I;// in A
+Vth = R3*I;// in V
+Rth = ((R1*R3)/(R1+R3)) + R2;// in ohm
+// current in 5 ohm resistance
+I_L = Vth/(Rth+R_L);// in A
+disp(I_L,"The current in 5 ohm resistance in A is");
diff --git a/2384/CH2/EX2.12/ex2_12.sce b/2384/CH2/EX2.12/ex2_12.sce new file mode 100755 index 000000000..4764f7196 --- /dev/null +++ b/2384/CH2/EX2.12/ex2_12.sce @@ -0,0 +1,17 @@ +// Exa 2.12
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 8;// in ohm
+R2 = 32;// in ohm
+V = 60;// in V
+I1= 5;// in A
+I2= 3;// in A
+// Vth-R1*I1-(I1+I2)*R2-V=0
+Vth= R1*I1+(I1+I2)*R2+V
+Rth = R1+R2;// in ohm
+disp(Vth,"The value of Vth in volts is : ")
+disp(Rth,"The value of Rth in ohm is : ");
+
diff --git a/2384/CH2/EX2.13/ex2_13.sce b/2384/CH2/EX2.13/ex2_13.sce new file mode 100755 index 000000000..bd8cccd8f --- /dev/null +++ b/2384/CH2/EX2.13/ex2_13.sce @@ -0,0 +1,19 @@ +clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 6;// in ohm
+R2 = 4;// in ohm
+R3 = 3;// in ohm
+R_L = 6;// in ohm
+V1 = 6;// in V
+V2= 15;// in V
+// V1 - R1*I - R3*I -V2 = 0;
+I= (V1-V2)/(R1+R3)
+Vth = V2 + (R3*I);// in V
+Rth = ((R1*R3)/(R1+R3)) + R2;// in ohm
+I_N = Vth/Rth;// in A
+// current through 6 ohm resistor
+I = (I_N*Rth)/(Rth+R_L);// in A
+disp(I,"The current through 6 ohm resistor in A is");
diff --git a/2384/CH2/EX2.14/ex2_14.sce b/2384/CH2/EX2.14/ex2_14.sce new file mode 100755 index 000000000..788a27fd5 --- /dev/null +++ b/2384/CH2/EX2.14/ex2_14.sce @@ -0,0 +1,21 @@ +// Exa 2.14
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 5;// in ohm
+R2 = 2;// in ohm
+R3 = 8;// in ohm
+V1 = 20;// in V
+V2 = 12;// in V
+// V1-R2*I-R1*I = 0;
+I = V1/(R1+R2);// in A
+// Vth + V2 - R2*I = 0;
+Vth = (R2*I) - V2;// in V
+Rth = ((R1*R2)/(R1+R2)) + R3;// in ohm
+I_N = Vth/Rth;// in A
+R_L = 10;// in ohm
+// current through 10 ohm resistace
+I = (abs(I_N)*Rth)/(Rth+R_L);// in A
+disp(I,"The current through 10 ohm resistace in A is");
diff --git a/2384/CH2/EX2.15/ex2_15.sce b/2384/CH2/EX2.15/ex2_15.sce new file mode 100755 index 000000000..e8fe15e22 --- /dev/null +++ b/2384/CH2/EX2.15/ex2_15.sce @@ -0,0 +1,21 @@ +// Exa 2.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 15;// in V
+R1 = 4;// in ohm
+R2 = 3;// in ohm
+R3 = 2;// in ohm
+R_L = 5;// in ohm
+Ig = 6;// in A
+// V - R1*I1 - R3*(I1+Ig) = 0;
+I1 = (V-R3*Ig)/(R1+R3);// in A
+I = I1 + Ig;// in A
+Vth = R3*I;// in V
+Rth = ((R1*R3)/(R1+R3)) + R2;// in ohm
+I_N = Vth/Rth;// in A
+// current through 5 ohm resistor
+I = (I_N*Rth)/(Rth+R_L);// in A
+disp(I,"The current through 5 ohm resistor in A is");
diff --git a/2384/CH2/EX2.16/ex2_16.sce b/2384/CH2/EX2.16/ex2_16.sce new file mode 100755 index 000000000..c6c1ba969 --- /dev/null +++ b/2384/CH2/EX2.16/ex2_16.sce @@ -0,0 +1,14 @@ +// Exa 2.16
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+V = 6;// in V
+R1 = 2;// in ohm
+R2 = 1;// in ohm
+R3 = 3;//in ohm
+R4 = 2;// in ohm
+Rth=(R1*R2/(R1+R2)+R3)*R4/((R1*R2/(R1+R2)+R3)+R4)
+R_L = Rth;// in ohm
+disp(R_L,"The value of R in ohm is");
diff --git a/2384/CH2/EX2.17/ex2_17.sce b/2384/CH2/EX2.17/ex2_17.sce new file mode 100755 index 000000000..9958950ea --- /dev/null +++ b/2384/CH2/EX2.17/ex2_17.sce @@ -0,0 +1,18 @@ +// Exa 2.17
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 10;// in ohm
+R2 = 10;// in ohm
+R3 = 4;// in ohm
+V = 20;// in V
+// V - R1*I1 - R2*I1 = 0;
+I1 = V/(R1+R2);// in A
+Vth = R1*I1;// in V
+Rth =R1*R2/(R1+R2)+R3
+R_L = Rth;// in ohm
+disp(R_L,"The value of load resistance in ohm is");
+Pmax = (Vth^2)/(4*Rth);// in W
+disp(Pmax,"The power delivered to the load in W is");
diff --git a/2384/CH2/EX2.18/ex2_18.sce b/2384/CH2/EX2.18/ex2_18.sce new file mode 100755 index 000000000..b9646e4e5 --- /dev/null +++ b/2384/CH2/EX2.18/ex2_18.sce @@ -0,0 +1,21 @@ +// Exa 2.18
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 3;// in ohm
+R2 = 9;// in ohm
+R3 = 6;// in ohm
+V1 = 120;// in V
+V2 = 60;// in V
+R = (R3*R2)/(R3+R2);// in ohm
+R_T = R+R1;// in ohm
+I_T = V1/R_T;// in A
+I1 = (R2/(R2+R3)) * I_T;// in A
+R_T = 2 + R2;// in ohm
+I_T = V2/R_T;// in A
+I2 = (R1/(R1+R3)) * I_T;// in A
+// current through 6 ohm resistor
+I = I1-I2;// in A
+disp(I,"The current through 6 ohm resistor in A is");
diff --git a/2384/CH2/EX2.19/ex2_19.sce b/2384/CH2/EX2.19/ex2_19.sce new file mode 100755 index 000000000..5c7173c11 --- /dev/null +++ b/2384/CH2/EX2.19/ex2_19.sce @@ -0,0 +1,24 @@ +// Exa 2.19
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 36;// in ohm
+R2 = 12;// in ohm
+R3 = 8;// in ohm
+V1 = 90;// in V
+V2 = 60;// in V
+R_T = (R2*R3)/(R2+R3)+R1;// in ohm
+I_T = V1/R_T;// in A
+I1 = (R2/(R2+R3)) * I_T;// in A
+R = (R1*R3)/(R1+R3);// in ohm
+R_T = R2+R;// in ohm
+I_T = V2/R_T;// in A
+I2 = (R1/(R1+R3))*I_T;// in A
+Ra = (R1*R2)/(R1+R2);// in ohm asumed
+I_T = 2;// in A
+I3 = (Ra/(Ra+R3))*I_T;// in A
+// current in 8 ohm resistor
+I = I1+I2+I3;// in A
+disp(I,"The current in 8 ohm resistor in A is");
diff --git a/2384/CH2/EX2.2/ex2_2.sce b/2384/CH2/EX2.2/ex2_2.sce new file mode 100755 index 000000000..7a42ba887 --- /dev/null +++ b/2384/CH2/EX2.2/ex2_2.sce @@ -0,0 +1,17 @@ +// Exa 2.2
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 5;// in ohm
+Vth= 10;// in ohm
+R2 = 7;// in ohm
+R3=10;// in ohm
+R_L = 12;// in ohm
+V = 20;// in ohm
+Vth = (Vth*V)/(R1+R3);// in V
+Rth = R2 + ((Vth*R1)/(Vth+R1));// in ohm
+// The current through 12 ohm resistor
+I = Vth/(Rth+R_L);// in A
+disp(I,"The current through 12 ohm resistor in A is");
diff --git a/2384/CH2/EX2.20/ex2_20.sce b/2384/CH2/EX2.20/ex2_20.sce new file mode 100755 index 000000000..ce4f2014f --- /dev/null +++ b/2384/CH2/EX2.20/ex2_20.sce @@ -0,0 +1,20 @@ +// Exa 2.20
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 5;// in ohm
+R2 = 10;// in ohm
+R3 = 5;// in ohm
+V1 = 60;// in v
+V2 = 30;// in V
+//-R1*i1 - R3*i1 - V2+V1 = 0;
+i1 = (V2-V1)/(R1+R3);// in A
+V_acrossR3 = R3*i1;// in V
+Vth = V_acrossR3+V1;// in V
+V_AB =Vth;// in V
+disp(V_AB,"The Thevenins voltage in V is");
+R = (R1*R3)/(R1+R3);// in ohm
+Rth = R2+R;// in ohm
+disp(Rth,"The Thevenins resistance in ohm is");
diff --git a/2384/CH2/EX2.21/ex2_21.sce b/2384/CH2/EX2.21/ex2_21.sce new file mode 100755 index 000000000..806e15572 --- /dev/null +++ b/2384/CH2/EX2.21/ex2_21.sce @@ -0,0 +1,19 @@ +// Exa 2.21
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 4;// in ohm
+R2 = 3;// in ohm
+R3 = 2;// in ohm
+R_L = 5;// in ohm
+V = 15;// in V
+I2 = 6;// in A
+// -R1*I1 - R3*I1 + R3*I2 + V = 0;
+I1 = (V+R3*I2)/(R1+R3);// in A
+Vth = I2/R3;// in V
+V_CD = Vth;// in V
+Rth = (R1*R3)/(R1+R3)+R2;// in ohm
+I = Vth/(Rth+R_L);// in A
+disp(I,"The current flowing through 5 ohm resistor in A is");
diff --git a/2384/CH2/EX2.22/ex2_22.sce b/2384/CH2/EX2.22/ex2_22.sce new file mode 100755 index 000000000..8b9e61b47 --- /dev/null +++ b/2384/CH2/EX2.22/ex2_22.sce @@ -0,0 +1,22 @@ +// Exa 2.22
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 20;// in ohm
+R2 = 5;// in ohm
+R3 = 3;// in ohm
+R4 = 2;// in ohm
+V = 30;// in V
+I1=4;// in A
+V1= I1*R3;// in V
+// R1*I -R2*I+V = 0;
+I = V/(R1+R2);// in A
+V_acrossR2= R2*I;// in V
+V_AB = V_acrossR2-V1;// in V
+Vth = abs(V_AB);// in V
+Rth = (R1*R2)/(R1+R2)+R3+R4;// in ohm
+disp(Rth,"The value of Rth in ohm is");
+I_N = Vth/Rth;// in A
+disp(I_N,"The value of I_N in A is");
diff --git a/2384/CH2/EX2.23/ex2_23.sce b/2384/CH2/EX2.23/ex2_23.sce new file mode 100755 index 000000000..011b334a4 --- /dev/null +++ b/2384/CH2/EX2.23/ex2_23.sce @@ -0,0 +1,21 @@ +// Exa 2.23
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 2;// in ohm
+R2 = 4;// in ohm
+R3 = 6;// in ohm
+R4 = 4;// in ohm
+V = 16;// in v
+I1= 8;// in A
+V1= I1*R2;// in V
+I2= 16;// in A
+V2= I2*R3;// in V
+// Applying KVL : R2*I+V1+R3*I-V2+V+R1*I
+I= (V2-V1-V)/(R1+R2+R3);// in A
+Vth= V2-R3*I;// in V
+Rth= (R1+R2)*R3/((R1+R2)+R3)+R4;// in ohm
+disp(Vth,"The value of Vth in volts is : ")
+disp(Rth,"The value of Rth in ohm is : ")
diff --git a/2384/CH2/EX2.24/ex2_24.sce b/2384/CH2/EX2.24/ex2_24.sce new file mode 100755 index 000000000..f8c065bd2 --- /dev/null +++ b/2384/CH2/EX2.24/ex2_24.sce @@ -0,0 +1,16 @@ +// Exa 2.24
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 3;// in ohm
+R2 = 2;// in ohm
+R3 = 1;// in ohm
+R4 = 8;// in ohm
+R5 = 2;// in ohm
+V = 10;// in V
+R = ((R1+R2)*R5)/((R1+R2)+R5);// in ohm
+Rth = R + R3;// in ohm
+R_L = Rth;// in ohm
+disp(R_L,"The value of load resistance in ohm is");
diff --git a/2384/CH2/EX2.25/ex2_25.sce b/2384/CH2/EX2.25/ex2_25.sce new file mode 100755 index 000000000..59eaa804b --- /dev/null +++ b/2384/CH2/EX2.25/ex2_25.sce @@ -0,0 +1,21 @@ +// Exa 2.25
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+V = 250;// in V
+R1 = 10;// in ohm
+R2 = 10;// in ohm
+R3 = 10;// in ohm
+R4 = 10;// in ohm
+I2 = 20;// in A.
+//Applying KVL in GEFHG : -R1*I1-R2*I1-R2*I2 + V = 0;
+I1= (V-R2*I2)/(R1+R2);// in A
+V_AB= R3*I2+V-R1*I1;// in V
+Vth = V_AB;// in V
+Rth = (R1*R2)/(R1+R2)+R3+R4;// in ohm
+R_L = Rth;// in ohm
+disp(R_L,"The value of R_L in ohm is");
+Pmax = (Vth^2)/(4*R_L);//maximum power in W
+disp(Pmax,"The value of maximum power in W is");
diff --git a/2384/CH2/EX2.26/ex2_26.sce b/2384/CH2/EX2.26/ex2_26.sce new file mode 100755 index 000000000..e8155bcb0 --- /dev/null +++ b/2384/CH2/EX2.26/ex2_26.sce @@ -0,0 +1,20 @@ +// Exa 2.26
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 2;// in ohm
+R2 = 4;// in ohm
+R_L = 4;// in ohm
+V1 = 6;// in v
+V2 = 12;// in V
+// -R2*Ix -R1*Ix-V1+V2= 0;
+Ix = (V2-V1)/(R1+R2);// in A
+Vth = V1+R1*Ix;// in V
+Rth = (R1*R2)/(R1+R2);// in ohm
+I_N = Vth/Rth;// in A
+I = (I_N*Rth)/(Rth+R_L);// in A
+disp(I,"The current in A is");
+
+// Note: At last, there is calculation error to find the value of I, so the answer in the book is wrong.
diff --git a/2384/CH2/EX2.27/ex2_27.sce b/2384/CH2/EX2.27/ex2_27.sce new file mode 100755 index 000000000..54b1087c5 --- /dev/null +++ b/2384/CH2/EX2.27/ex2_27.sce @@ -0,0 +1,23 @@ +// Exa 2.27
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 3;// in ohm
+R2 = 6;// in ohm
+R_L = 4;// in ohm
+V = 27;// in V
+I=3;// in A
+// -I1+I2= I (i)
+// Applying KVL: I1*R1+I2*R2=V (ii)
+A= [-1 R1; 1 R2];
+B= [I V]
+I= B*A^-1;// Solving eq(i) and (2) by Matrix method
+I1= I(1);// in A
+I2= I(2);// in A
+Vth= R2*I2;// in V
+Rth= R1*R2/(R1+R2);// in ohm
+// current in 4 ohm resistor
+I= Vth/(Rth+R_L);// in A
+disp(I,"The current in 4 ohm resistor in A is : ")
diff --git a/2384/CH2/EX2.28/ex2_28.sce b/2384/CH2/EX2.28/ex2_28.sce new file mode 100755 index 000000000..9dde05b4c --- /dev/null +++ b/2384/CH2/EX2.28/ex2_28.sce @@ -0,0 +1,24 @@ +// Exa 2.28
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 20;// in ohm
+R2 = 12;// in ohm
+R3 = 8;// in ohm
+V1 = 90;// in V
+V2 = 60;// in V
+R_T = R1 + ((R2*R3)/(R2+R3));// in ohm
+I_T = V1/R_T;// in A
+I1 = I_T;// in A
+R_T = R2 + ((R1*R3)/(R1+R3));// in ohm
+I_T = V2/R_T;// in A
+I2 = (R3/(R3+R1))*I_T;// in A
+R_T = R1 + ((R2*R3)/(R2+R3));// in ohm
+I_T = 2;// in A (given)
+R = (R2*R3)/(R2+R3);// in ohm
+I3 = (R/(R1+R))*I_T;// in A
+// current in 20 ohm resistor
+I20 = I1-I2-I3;// in A
+disp(I20,"The current in 20 ohm resistor in A is");
diff --git a/2384/CH2/EX2.29/ex2_29.sce b/2384/CH2/EX2.29/ex2_29.sce new file mode 100755 index 000000000..1a287aa3a --- /dev/null +++ b/2384/CH2/EX2.29/ex2_29.sce @@ -0,0 +1,21 @@ +// Exa 2.29
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 10;// in ohm
+R2 = 20;// in ohm
+R3 = 60;// in ohm
+R4 = 30;// in ohm
+E1 = 120;// in V
+E2 = 60;// in V
+R_T = ((R2*R3)/(R2+R3)) + R4+R1;// in ohm
+I_T = E1/R_T;// in A
+I1 = (R3/(R2+R3))*I_T;// in A
+R_T = ( ((R1+R4)*R2)/((R1+R4)+R2) ) + R3;// in ohm
+I_T = E2/R_T;// in A
+I2 = ((R1+R4)/(R1+R4+R2))*I_T;// in A
+// current through R2 resistor
+I= I1+I2;// in A
+disp(I,"The current through R2 resistor in A is");
diff --git a/2384/CH2/EX2.3/ex2_3.sce b/2384/CH2/EX2.3/ex2_3.sce new file mode 100755 index 000000000..278a4940e --- /dev/null +++ b/2384/CH2/EX2.3/ex2_3.sce @@ -0,0 +1,17 @@ +// Exa 2.3
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 6;// in ohm
+R2 = 7;// in ohm
+R3 = 4;// in ohm
+R_L = 12;// in ohm
+V = 30;// in V
+Vth = (R3*V)/(R3+R1);// in V
+Rth = R2 + ((R3*R1)/(R3+R1)) ;// in ohm
+I_N = Vth/Rth;// in A
+//The current through 12 ohm resistor
+I = (I_N*Rth)/(Rth+R_L);// in ohm
+disp(I,"The current through 12 ohm resistor in A is");
diff --git a/2384/CH2/EX2.30/ex2_30.sce b/2384/CH2/EX2.30/ex2_30.sce new file mode 100755 index 000000000..6bd98d880 --- /dev/null +++ b/2384/CH2/EX2.30/ex2_30.sce @@ -0,0 +1,27 @@ +// Exa 2.30
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 4;// in ohm
+R2 = 4;// in ohm
+R3 = 8;// in ohm
+Ig = 3;// in A
+V = 15;// in V
+I1 = R1/(R1+R2)*Ig;// in A
+I2 = -I1;// in A
+I3 = 0;// in A
+R_T = ((R1+R2)*R3)/((R1+R2)+R3);// in ohm
+I_T = V/R_T;// in A
+I_2= R3/(R1+R2+R3)*I_T;// in A
+I_1 = I_2;// in A
+// Total current through upper 4 Ω resistor
+tot_cur_up_4ohm= I1+I2;// in A
+// Total current through lower 4 Ω resistor
+tot_cur_low_4ohm= I_1+I_2;// in A
+// Total current through 8Ω resistor
+tot_cur_8ohm= I3+I_T;// in A
+disp(tot_cur_up_4ohm,"Total current through upper 4 Ω resistor in A is : ")
+disp(tot_cur_low_4ohm,"Total current through lower 4 Ω resistor in A is : ")
+disp(tot_cur_8ohm,"Total current through 8 Ω resistor in A is : ")
diff --git a/2384/CH2/EX2.31/ex2_31.sce b/2384/CH2/EX2.31/ex2_31.sce new file mode 100755 index 000000000..d4717a36e --- /dev/null +++ b/2384/CH2/EX2.31/ex2_31.sce @@ -0,0 +1,28 @@ +// Exa 2.31
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 5;// in ohm
+R2 = 5;// in ohm
+R3 = 10;// in ohm
+V = 10;// in V
+Ig = 2;// in A
+I2 = (R1/R3)*Ig;// in A
+I1 = I2;// in A
+I3 = 0;// in A
+R_T = ((R1+R2)*R3)/((R1+R2)+R3);// in ohm
+I_T = V/R_T;// in A
+I_2 = (R3/((R1+R2)+R3))*I_T;// in A
+I_1 = I_2;// in A
+I_3 = I_1;// in A
+// Total current through upper in 5 Ω resistor
+tot_cur_up_5ohm = I1-I2;// in A
+// Total current through lower in 5 Ω resistor
+tot_cur_low_5ohm = I_1+I_2;// in A
+// Total current through 10 Ω resistor
+tot_cur_10ohm = I3+I_3;// in A
+disp(tot_cur_up_5ohm ,"The total current through upper in 5 Ω resistor in A is");
+disp(tot_cur_low_5ohm,"The total current through lower in 5 Ω resistor in A is");
+disp(tot_cur_10ohm,"The total current through in 10 Ω resistor in A is");
diff --git a/2384/CH2/EX2.4/ex2_4.sce b/2384/CH2/EX2.4/ex2_4.sce new file mode 100755 index 000000000..8aaf86e54 --- /dev/null +++ b/2384/CH2/EX2.4/ex2_4.sce @@ -0,0 +1,16 @@ +// Exa 2.4
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 5;// in ohm
+R2 = 10;// in ohm
+R3 = 7;// in ohm
+V = 20;// in V
+Vth = R2*V/(R1+R2);// in V
+Rth = R3 + ((R2*R1)/(R2+R1));// in ohm
+R_L = Rth;// in ohm
+disp(R_L,"The value of load resistance in ohm is");
+Pmax = (Vth^2)/(4*R_L);// in W
+disp(Pmax,"The magnitude of maximum power in W is");
diff --git a/2384/CH2/EX2.5/ex2_5.sce b/2384/CH2/EX2.5/ex2_5.sce new file mode 100755 index 000000000..cf5dc9c34 --- /dev/null +++ b/2384/CH2/EX2.5/ex2_5.sce @@ -0,0 +1,20 @@ +// Exa 2.5
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+V1 = 12;// in V
+V2 = 10;// in V
+R1 = 6;// in ohm
+R2 = 7;// in ohm
+R3 = 4;// in ohm
+R_T = R1 + ( (R2*R3)/(R2+R3) );// in ohm
+I_T = V1/R_T;// in A
+I1 = (R2/(R2+R3))*I_T;// in A
+R_T = R2 + ( (R1*R3)/(R1+R3) );// in ohm
+I_T = V2/R_T;// in A
+I2 = (R1*I_T)/(R1+R3);// in A
+// current across 4 ohm resistor
+I = I1+I2;// in A
+disp(I,"The current across 4 ohm resistor in A is");
diff --git a/2384/CH2/EX2.6/ex2_6.sce b/2384/CH2/EX2.6/ex2_6.sce new file mode 100755 index 000000000..9969329d9 --- /dev/null +++ b/2384/CH2/EX2.6/ex2_6.sce @@ -0,0 +1,23 @@ +// Exa 2.6
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 2;// in ohm
+R2 = 3;// in ohm
+R3 = 1;// in ohm
+R4= 2;// in ohm
+V1 = 4.2;// in V
+V2 = 3.5;// in V
+R_T =R1+R3+R2*R4/(R2+R4);// in ohm
+I_T = V1/R_T;// in A
+I1 = (R1/(R1+R2))*I_T;// in A
+R = R1+R3;// in ohm
+R_desh = (R*R2)/(R+R2);// in ohm
+R_T = R_desh+R1;// in ohm
+I_T = V2/R_T;// in A
+I2 = (R2/(R2+R))*I_T;// in A
+// current in the branch AB
+I = I2-I1;// in A
+disp(I,"The current in the branch AB of the circuit in A is");
diff --git a/2384/CH2/EX2.7/ex2_7.sce b/2384/CH2/EX2.7/ex2_7.sce new file mode 100755 index 000000000..6947ec3cf --- /dev/null +++ b/2384/CH2/EX2.7/ex2_7.sce @@ -0,0 +1,17 @@ +// Exa 2.7
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 2;// in ohm
+R2 = 4;// in ohm
+R3 = 8;// in ohm
+Ig = 2;// in A
+V = 20;// in V
+R_T = R1+R3;// in ohm
+I1 = V/R_T;// in A
+I2 = (R1/(R1+R3))*Ig;// in A
+// current through in 8 ohm resistor
+I = I1-I2;// in A
+disp(I,"The current through in 8 ohm resistor in A is");
diff --git a/2384/CH2/EX2.8/ex2_8.sce b/2384/CH2/EX2.8/ex2_8.sce new file mode 100755 index 000000000..8cc0b2cdc --- /dev/null +++ b/2384/CH2/EX2.8/ex2_8.sce @@ -0,0 +1,19 @@ +// Exa 2.8
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R1 = 4;// in ohm
+R2 = 24;// in ohm
+R_L = 16;// in ohm
+V1 = 20;// in V
+V2 = 30;// in V
+// V1-R1*I-R2*I-V2 = 0;
+I= (V1-V2)/(R1+R2)
+// V1-R1*I-Vth = 0;
+Vth = V1-R1*I;// in V
+Rth = (R1*R2)/(R1+R2);// in ohm
+// current through 16 ohm resistor
+I_L = Vth/(Rth+R_L);// in A
+disp(I_L,"The current through 16 ohm resistor in A is");
diff --git a/2384/CH2/EX2.9/ex2_9.sce b/2384/CH2/EX2.9/ex2_9.sce new file mode 100755 index 000000000..16804bbcb --- /dev/null +++ b/2384/CH2/EX2.9/ex2_9.sce @@ -0,0 +1,20 @@ +// Exa 2.9
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+R1 = 6;// in ohm
+R2 = 4;// in ohm
+R3 = 3;// in ohm
+R_L = 6;// in ohm
+V1 = 6;// in V
+V2 = 15;// in V
+// V1 - R1*I - R3*I -V2 = 0
+I= (V1-V2)/(R1+R3);
+// Vth - R3*I -V2 = 0;
+Vth =V2+R3*I;// in V
+Rth = ((R1*R3)/(R1+R3)) + R2;// in ohm
+// current through 6 ohm resistance
+I_L = Vth/(Rth+R_L);// in A
+disp(I_L,"The current through 6 ohm resistance in A is");
diff --git a/2384/CH3/EX3.10/ex3_10.sce b/2384/CH3/EX3.10/ex3_10.sce new file mode 100755 index 000000000..7516ee0c4 --- /dev/null +++ b/2384/CH3/EX3.10/ex3_10.sce @@ -0,0 +1,14 @@ +// Exa 3.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V1= 100/sqrt(2)*expm(%i*0*%pi/180);// in V
+V2= 200/sqrt(2)*expm(%i*60*%pi/180);// in V
+V3= 50/sqrt(2)*expm(%i*-90*%pi/180);// in V
+V4= 150/sqrt(2)*expm(%i*-45*%pi/180);// in V
+// The R.M.S. value of the resultant
+V_R= real(V1)+real(V2)+real(V3)+real(V4);// in V
+disp(V_R,"The R.M.S. value of the resultant in volts is : ")
+
diff --git a/2384/CH3/EX3.11/ex3_11.sce b/2384/CH3/EX3.11/ex3_11.sce new file mode 100755 index 000000000..ca500b754 --- /dev/null +++ b/2384/CH3/EX3.11/ex3_11.sce @@ -0,0 +1,19 @@ +// Exa 3.11
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Im = 15;// in A
+f = 60;// in Hz
+omega = 2*%pi * f;// in rad/sec
+t = 1/200;// in sec
+i = Im*sin(omega*t);// in A
+disp(i,"The value of current after 1/200 sec in A is");
+i = 10;// in A
+// i = Im*sind(omega*t);
+t = (asin(i/Im))/omega;// in sec
+t = t * 10^3;// in ms
+disp(t,"The time to reach 10 A in ms is");
+Iav = Im*0.637;// in A
+disp(Iav,"The average value in A is");
diff --git a/2384/CH3/EX3.12/ex3_12.sce b/2384/CH3/EX3.12/ex3_12.sce new file mode 100755 index 000000000..61850caf0 --- /dev/null +++ b/2384/CH3/EX3.12/ex3_12.sce @@ -0,0 +1,20 @@ +// Exa 3.12
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+Im = 42.42;// in A
+omega = 628;// in rad/sec
+t = 1/6.977;// in sec assumed
+i = Im*sind(omega*t);// in A
+disp(i,"The maximum value of current in A is");
+// omega = 2*%pi*f;
+f = omega/(2*%pi);// in Hz
+disp(f,"The frequency in Hz is");
+Irms = Im/(sqrt(2));// in A
+disp(Irms,"The rms value in A is");
+Iav = (2*Im)/%pi;// in A
+disp(Iav,"The average value in A is");
+k_f = Irms/Iav;
+disp(k_f,"The form factor is");
diff --git a/2384/CH3/EX3.13/ex3_13.sce b/2384/CH3/EX3.13/ex3_13.sce new file mode 100755 index 000000000..e2aa19a3e --- /dev/null +++ b/2384/CH3/EX3.13/ex3_13.sce @@ -0,0 +1,18 @@ +// Exa 3.13
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+phi = %pi/6;
+// Power factor
+powerfactor = cos(phi);// in lag
+disp(powerfactor,"The power factor is");
+Im = 22;// in A
+// The R.M.S value of current
+Irms = Im/sqrt(2);// in A
+disp(Irms,"The R.M.S value of current in A is");
+omega = 314;// in rad/sec
+// omega = 2*%pi*f;
+f = omega/(2*%pi);// in Hz
+disp(f,"The frequency in Hz is");
diff --git a/2384/CH3/EX3.14/ex3_14.sce b/2384/CH3/EX3.14/ex3_14.sce new file mode 100755 index 000000000..7332672e3 --- /dev/null +++ b/2384/CH3/EX3.14/ex3_14.sce @@ -0,0 +1,14 @@ +// Exa 3.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Im= 100;// in A
+Irms= sqrt(Im^2/2*integrate('1-cos(2*theta)','theta',0,%pi)/%pi);// in A
+disp(Irms,"The R.M.S value of current in A is : ")
+Iav= Im*integrate('sin(theta)','theta',0,%pi)/%pi;// in A
+disp(Iav,"The average value of current in A is : ")
+// The form factor
+kf= Irms/Iav;
+disp(kf,"The form factor is : ")
diff --git a/2384/CH3/EX3.15/ex3_15.sce b/2384/CH3/EX3.15/ex3_15.sce new file mode 100755 index 000000000..71ff16f56 --- /dev/null +++ b/2384/CH3/EX3.15/ex3_15.sce @@ -0,0 +1,24 @@ +// Exa 3.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+A= 2*10;// area under curve for a cycle
+B= 2;// base of half cycle
+Vav= 1/2*A/B;// in V
+// For line AB
+y1= 0;
+y2= 10;
+x1= 0;
+x2= 1;
+m_for_AB= (y2-y1)/(x2-x1);
+// For line BC
+y1= 10;
+y2= 0;
+x1= 1;
+x2= 2;
+m_for_BC= (y2-y1)/(x2-x1);
+Vrms= sqrt((integrate('(m_for_AB*t)^2','t',0,1)+integrate('(m_for_BC*t+20)^2','t',1,2))/2);// in V
+kf= Vrms/Vav;
+disp(kf,"The form factor is : ")
diff --git a/2384/CH3/EX3.2/ex3_2.sce b/2384/CH3/EX3.2/ex3_2.sce new file mode 100755 index 000000000..ce2081795 --- /dev/null +++ b/2384/CH3/EX3.2/ex3_2.sce @@ -0,0 +1,18 @@ +// Exa 3.2
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Im = 141.4;// in A
+t = 3;// in ms
+t = t * 10^-3;// in sec
+disp(Im,"The maximum value of current in A is");
+omega = 314;// in rad/sec
+// omega = 2*%pi*f;
+f = round(omega/(2*%pi));// in Hz
+disp(f,"The frequency in Hz is");
+T = 1/f;// in sec
+disp(T,"The time period in sec is");
+i = 141.4 * sin(omega*t);// in A
+disp(i,"The instantaneous value in A is");
diff --git a/2384/CH3/EX3.3/ex3_3.sce b/2384/CH3/EX3.3/ex3_3.sce new file mode 100755 index 000000000..99a352519 --- /dev/null +++ b/2384/CH3/EX3.3/ex3_3.sce @@ -0,0 +1,16 @@ +// Exa 3.3
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+f = 60;// in Hz
+Im = 120;// in A
+t = 1/360;// in sec
+omega = 2*%pi*f;// in rad/sec
+i = Im*sin(omega*t);// in A
+disp(i,"The value of current after 1/360 sec in A is");
+i = 96;// in A
+// i = Im*sind(omega*t);
+t = (asin(i/Im))/omega;// in sec
+disp(t,"The time taken to reach 96 A for the first time in sec is");
diff --git a/2384/CH3/EX3.4/ex3_4.sce b/2384/CH3/EX3.4/ex3_4.sce new file mode 100755 index 000000000..c9a5ec36f --- /dev/null +++ b/2384/CH3/EX3.4/ex3_4.sce @@ -0,0 +1,22 @@ +// Exa 3.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+i1 = 0;// in A
+i2 = 10;// in A
+i3 = 20;// in A
+i4 = 30;// in A
+i5 = 20;//in A
+i6 = 10;// in A
+n = 6;// unit less
+Iav = (i1+i2+i3+i4+i5+i6)/n;// in A
+disp(Iav,"The average value in A is");
+Irms = sqrt(( (i1^2) + (i2^2) + (i3^2) + (i4^2) + (i5^2) + (i6^2) )/n);// in A
+disp(Irms,"The RMS value in A is");
+k_f = Irms/Iav;// unit less
+disp(k_f,"The form factor is");
+Im = 30;// in A
+k_p = Im/Irms;// unit less
+disp(k_p,"The peak factor is");
diff --git a/2384/CH3/EX3.5/ex3_5.sce b/2384/CH3/EX3.5/ex3_5.sce new file mode 100755 index 000000000..e5b25dfc6 --- /dev/null +++ b/2384/CH3/EX3.5/ex3_5.sce @@ -0,0 +1,11 @@ +// Exa 3.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+theta1 = 60;// in degree
+theta2 = -45;// in degree
+// phase difference
+phi = theta1-theta2;// in degree
+disp(phi,"The phase difference in degree is");
diff --git a/2384/CH3/EX3.6/ex3_6.sce b/2384/CH3/EX3.6/ex3_6.sce new file mode 100755 index 000000000..a2633f725 --- /dev/null +++ b/2384/CH3/EX3.6/ex3_6.sce @@ -0,0 +1,15 @@ +// Exa 3.6
+clc;
+clear;
+close;
+format('v',7)
+// Givven data
+V1= 60*expm(%i*0*%pi/180);// in V
+V2= 40*expm(%i*-%pi/3);// in V
+add_V= V1+V2;// in V
+diff_V= V1-V2;// in V
+disp("The sum of V1 and V2 is : ")
+disp(string(abs(add_V))+" sin (theta"+string(atand(imag(add_V),real(add_V)))+"°) V")
+disp("The difference of V1 and V2 is : ")
+disp(string(abs(diff_V))+" sin (theta+"+string(atand(imag(diff_V),real(diff_V)))+"°) V")
+
diff --git a/2384/CH3/EX3.7/ex3_7.sce b/2384/CH3/EX3.7/ex3_7.sce new file mode 100755 index 000000000..cd8847ffc --- /dev/null +++ b/2384/CH3/EX3.7/ex3_7.sce @@ -0,0 +1,13 @@ +// Exa 3.7
+clc;
+clear;
+close;
+format('v',6)
+// Givven data
+Vo= 1;// in V (assumed)
+Vav= integrate('Vo*sin(theta)','theta',0,%pi)/(2*%pi);
+Vrms= sqrt(integrate('Vo^2*(1-cos(2*theta))/2','theta',0,%pi))*sqrt(1/(2*%pi));
+kf= Vrms/Vav;
+disp("The average value of output voltage in volts is : "+string(Vav)+"*Vo or Vo/%pi")
+disp("The R.M.S value of output voltage in volts is : "+string(Vrms)+"*Vo or Vo/2")
+disp(kf,"The form factor is : ")
diff --git a/2384/CH3/EX3.8/ex3_8.sce b/2384/CH3/EX3.8/ex3_8.sce new file mode 100755 index 000000000..9fe770005 --- /dev/null +++ b/2384/CH3/EX3.8/ex3_8.sce @@ -0,0 +1,12 @@ +// Exa 3.8
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+T = 0.3;// in sec
+V = 20;// in V
+Vav = 1/T*V*integrate('1','t',0,0.1)
+disp(Vav,"The average value of voltage in V is");
+Vrms =sqrt(1/T*V^2*integrate('1','t',0,0.1))
+disp(Vrms,"The R.M.S value of voltage in V is");
diff --git a/2384/CH3/EX3.9/ex3_9.sce b/2384/CH3/EX3.9/ex3_9.sce new file mode 100755 index 000000000..c0622fefa --- /dev/null +++ b/2384/CH3/EX3.9/ex3_9.sce @@ -0,0 +1,15 @@ +// Exa 3.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vm = 100;// in V
+phi = %pi/6;// in degree
+Vrms = Vm/(sqrt(2));// in V
+// Rectangular form of the voltage
+RectForm= Vrms*expm(%i*phi)
+disp(RectForm,"Rectangular form of the voltage in V is : ")
+disp("Polar form of the voltage :")
+disp("Magnitude of voltage in V is : "+string(abs(RectForm))+" V")
+disp("Angle is : "+string(atand(imag(RectForm),real(RectForm)))+" °")
diff --git a/2384/CH4/EX4.1/ex4_1.sce b/2384/CH4/EX4.1/ex4_1.sce new file mode 100755 index 000000000..d6b7d445a --- /dev/null +++ b/2384/CH4/EX4.1/ex4_1.sce @@ -0,0 +1,20 @@ +// Exa 4.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 10;// inohm
+V = 230;// in V
+f = 50;// in Hz
+I = V/R;// in A
+disp(I,"The currrent in A is");
+P =V*I;// in W
+disp(P,"The power consumed in W is");
+Vm = sqrt(2)*V;// in V
+Im =sqrt(2)*I;// in A
+omega = 2*%pi*f;// in rad/sec
+//Equation for voltage: V = Vm*sind(omega*t)
+//Equation for current: i = Im*sind(omega*t)
+disp("Voltage equation : v = "+string(Vm)+" sin ("+string(round(omega))+" t)")
+disp("Current equation : i = "+string(Im)+" sin ("+string(round(omega))+" t)")
diff --git a/2384/CH4/EX4.10/ex4_10.sce b/2384/CH4/EX4.10/ex4_10.sce new file mode 100755 index 000000000..79dae9e00 --- /dev/null +++ b/2384/CH4/EX4.10/ex4_10.sce @@ -0,0 +1,23 @@ +// Exa 4.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R = 120;// in ohm
+XC = 250;// in ohm
+I = 0.9;// in A
+Z= R-%i*XC;// in ohm
+phi= atand(imag(Z),real(Z))
+V=I*Z;// in V
+VR = I*R;// in V
+VC= I*XC;// in V
+P= abs(V)*I*cosd(phi);// in W
+Q= abs(V)*I*sind(phi);// in VAR
+disp(cosd(phi),"The power factor is : ")
+disp("Supply voltage : ")
+disp("Magnitude is : "+string(abs(V))+" V and angle is : "+string(atand(imag(V),real(V)))+" °")
+disp(VR,"The voltage across resistance in V is : ")
+disp(VC,"The voltage across capacitance in V is : ")
+disp(P,"The active power in W is : ")
+disp(Q,"The reactive power in VAR is : ")
diff --git a/2384/CH4/EX4.11/ex4_11.sce b/2384/CH4/EX4.11/ex4_11.sce new file mode 100755 index 000000000..f9dc7b0ec --- /dev/null +++ b/2384/CH4/EX4.11/ex4_11.sce @@ -0,0 +1,25 @@ +// Exa 4.11
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V = 230;// in V
+f = 50;// in Hz
+L = 0.06;// in H
+R = 2.5;// in ohm
+C = 6.8;// in µF
+C = C * 10^-6;// in F
+X_L = 2*%pi*f*L;// in ohm
+X_C = 1/(2*%pi*f*C);// in ohm
+Z = sqrt( (R^2) + ((X_L-X_C)^2) );// in ohm
+disp(Z,"The impedance in ohm is");
+I = V/Z;// in A
+disp(I,"The current in A is");
+// tan(phi) = (X_L-X_C)/R;
+phi = atand( (X_L-X_C)/R );// in lead
+disp("The phase angle between current and voltage is : "+string(abs(phi))+" lead");
+phi = acosd(R/Z);
+disp("The power factor is : "+string(cosd(phi))+" lead");
+P = V*I*cosd(phi);// in W
+disp(P,"The power consumed in W is");
diff --git a/2384/CH4/EX4.12/ex4_12.sce b/2384/CH4/EX4.12/ex4_12.sce new file mode 100755 index 000000000..e8b8964ad --- /dev/null +++ b/2384/CH4/EX4.12/ex4_12.sce @@ -0,0 +1,28 @@ +// Exa 4.12
+clc;
+clear;
+close;
+format('v',9)
+// GIven data
+R = 100;// in ohm
+L = 100;// in µH
+L = L * 10^-6;// in H
+C = 100;// in pF
+C = C * 10^-12;// in F
+V = 10;// in V
+// The resonant frequency
+f_r = 1/(2*%pi*sqrt(L*C));// in Hz
+disp(f_r,"The resonant frequency in Hz is");
+// current at resonance
+Ir = V/R;// in A
+disp(Ir,"The current at resonance in A is");
+X_L = 2*%pi*f_r*L;// in ohm
+// voltage across L at resonance
+V_L = Ir*X_L;// in V
+disp(V_L,"The voltage across L at resonance in V is");
+X_C = X_L;// in ohm
+// voltage across C at resonance
+V_C = Ir*X_C;// in V
+disp(V_C,"The voltage across C at resonance in V is");
+Q= 1/R*sqrt(L/C);
+disp(Q,"The Q-factor is : ")
diff --git a/2384/CH4/EX4.13/ex4_13.sce b/2384/CH4/EX4.13/ex4_13.sce new file mode 100755 index 000000000..c3010a2b7 --- /dev/null +++ b/2384/CH4/EX4.13/ex4_13.sce @@ -0,0 +1,37 @@ +// Exa 4.13
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R = 10;// in ohm
+L = 0.2;// in H
+C = 40;// in µF
+C = C * 10^-6;// in F
+V = 100;// in V
+f_r = 1/(2*%pi*sqrt(L*C));// in Hz
+disp(f_r,"The frequency at resonace in Hz is");
+Im = V/R;// in A
+disp(Im,"The current in A is");
+Pm = (Im^2)*R;// in W
+disp(Pm,"The power in W is");
+// voltage across R
+V_R = Im*R;// in V
+disp(V_R,"The voltage across R in V is");
+X_L = 2*%pi*f_r*L;// in ohm
+// voltage across L
+V_L = Im*X_L;// in V
+disp(V_L,"The voltage across L in V is");
+X_C = 1/(2*%pi*f_r*C);// in ohm
+// voltage across C
+V_C = Im*X_C;// in V
+disp(V_C,"The voltage across C in V is");
+omega = 2*%pi*f_r;// in rad/sec
+Q = (omega*L)/R;
+disp(Q,"The quality factor is");
+del_F = R/(4*%pi*L);
+f1 = f_r-del_F;// in Hz
+f2 = f_r+del_F;// in Hz
+disp("The half power frequencies are : "+string(f1)+" Hz and "+string(f2)+" Hz");
+BW = f2-f1;// in Hz
+disp(BW,"The bandwidth in Hz is : ")
diff --git a/2384/CH4/EX4.14/ex4_14.sce b/2384/CH4/EX4.14/ex4_14.sce new file mode 100755 index 000000000..1c20996b3 --- /dev/null +++ b/2384/CH4/EX4.14/ex4_14.sce @@ -0,0 +1,17 @@ +// Exa 4.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 10;// in ohm
+L = 15;// in µH
+L = L * 10^-6;// in H
+C = 100;// in pF
+C = C * 10^-12;// in F
+f_r = 1/(2*%pi*sqrt(L*C));// in Hz
+X_L = 2*%pi*f_r*L;// in ohm
+Q = X_L/R;// in ohm
+BW = f_r/Q;// in Hz
+BW = BW * 10^-3;// in kHz
+disp(BW,"The bandwidth in kHz is");
diff --git a/2384/CH4/EX4.15/ex4_15.sce b/2384/CH4/EX4.15/ex4_15.sce new file mode 100755 index 000000000..1b2f5e4b9 --- /dev/null +++ b/2384/CH4/EX4.15/ex4_15.sce @@ -0,0 +1,20 @@ +// Exa 4.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 1000;// in ohm
+L = 100;// in mH
+L = L * 10^-3;// in H
+C = 10;// in µµF
+C = C * 10^-12;// in F
+f_r = 1/(2*%pi*sqrt(L*C));// in Hz
+disp(f_r*10^-3,"The resonant frequency in kHz is");
+Q = (1/R)*(sqrt(L/C));
+disp(Q,"The quality factor is");
+f1 = f_r - R/(4*%pi*L);// in Hz
+f1 = f1 * 10^-3;// in kHz
+f2 = f_r + R/(4*%pi*L);// in Hz
+f2 = f2 * 10^-3;// in kHz
+disp("The half point frequencies are : "+string(f1)+" Hz and "+string(f2)+" Hz")
diff --git a/2384/CH4/EX4.16/ex4_16.sce b/2384/CH4/EX4.16/ex4_16.sce new file mode 100755 index 000000000..a3da2aa31 --- /dev/null +++ b/2384/CH4/EX4.16/ex4_16.sce @@ -0,0 +1,20 @@ +// Exa 4.16
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 20;// in ohm
+L = 31.8;// in mH
+L = L * 10^-3;// in H
+V = 230;// in V
+f = 50;// in Hz
+I_R = V/R;// in A
+X_L = 2*%pi*f*L;// in ohm
+I_L = V/X_L;// in A
+I = sqrt( (I_R^2) + (I_L^2) );// in A
+disp(I,"The line current in A is");
+phi= acosd( I_R/I);
+disp("The power factor is : "+string(cosd(phi))+" lag");
+P = V*I*cosd(phi);// in W
+disp(P,"The power consumed in W is");
diff --git a/2384/CH4/EX4.17/ex4_17.sce b/2384/CH4/EX4.17/ex4_17.sce new file mode 100755 index 000000000..978f0b7be --- /dev/null +++ b/2384/CH4/EX4.17/ex4_17.sce @@ -0,0 +1,29 @@ +// Exa 4.17
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+C = 50;// in µF
+C = C * 10^-6;// in F
+R = 20;// in ohm
+L = 0.05;// in H
+V = 200;// in V
+f = 50;// in Hz
+X_C = 1/(2*%pi*f*C);// in ohm
+Z1 = X_C;// in ohm
+I1 = V/X_C;// in A
+X_L = 2*%pi*f*L;// in ohm
+Z2 = sqrt( (R^2) + (X_L^2) );// in ohm
+I2 = V/Z2;// in A
+// tan(phi2) = X_L/R;
+phi2 = atand(X_L/R);// in degree
+phi1 = 90;// in degree
+I_cos_phi = I1*cosd(phi1) + I2*cosd(phi2);// in A
+I_sin_phi = I1*sind(phi1) - I2*sind(phi2);// in A
+phi= atand(I_sin_phi/I_cos_phi);// in °
+I= sqrt(I_cos_phi^2+I_sin_phi^2);// in A
+P= V*I*cosd(phi);// in W
+disp(I,"The line current in A is : ")
+disp("The power factor is : "+string(cosd(phi))+" lag");
+disp(P,"The power consumed in W is : ")
diff --git a/2384/CH4/EX4.18/ex4_18.sce b/2384/CH4/EX4.18/ex4_18.sce new file mode 100755 index 000000000..0be13ad98 --- /dev/null +++ b/2384/CH4/EX4.18/ex4_18.sce @@ -0,0 +1,13 @@ +// Exa 4.18
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V= 68+154*%i;// in V
+I1= 10+14*%i;// in A
+I2= 2+8*%i;// in A
+I= I1+I2;// in A
+phi= atand(imag(V),real(V))-atand(imag(I),real(I));// in °
+disp(phi,"The phase angle in ° is : ")
+disp("The power factor is : "+string(cosd(phi))+" lag")
diff --git a/2384/CH4/EX4.19/ex4_19.sce b/2384/CH4/EX4.19/ex4_19.sce new file mode 100755 index 000000000..1fbcf37b4 --- /dev/null +++ b/2384/CH4/EX4.19/ex4_19.sce @@ -0,0 +1,26 @@ +// Exa 4.19
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 50;// in ohm
+L = 318;// in mH
+L = L * 10^-3;// in H
+R2 = 75;// in ohm
+C = 159;// in µF
+C =C * 10^-6;// in F
+V = 230;// in V
+f = 50;// in Hz
+XL= 2*%pi*f*L;// in ohm
+Z1= R1+XL*%i;// in ohm
+I1= V/Z1;// in A
+XC= 1/(2*%pi*f*C);// in ohm
+Z2= R2-%i*XC;// in ohm
+I2= V/Z2;// in A
+I= I1+I2;// in A
+phi= atand(imag(I),real(I));// in °
+disp("Supply current : ")
+disp("Magnitude is : "+string(abs(I))+" A")
+disp("Angle : "+string(phi)+" °")
+disp("Power factor is : "+string(cosd(phi))+" lag")
diff --git a/2384/CH4/EX4.2/ex4_2.sce b/2384/CH4/EX4.2/ex4_2.sce new file mode 100755 index 000000000..871c0b015 --- /dev/null +++ b/2384/CH4/EX4.2/ex4_2.sce @@ -0,0 +1,13 @@ +// Exa 4.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 100;// in ohm
+i= '3*cos(omega*t)';// in A
+A= R*3^2;// assumed
+disp("Instantaneous power taken by resistor in watts is : ")
+disp(string(A/2)+" (1+cos(2*omega*t))")
+P= R*3^2/2*(1+cos(%pi/2));// in watts
+disp(P,"The average power in watts is : ")
diff --git a/2384/CH4/EX4.20/ex4_20.sce b/2384/CH4/EX4.20/ex4_20.sce new file mode 100755 index 000000000..c96991c37 --- /dev/null +++ b/2384/CH4/EX4.20/ex4_20.sce @@ -0,0 +1,23 @@ +// Exa 4.20
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V=250;// in V
+Z1= 70.7+70.7*%i;// in ohm
+Z2= 120+160*%i;// in ohm
+Z3= 120+90*%i;// in ohm
+Y1= 1/Z1;// in S
+Y2= 1/Z2;// in S
+Y3= 1/Z3;// in S
+Y_T= Y1+Y2+Y3;// in S
+phi= atand(imag(Y_T),real(Y_T));// in °
+disp("Total admittance of the circuit : ")
+disp("Magnitude is : "+string(abs(Y_T))+" mho")
+disp("Angle is : "+string(phi)+" °")
+I= V*Y_T;// in A
+disp("The supply current : ")
+disp("Magnitude is : "+string(abs(I))+" A")
+disp("Angle is : "+string(phi)+" °")
+disp("Power factor is : "+string(cosd(phi))+" ° lag")
diff --git a/2384/CH4/EX4.21/ex4_21.sce b/2384/CH4/EX4.21/ex4_21.sce new file mode 100755 index 000000000..205054447 --- /dev/null +++ b/2384/CH4/EX4.21/ex4_21.sce @@ -0,0 +1,22 @@ +// Exa 4.21
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vm = 100;// in V
+phi1= 30;// in °
+Im = 15;// in A
+phi2= 60;// in °
+V= Vm/sqrt(2)*expm(phi1*%i*%pi/180);// in V
+I= Im/sqrt(2)*expm(phi2*%i*%pi/180);// in A
+Z= V/I;// in ohm
+R= real(Z);// in ohm
+XC= abs(imag(Z));// in ohm
+phi= atand(imag(Z),real(Z));// in °
+P= abs(V)*abs(I)*cosd(phi);// in W
+disp("The impedance is : "+string(Z)+" Ω")
+disp("The resistance is : "+string(R)+" Ω")
+disp("The reactance is : "+string(XC)+" Ω")
+disp("The power is : "+string(P)+" W")
+disp("The power factor is : "+string(cosd(phi))+" leading")
diff --git a/2384/CH4/EX4.22/ex4_22.sce b/2384/CH4/EX4.22/ex4_22.sce new file mode 100755 index 000000000..d07a1bcf0 --- /dev/null +++ b/2384/CH4/EX4.22/ex4_22.sce @@ -0,0 +1,20 @@ +// Exa 4.22
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 100;// in W
+V = 120;// in V
+f= 50;// in Hz
+I = P/V;// in A
+V = 200;// in V
+V_R = 120;// in V
+V_L = sqrt( (V^2) - (V_R^2) );// in V
+// V_L = I*X_L;
+X_L = V_L/I;// in ohm
+// X_L = 2*%pi*f*L;
+L = X_L/(2*%pi*f);// in H
+disp(L,"The value of pure inductance in H is");
+
+// Note: There is calculation error to find the value of V_L, So the answer in the book is wrong and coding is correct.
diff --git a/2384/CH4/EX4.23/ex4_23.sce b/2384/CH4/EX4.23/ex4_23.sce new file mode 100755 index 000000000..56d82aa21 --- /dev/null +++ b/2384/CH4/EX4.23/ex4_23.sce @@ -0,0 +1,22 @@ +// Exa 4.23
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V=230;// in V
+f= 50;// in Hz
+Z1= 10*expm(-30*%i*%pi/180);// in ohm
+Z2= 20*expm(60*%i*%pi/180);// in ohm
+Z3= 40*expm(0*%i*%pi/180);// in ohm
+Y1= 1/Z1;// in S
+Y2= 1/Z2;// in S
+Y3= 1/Z3;// in S
+Y= Y1+Y2+Y3;// in S
+phi= atand(imag(Y),real(Y));// in °
+Z=1/Y;// in ohm
+P= V^2*abs(Y);// in W
+disp("The circuit admittance is : "+string(abs(Y))+" mho");
+disp("The circuit impedance is : "+string(abs(Z))+" Ω");
+disp(P,"The power consumed in W is : ")
+disp("The power factor is : "+string(cosd(phi))+" lead")
diff --git a/2384/CH4/EX4.24/ex4_24.sce b/2384/CH4/EX4.24/ex4_24.sce new file mode 100755 index 000000000..0eeace2ad --- /dev/null +++ b/2384/CH4/EX4.24/ex4_24.sce @@ -0,0 +1,17 @@ +// Exa 4.24
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+Z1= 10+15*%i;// in ohm
+Z2= 6-8*%i;// in ohm
+R1= 10;// in ohm
+R2= 6;// in ohm
+I_T= 15;// in A
+I1= I_T*Z2/(Z1+Z2);// in A
+I2= I_T*Z1/(Z1+Z2);// in A
+P1= (abs(I1))^2*R1;// in W
+P2= (abs(I2))^2*R2;// in W
+disp(P1,"The value of P1 in W is : ")
+disp(P2,"The value of P2 in W is : ")
diff --git a/2384/CH4/EX4.25/ex4_25.sce b/2384/CH4/EX4.25/ex4_25.sce new file mode 100755 index 000000000..105bd387e --- /dev/null +++ b/2384/CH4/EX4.25/ex4_25.sce @@ -0,0 +1,29 @@ +// Exa 4.25
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R = 8;// in ohm
+L = 0.12;// in H
+C = 140;// in µF
+C = C * 10^-6;// in F
+V = 230;// in V
+f = 50;// in Hz
+XL = 2*%pi*f*L;// in ohm
+XC= 1/(2*%pi*f*C);// in ohm
+Z= R+%i*XL-%i*XC;// in ohm
+I= V/Z;// in A
+phi= atand(imag(I),real(I));// in °
+PowerFactor= cosd(phi);
+VC= abs(I)*XC;// in V
+disp("Impedence of the entire circuit : ")
+disp("Magnitude is : "+string(abs(Z))+" Ω");
+disp("Angle is : "+string(atand(imag(Z),real(Z)))+" °")
+disp("Current flowing through the condensor : ")
+disp("Magnitude is : "+string(abs(I))+" Ω");
+disp("Angle is : "+string(atand(imag(I),real(I)))+" °")
+disp("Power factor of the circuit is : "+string(cosd(phi))+" lag")
+disp(VC,"The voltage across the condensor in V is : ")
+
+
diff --git a/2384/CH4/EX4.26/ex4_26.sce b/2384/CH4/EX4.26/ex4_26.sce new file mode 100755 index 000000000..4d6202cf6 --- /dev/null +++ b/2384/CH4/EX4.26/ex4_26.sce @@ -0,0 +1,17 @@ +// Exa 4.26
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+R = 10;// in ohm
+L = 0.1;// in H
+C = 8;// in µF
+C = C * 10^-6;// in F
+f_r = 1/(2*%pi*sqrt(L*C));// in Hz
+Q = (1/R) * (sqrt(L/C));
+del_F = R/(4*%pi*L);
+// The half power frequencies
+f1 = f_r - del_F;// in Hz
+f2 = f_r+del_F;// in Hz
+disp("The half power frequencies are : "+string(f1)+" Hz and "+string(f2)+" Hz")
diff --git a/2384/CH4/EX4.27/ex4_27.sce b/2384/CH4/EX4.27/ex4_27.sce new file mode 100755 index 000000000..783f9eff2 --- /dev/null +++ b/2384/CH4/EX4.27/ex4_27.sce @@ -0,0 +1,15 @@ +// Exa 4.27
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 15;// in ohm
+X_L = 10;// in ohm
+f_r = 50;// in Hz
+// X_L = 2*%pi*f_r*L;
+L = X_L/(2*%pi*f_r);// in H
+// value of capacitance
+C = 1/( L*( ((f_r*2*%pi)^2)+((R^2)/(L^2)) ));// in F
+C = C*10^6;// in µF
+disp(C,"The value of capacitance in µF is");
diff --git a/2384/CH4/EX4.28/ex4_28.sce b/2384/CH4/EX4.28/ex4_28.sce new file mode 100755 index 000000000..66eae8443 --- /dev/null +++ b/2384/CH4/EX4.28/ex4_28.sce @@ -0,0 +1,18 @@ +// Exa 4.28
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Z1= 3+4*%i;// in ohm
+Z2= 6+8*%i;// in ohm
+V= 230;// in V
+I1= V/Z1;// in A
+I2= V/Z2;// in A
+I_T= I1+I2;// in A
+phi= atand(imag(I_T),real(I_T));// in °
+P= V*abs(I_T)*cosd(phi);//in V
+disp("The value of current : ")
+disp(abs(I_T),"The magnitude in A is : ")
+disp(phi,"The phase angle in degree is : ")
+disp(P,"The power drawn from the source in W is : ")
diff --git a/2384/CH4/EX4.29/ex4_29.sce b/2384/CH4/EX4.29/ex4_29.sce new file mode 100755 index 000000000..98dd93b34 --- /dev/null +++ b/2384/CH4/EX4.29/ex4_29.sce @@ -0,0 +1,22 @@ +// Exa 4.29
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Z1= 1.6+%i*7.2;// in ohm
+Z2= 4+%i*3;// in ohm
+Z3= 6-%i*8;// in ohm
+V= 100;// in V
+Y2= 1/Z2;// in mho
+disp(Y2,"The admittance in mho is : ")
+Y3= 1/Z3;// in mho
+disp(Y3,"The admittance in mho is : ")
+ZT= Z1+1/(Y2+Y3);
+phi= atand(imag(ZT),real(ZT));
+disp("Total circuit impedance : ")
+disp("Magnitude : "+string(abs(ZT))+" Ω")
+disp("Angle : "+string(phi)+" °");
+IT= V/ZT;// in A
+PT= V*abs(IT)*cosd(phi);// in W
+disp(PT,"The total power supplied in W is : ")
diff --git a/2384/CH4/EX4.3/ex4_3.sce b/2384/CH4/EX4.3/ex4_3.sce new file mode 100755 index 000000000..67bc330b6 --- /dev/null +++ b/2384/CH4/EX4.3/ex4_3.sce @@ -0,0 +1,23 @@ +// Exa 4.3
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+I = 10;// in A
+V = 230;// in V
+f = 50;// in Hz
+X_L = V/I;// in ohm
+disp(X_L,"Inductive reactance in ohm is");
+// X_L = 2*%pi*f*L;
+L = X_L/(2*%pi*f);// in H
+disp(L,"Inductance of the coil in H is");
+Vrms = V;// in V
+Irms = I;// in A
+Vm = Vrms*sqrt(2);// in V
+Im = Irms*sqrt(2);// in A
+omega = 2*%pi*f;// in rad/sec
+//Equation for voltage: V = Vm*sind(omega*t)
+//Equation for current: i = Im*sind(omega*t)
+disp("Voltage equation : v = "+string(Vm)+" sin ("+string(round(omega))+" t)")
+disp("Current equation : i = "+string(Im)+" sin ("+string(round(omega))+" t - %pi/2)")
diff --git a/2384/CH4/EX4.30/ex4_30.sce b/2384/CH4/EX4.30/ex4_30.sce new file mode 100755 index 000000000..78674001e --- /dev/null +++ b/2384/CH4/EX4.30/ex4_30.sce @@ -0,0 +1,22 @@ +// Exa 4.30
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 4;// in ohm
+L = 0.5;// in H
+V = 100;// in V
+f = 50;// in Hz
+X_L = 2*%pi*f*L;// in ohm
+X_C = X_L;// in ohm
+// X_C = 1/(2*%pi*f*C);
+C = 1/(X_C*2*%pi*f);// in F
+C = C * 10^6;// in F
+disp(C,"The value of capacitance in µF is");
+I = V/R;// in A]
+V_C = I*X_C;// in V
+disp(V_C,"The voltage across the capacitance in V");
+omega = 2*%pi*f;// in rad/sec
+Q = (omega*L)/R;
+disp(Q,"The Q factor of the circuit is");
diff --git a/2384/CH4/EX4.4/ex4_4.sce b/2384/CH4/EX4.4/ex4_4.sce new file mode 100755 index 000000000..1cb8a4968 --- /dev/null +++ b/2384/CH4/EX4.4/ex4_4.sce @@ -0,0 +1,25 @@ +// Exa 4.4
+clc;
+clear;
+close;
+format('v',6)
+// GIven data
+C = 318;// in µF
+C = C * 10^-6;// in F
+V = 230;// in V
+f = 50;// in Hz
+X_C = 1/(2*%pi*f*C);// in ohm
+disp(X_C,"The capacitive reactance in ohm is");
+I = V/X_C;// in A
+disp(I,"The R.M.S value of current in A is");
+Vrms = V;// in V
+Irms = I;// in A
+Vm = Vrms*sqrt(2);// in V
+Im = Irms*sqrt(2);// in A
+omega = 2*%pi*f;// in rad/sec
+// V = Vm*sind(omega*t);
+// i = Im*sind((omega*t)+(%pi/2));
+//Equation for voltage: V = Vm*sind(omega*t)
+//Equation for current: i = Im*sind(omega*t)
+disp("Voltage equation : v = "+string(Vm)+" sin ("+string(round(omega))+" t)")
+disp("Current equation : i = "+string(Im)+" sin ("+string(round(omega))+" t + %pi/2)")
diff --git a/2384/CH4/EX4.5/ex4_5.sce b/2384/CH4/EX4.5/ex4_5.sce new file mode 100755 index 000000000..a2d6a060e --- /dev/null +++ b/2384/CH4/EX4.5/ex4_5.sce @@ -0,0 +1,24 @@ +// Exa 4.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 7;// in ohm
+L = 31.8;// in mH
+L = L * 10^-3;// in H
+V = 230;// in V
+f = 50;// in Hz
+X_L = 2*%pi*f*L;// in ohm
+Z = sqrt( (R^2)+(X_L^2) );// in ohm
+I = V/Z;// in A
+disp(I,"The circuit current in A is");
+// tand(phi) = X_L/R;
+phi = atand(X_L/R);// in degree lag
+disp(phi,"The phase angle in degree is");
+// Power factor
+powerfactor = cosd(phi);// in lag
+disp(powerfactor,"The power factor is");
+P = V*I*cosd(phi);// in W
+disp(P,"The power consumed in W is");
+
diff --git a/2384/CH4/EX4.6/ex4_6.sce b/2384/CH4/EX4.6/ex4_6.sce new file mode 100755 index 000000000..f72ac5dc0 --- /dev/null +++ b/2384/CH4/EX4.6/ex4_6.sce @@ -0,0 +1,22 @@ +// Exa 4.6
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 400;// in W
+f = 50;// in Hz
+V = 120;// in V
+phi= acosd(0.8);// in °
+// P =V*I*cos(phi);
+I = P/(V*cosd(phi));// in A
+Z= V/I;// in ohm
+Z= Z*expm(%i*phi*%pi/180);// ohm
+R= real(Z);// in ohm
+XL= imag(Z);// in ohm
+// Formula XL= 2*%pi*f*L
+L= XL/(2*%pi*f);// in H
+disp(R,"The value of R in Ω is : ")
+disp(L,"The value of L in H is : ")
+
+
diff --git a/2384/CH4/EX4.7/ex4_7.sce b/2384/CH4/EX4.7/ex4_7.sce new file mode 100755 index 000000000..b68143fe7 --- /dev/null +++ b/2384/CH4/EX4.7/ex4_7.sce @@ -0,0 +1,25 @@ +// Exa 4.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 17.32;// in ohm
+L = 31.8;// in mH
+L = L * 10^-3;// in H
+V = 200;// in V
+f = 50;// in Hz
+X_L = 2*%pi*f*L;// in ohm
+Z = sqrt( (R^2) + (X_L^2) );// in ohm
+I = V/Z;// in A
+phi =acosd( R/Z);// in °
+ActiveCom= I*cosd(phi);// in A
+ReactiveCom= I*sind(phi);// in A
+disp(ActiveCom,"The active component of current in A is : ")
+disp(ReactiveCom,"The reactive component of current in A is : ")
+P= V*I*cosd(phi);// in W
+disp(P,"The active power in W is : ")
+Q= V*I*sind(phi);// in VAR
+disp(Q,"The reactive power in VAR is : ")
+
+// Note: There is calculation error to evaluate the value of P, so the answer in the book is wrong.
diff --git a/2384/CH4/EX4.8/ex4_8.sce b/2384/CH4/EX4.8/ex4_8.sce new file mode 100755 index 000000000..389e661bd --- /dev/null +++ b/2384/CH4/EX4.8/ex4_8.sce @@ -0,0 +1,21 @@ +// Exa 4.8
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+R = 20;// in ohm
+C = 200;// in µF
+C=C*10^-6
+f =50;// in Hz
+//I = 10.8 sin(314*t)
+Im = 10.8;// in A
+I = Im/sqrt(2);// in A
+V_R = I*R;// in V
+disp(V_R,"The voltage across 20Ω resistor in V is : ")
+//Vc = I*X_C and X_C = 1/omega*C;
+omega = 2*%pi*f;// in rad/sec
+Vc = I * 1/(omega*C);// in V
+disp(Vc,"The voltage across 200 µF capacitor in V is");
+V = sqrt( (V_R^2) + (Vc^2) );// in V
+disp(V,"The voltage across the circuit in V is");
diff --git a/2384/CH4/EX4.9/ex4_9.sce b/2384/CH4/EX4.9/ex4_9.sce new file mode 100755 index 000000000..713178442 --- /dev/null +++ b/2384/CH4/EX4.9/ex4_9.sce @@ -0,0 +1,36 @@ +// Exa 4.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+f= 60;// in Hz
+disp("Part (a)")
+Z= 12+30*%i;
+R= real(Z);// in ohm
+XL= imag(Z);// in ohm
+// Formula XL= 2*%pi*f*L
+L= XL/(2*%pi*f);// in H
+L= L*10^3;// in mH
+disp(R,"The value of resistance in Ω is : ")
+disp(L,"The value of inductance in mH is : ")
+L= L*10^-3;// in H
+disp("Part (b)")
+Z= 0-60*%i;
+R= real(Z);// in ohm
+XC= (abs(imag(Z)));// in ohm
+// Formula XC= 1/(2*%pi*f*C)
+C= 1/(2*%pi*XC*f);// in H
+C= C*10^6;// in µF
+disp(R,"The value of resistance in Ω is : ")
+disp(C,"The value of inductance in µF is : ")
+C= C*10^-6;// in F
+disp("Part (c)")
+Z= 20*expm(60*%i*%pi/180)
+R= real(Z);// in ohm
+XL= imag(Z);// in ohm
+// Formula XL= 2*%pi*f*L
+L= XL/(2*%pi*f);// in H
+L= L*10^3;// in mH
+disp(R,"The value of resistance in Ω is : ")
+disp(L,"The value of inductance in mH is : ")
diff --git a/2384/CH5/EX5.1/ex5_1.sce b/2384/CH5/EX5.1/ex5_1.sce new file mode 100755 index 000000000..6e08018c0 --- /dev/null +++ b/2384/CH5/EX5.1/ex5_1.sce @@ -0,0 +1,23 @@ +// Exa 5.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 20;// in ohm
+X_L = 15;// in ohm
+V_L = 400;// in V
+f = 50;// in Hz
+V_Ph = V_L/sqrt(3);// in V
+Z_Ph = sqrt( (R^2) + (X_L^2) );// in ohm
+I_Ph = V_Ph/Z_Ph;// in A
+I_L = I_Ph;// in A
+disp(I_L,"The line current in A is");
+//pf = cos(phi) = R_Ph/Z_Ph;
+R_Ph = R;// in ohm
+phi= acosd(R_Ph/Z_Ph);
+// Power factor
+pf= cosd(phi);// in °
+disp("The power factor is : "+string(pf)+"° lag.");
+P = sqrt(3)*V_L*I_L*cosd(phi);// in W
+disp(P,"The power supplied in W is");
diff --git a/2384/CH5/EX5.10/ex5_10.sce b/2384/CH5/EX5.10/ex5_10.sce new file mode 100755 index 000000000..28f3a51fe --- /dev/null +++ b/2384/CH5/EX5.10/ex5_10.sce @@ -0,0 +1,20 @@ +// Exa 5.10
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+P = 12;// in kW
+P = P * 10^3;// in W
+V_L = 400;// in V
+I_L = 20;// in A
+I_Ph = I_L;// in A
+disp(I_Ph,"The phase current in A is");
+V_Ph = V_L/sqrt(3);// in V
+Z_Ph = V_Ph/I_Ph;// in ohm
+disp(Z_Ph,"The impedance of load in ohm is");
+// P = sqrt(3)*V_L*I_L*cos(phi);
+phi= acosd(P/(sqrt(3)*V_L*I_L));// in lag
+// power factor
+pf= cosd(phi);// lag
+disp("The power factor is : "+string(pf)+" lag.");
diff --git a/2384/CH5/EX5.11/ex5_11.sce b/2384/CH5/EX5.11/ex5_11.sce new file mode 100755 index 000000000..40b2a3a64 --- /dev/null +++ b/2384/CH5/EX5.11/ex5_11.sce @@ -0,0 +1,20 @@ +// Exa 5.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Z_Ph= 8+6*%i;// in ohm
+V_L= 400;// in V
+V_Ph= V_L/sqrt(3);// in V
+I_Ph= V_Ph/Z_Ph;// in A
+I_L= I_Ph;// in A
+phi= atand(imag(I_L),real(I_L));// in °
+disp(abs(I_L),"The line current in A is : ")
+// power factor
+pf= cosd(phi);// lagging
+disp("Power factor is : "+string(pf)+" lagging")
+P= sqrt(3)*V_L*abs(I_L)*cosd(phi);// in W
+disp(P,"The three phase power in W is : ")
+S= sqrt(3)*V_L*abs(I_L);// in VA.
+disp(S,"The three phase volt-amperes in VA is : ")
diff --git a/2384/CH5/EX5.12/ex5_12.sce b/2384/CH5/EX5.12/ex5_12.sce new file mode 100755 index 000000000..94f8dfc49 --- /dev/null +++ b/2384/CH5/EX5.12/ex5_12.sce @@ -0,0 +1,14 @@ +// Exa 5.12
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+W1 = 20;// in kW
+W2 = -5;// in kW
+P = W1+W2;// in kW
+disp(P,"The power in kW is : ")
+phi = (atand( sqrt(3)*((W1-W2)/(W1+W2)) ));// in lag
+// Power factor of the load
+pf= cosd(phi)
+disp(pf,"The power factor of the load is : ");
diff --git a/2384/CH5/EX5.13/ex5_13.sce b/2384/CH5/EX5.13/ex5_13.sce new file mode 100755 index 000000000..e8e2d0230 --- /dev/null +++ b/2384/CH5/EX5.13/ex5_13.sce @@ -0,0 +1,17 @@ +// Exa 5.13
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V_L = 400;// in V
+I_L = 10;// in A
+W2= 1;// assumed
+W1= 2*W2;
+phi= atand(sqrt(3)*(W1-W2)/(W1+W2));
+W1= V_L*I_L*cosd(30-phi);// in W
+W2= V_L*I_L*cosd(30+phi);// in W
+disp(W1,"The reading of first wattmeter in W is : ")
+disp(W2,"The reading of second wattmeter in W is : ")
+
+
diff --git a/2384/CH5/EX5.14/ex5_14.sce b/2384/CH5/EX5.14/ex5_14.sce new file mode 100755 index 000000000..b45be8d6a --- /dev/null +++ b/2384/CH5/EX5.14/ex5_14.sce @@ -0,0 +1,24 @@ +// Exa 5.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V_L = 400;// in V
+f = 50;// in Hz
+I_L = 17.32;// in A
+phi = acosd(0.8);
+I_Ph =I_L/sqrt(3);// in A
+disp(I_Ph,"The phase current in A is");
+V_Ph=V_L;// in V
+Z_Ph = V_Ph/I_Ph;// in ohm
+Z_Ph= Z_Ph*expm(phi*%i*%pi/180);// in ohm
+R= real(Z_Ph);// in ohm
+XL= imag(Z_Ph);// in ohm
+L= XL/(2*%pi*f);// in H
+L= L*10^3;// in mH
+disp(R,"The resistance of the coil in Ω is : ")
+disp(L,"The inductance of the coil in mH is : ")
+// The power drawn by each coil
+P_Ph= V_Ph*I_Ph*cosd(phi);// in W
+disp(P_Ph,"The power drawn by each coil in W is : ")
diff --git a/2384/CH5/EX5.15/ex5_15.sce b/2384/CH5/EX5.15/ex5_15.sce new file mode 100755 index 000000000..53cbdb0f5 --- /dev/null +++ b/2384/CH5/EX5.15/ex5_15.sce @@ -0,0 +1,17 @@ +// Exa 5.15
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+P = 30;// in kW
+pf = 0.7;
+// cosd(phi) = pf;
+phi = acosd(pf);// in degree
+// P = sqrt(3)*V_L*I_L*cosd(phi);
+theta = 30;// in degree
+V_LI_L = P/(sqrt(3)*cosd(phi));
+W1 = V_LI_L*cosd(theta-phi);// in kW
+disp(W1,"The reading of first wattmeter in kW is");
+W2 = V_LI_L*cosd(theta+phi);// in kW
+disp(W2,"The reading of second wattmeter in kW is");
diff --git a/2384/CH5/EX5.16/ex5_16.sce b/2384/CH5/EX5.16/ex5_16.sce new file mode 100755 index 000000000..420163b9e --- /dev/null +++ b/2384/CH5/EX5.16/ex5_16.sce @@ -0,0 +1,27 @@ +// Exa 5.16
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+P = 18;// in kW
+P= P*10^3;// in W
+I_L = 60;// in A
+V_L = 440;// in V
+f= 50;// in Hz
+// P = sqrt(3)*V_L*I_L*cosd(phi);
+phi= acosd(P/(sqrt(3)*V_L*I_L));// in °
+I_L= I_L*expm(phi*%pi*%i/180);// in A
+I_Ph= I_L;// in A
+V_Ph= V_L/sqrt(3);// in V
+Z_Ph= V_Ph/I_Ph;// in ohm
+R= real(Z_Ph);// in ohm
+XC=abs(imag(Z_Ph));// in ohm
+C = 1/(2*%pi*f*XC);// in F
+C=C*10^6;// in µF
+// Power factor
+pf= cosd(phi);// lead
+disp("The power factor is : "+string(pf)+" leading")
+disp(R,"The resistance in Ω is : ")
+disp(C,"The capacitance in µF is : ");
+disp("The load is capacitive in nature.")
diff --git a/2384/CH5/EX5.17/ex5_17.sce b/2384/CH5/EX5.17/ex5_17.sce new file mode 100755 index 000000000..9754ebf2e --- /dev/null +++ b/2384/CH5/EX5.17/ex5_17.sce @@ -0,0 +1,29 @@ +// Exa 5.17
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V_L = 400;// in V
+f = 50;// in Hz
+W1 = 8000;// in W
+W2 = 4000;// in W
+W = W1+W2;// in W
+phi =(atand( sqrt(3)*((W1-W2)/(W1+W2)) ));// in lag
+P = W;// in W
+//P = sqrt(3)*V_L*I_L*cosd(phi);
+I_L = P/(sqrt(3)*V_L*cosd(phi));// in A
+V_Ph = V_L/sqrt(3);// in V
+I_Ph = I_L;// in A
+Z_Ph = V_Ph/I_Ph;// in ohm
+Z_Ph= Z_Ph*expm(phi*%i*%pi/180);// ohm
+R_Ph= real(Z_Ph);// in ohm
+XL_Ph= imag(Z_Ph);// in ohm
+L_Ph= XL_Ph/(2*%pi*f);// in H
+// power factor
+pf= cosd(phi);
+disp(pf,"The power factor is : ")
+disp(I_L,"The line current in A is");
+disp(Z_Ph,"The impedance of each phase in Ω is : ")
+disp(R_Ph,"The resistance of each phase in Ω is : ")
+disp(L_Ph,"The inductance of each phase in H is : ")
diff --git a/2384/CH5/EX5.2/ex5_2.sce b/2384/CH5/EX5.2/ex5_2.sce new file mode 100755 index 000000000..b60769f5e --- /dev/null +++ b/2384/CH5/EX5.2/ex5_2.sce @@ -0,0 +1,24 @@ +// Exa 5.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R_Ph = 16;// in ohm
+X_L = 12;// in ohm
+V_L = 400;// in V
+disp(V_L,"The line voltage in V is");
+f = 50;// in Hz
+V_Ph = V_L/sqrt(3);// in V
+disp(V_Ph,"The phase voltage in V is");
+Z_Ph = R_Ph + %i*X_L;// in ohm
+I_Ph= V_Ph/Z_Ph;// in A
+I_L= I_Ph;// in A
+phi= atand(imag(I_L),real(I_L));
+cos_phi= R_Ph/abs(Z_Ph);
+disp(abs(I_L),"The line current in A is : ")
+disp(abs(I_Ph),"The line current in A is : ")
+disp("Power factor is : "+string(cos_phi)+" lagging")
+P= sqrt(3)*V_L*abs(I_L)*cos_phi;// in W
+disp(P,"The power absorbed in W is : ")
+
diff --git a/2384/CH5/EX5.3/ex5_3.sce b/2384/CH5/EX5.3/ex5_3.sce new file mode 100755 index 000000000..9c9133673 --- /dev/null +++ b/2384/CH5/EX5.3/ex5_3.sce @@ -0,0 +1,23 @@ +// Exa 5.3
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+P = 1.5;// in kW
+P = P * 10^3;// in W
+pf = 0.2;// in lag
+phi= acosd(pf);
+V_L = 400;// in V
+f = 50;// in Hz
+V_Ph = V_L/sqrt(3);// in V
+//P = sqrt(3)*V_L*I_L*cos(phi);
+I_L = P/(sqrt(3)*V_L*cosd(phi));// in A
+I_Ph = I_L;// in A
+Z_Ph = V_Ph/I_Ph;// in ohm
+R_Ph = Z_Ph*cosd(phi);// in ohm
+disp(R_Ph,"The Resistance in Ω is");
+X_Ph = sqrt( (Z_Ph^2) - (R_Ph^2) );// in ohm
+L_Ph = X_Ph/(2*%pi*f);// in H
+disp(L_Ph,"The inductance in H is");
+
diff --git a/2384/CH5/EX5.4/ex5_4.sce b/2384/CH5/EX5.4/ex5_4.sce new file mode 100755 index 000000000..afa3d1e16 --- /dev/null +++ b/2384/CH5/EX5.4/ex5_4.sce @@ -0,0 +1,22 @@ +// Exa 5.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R = 5;// in ohm
+L =0.02;// in H
+V_L = 440;// in V
+f = 50;// in Hz
+X_L = 2*%pi*f*L;// in ohm
+Z_Ph = sqrt( (R^2)+(X_L^2) );// in ohm
+V_Ph = V_L;// in V
+I_Ph = V_Ph/Z_Ph;// in A
+I_L = sqrt(3)*I_Ph;// in A
+disp(I_L,"The line current in A is");
+phi = acosd(R/Z_Ph);// in lag
+P = sqrt(3)*V_L*I_L*cosd(phi);// in W
+P= P*10^-3;// in kW
+disp(P,"The total power absorbed in kW is");
+
+// Note: To evaluate the value of P, the wrong value of I_L is putted , so the calculated value of P in the book is not correct
diff --git a/2384/CH5/EX5.5/ex5_5.sce b/2384/CH5/EX5.5/ex5_5.sce new file mode 100755 index 000000000..bda65c800 --- /dev/null +++ b/2384/CH5/EX5.5/ex5_5.sce @@ -0,0 +1,24 @@ +// Exa 5.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V_L = 400;// in V
+f = 50;// in Hz
+I_L = 17.32;// in A
+pf = 0.8;//in lag
+I_Ph = I_L/sqrt(3);// in A
+disp(I_Ph,"The phase current in A is");
+V_Ph = V_L;// in V
+Z_Ph = V_Ph/I_Ph;// in ohm
+phi = acosd(pf)// in lag
+R_Ph = Z_Ph*cosd(phi);// in ohm
+disp(R_Ph,"The resistance of coil in Ω is");
+X_Ph = sqrt( (Z_Ph^2) - (R_Ph^2) );// in ohm
+// X_Ph = 2*%pi*f*L;
+L = X_Ph/(2*%pi*f);// in H
+L = L * 10^3;// in mH
+disp(L,"The inductance of coil in mH is");
+P = V_Ph*I_Ph*cosd(phi);// in W
+disp(P,"The power drawn by each coil in W is");
diff --git a/2384/CH5/EX5.6/ex5_6.sce b/2384/CH5/EX5.6/ex5_6.sce new file mode 100755 index 000000000..0a3288f34 --- /dev/null +++ b/2384/CH5/EX5.6/ex5_6.sce @@ -0,0 +1,12 @@ +// Exa 5.6
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+W1 = 1000;// in W
+W2 = 550;// in W
+phi = (atand( sqrt(3)*((W1-W2)/(W1+W2)) ));//in °
+// power factor
+pf= cosd(phi);// lag
+disp("The power factor of the load is : "+string(cosd(phi))+" lag.");
diff --git a/2384/CH5/EX5.7/ex5_7.sce b/2384/CH5/EX5.7/ex5_7.sce new file mode 100755 index 000000000..a6b0fa3cc --- /dev/null +++ b/2384/CH5/EX5.7/ex5_7.sce @@ -0,0 +1,17 @@ +// Exa 5.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+W1 = 2000;// in W
+W2 = 500;// in W
+phi = (atand( sqrt(3)*((W1-W2)/(W1+W2)) ));// in lag
+// power factor
+pf= cosd(phi);// lagging
+disp("Part (i) : Power factor is : "+string(pf)+" lagging");
+W2 = -W2;// in W
+phi = (atand( sqrt(3)*((W1-W2)/(W1+W2)) ));// in lag
+// power factor
+pf= cosd(phi);// lagging
+disp("Part (ii) : Power factor is : "+string(pf)+" lagging");
diff --git a/2384/CH5/EX5.8/ex5_8.sce b/2384/CH5/EX5.8/ex5_8.sce new file mode 100755 index 000000000..b54f2c247 --- /dev/null +++ b/2384/CH5/EX5.8/ex5_8.sce @@ -0,0 +1,13 @@ +// Exa 5.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+W1 = 375;// in W
+W2 = -50;// in W
+// tan(phi) = sqrt(3)*((W1-W2)/(W1+W2));
+phi = atand(sqrt(3)*((W1-W2)/(W1+W2)));// in degree
+// power factor
+pf= cosd(phi);// lag
+disp("The power factor is : "+string(pf)+" lag.");
diff --git a/2384/CH5/EX5.9/ex5_9.sce b/2384/CH5/EX5.9/ex5_9.sce new file mode 100755 index 000000000..91c5ebdc9 --- /dev/null +++ b/2384/CH5/EX5.9/ex5_9.sce @@ -0,0 +1,21 @@ +// Exa 5.9
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+W1 = 300;// in kW
+W2 = 100;// in kW
+V_L= 2000;// in V
+Eta= 90/100;
+P = W1+W2;// in kW
+disp(P,"The power input in kW is");
+// tan(phi) = sqrt(3)*((W1-W2)/(W1+W2));
+phi = atand(sqrt(3)*((W1-W2)/(W1+W2)));
+pf = cosd(phi);// power factor
+disp(pf,"The power factor is");
+// P = sqrt(3)*V_L*I_L*cosd(phi);
+I_L = (P*10^3)/(sqrt(3)*V_L*pf);// in A
+disp(I_L,"The line current in A is");
+output = P*Eta;// in kW
+disp(output,"The power output in kW is");
diff --git a/2384/CH6/EX6.1/ex6_1.sce b/2384/CH6/EX6.1/ex6_1.sce new file mode 100755 index 000000000..a9c63ea1d --- /dev/null +++ b/2384/CH6/EX6.1/ex6_1.sce @@ -0,0 +1,15 @@ +// Exa 6.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rm = 8;// in ohm
+Im = 20;// in mA
+Im = Im * 10^-3;// in A
+I = 1;// in A
+// Multiplying factor
+N = I/Im;
+// Shunt resistance
+Rsh = Rm/(N-1);// in ohm
+disp(Rsh,"The shunt resistance required in Ω is");
diff --git a/2384/CH6/EX6.10/ex6_10.sce b/2384/CH6/EX6.10/ex6_10.sce new file mode 100755 index 000000000..0bf0afdde --- /dev/null +++ b/2384/CH6/EX6.10/ex6_10.sce @@ -0,0 +1,18 @@ +// Exa 6.10
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+N = 100;
+I = 20;// in A
+V = 210;// in V
+pf = 0.8;// in lad
+Er = 350;// in rev
+a = 3.36;// assumed
+Et = (a*3600)/3600;// in kWh
+// 1 kWh = 100;// revolution
+Et = Et*N;// revolution
+// Percentage error
+PerError = ((Er-Et)/Et)*100;// in %
+disp(PerError,"The percentage error in % is");
diff --git a/2384/CH6/EX6.11/ex6_11.sce b/2384/CH6/EX6.11/ex6_11.sce new file mode 100755 index 000000000..43edbf216 --- /dev/null +++ b/2384/CH6/EX6.11/ex6_11.sce @@ -0,0 +1,17 @@ +// Exa 6.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+I = 5;// in A
+V = 230;// in V
+N = 61;// number of revolution
+t = 37;// in sec
+// speed of the disc
+discSpeed= 500;// in rev/kWh
+Er = N/discSpeed;
+Et = (V*I*t)/(3600*100);
+// percentage error
+PerError = ((Er-Et)/Et)*100;// in %
+disp(PerError,"The percentage error in % is");
diff --git a/2384/CH6/EX6.2/ex6_2.sce b/2384/CH6/EX6.2/ex6_2.sce new file mode 100755 index 000000000..1a79a8d25 --- /dev/null +++ b/2384/CH6/EX6.2/ex6_2.sce @@ -0,0 +1,10 @@ +// Exa 6.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rm = 6;// in ohm
+Rsh = 0.025;// in ohm
+N = 1 + (Rm/Rsh);// multiplying factor
+disp(N,"The multiplying factor is");
diff --git a/2384/CH6/EX6.3/ex6_3.sce b/2384/CH6/EX6.3/ex6_3.sce new file mode 100755 index 000000000..bf18e1d43 --- /dev/null +++ b/2384/CH6/EX6.3/ex6_3.sce @@ -0,0 +1,16 @@ +// Exa 6.3
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Rm = 5;// in ohm
+Im = 15;// in mA
+Im = Im * 10^-3;// in A
+I = 1;// in A
+N = I/Im;// multiplying factor
+Rsh = Rm/(N-1);// in ohm
+disp(Rsh,"The resiatnce to be connected in parallel in Ω is");
+V = 10;// in V
+Rs = (V/Im)-Rm;// in ohm
+disp(Rs,"The resiatnce to be connected in series in Ω is");
diff --git a/2384/CH6/EX6.4/ex6_4.sce b/2384/CH6/EX6.4/ex6_4.sce new file mode 100755 index 000000000..f512b3a6f --- /dev/null +++ b/2384/CH6/EX6.4/ex6_4.sce @@ -0,0 +1,16 @@ +// Exa 6.4
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+V=250;// full scale voltage reading in V
+Rm = 2;// in ohm
+Rsh = 2;// in m ohm
+Rsh = Rsh * 10^-3;// in ohm
+R = 5000;// in ohm
+Im = V/(Rm+R);// in A
+Ish = (Im*Rm)/Rsh;// in A
+// Current range of instrument
+I = Im+Ish;// in A
+disp(I,"The current range of instrument in A is");
diff --git a/2384/CH6/EX6.5/ex6_5.sce b/2384/CH6/EX6.5/ex6_5.sce new file mode 100755 index 000000000..adfa5dfca --- /dev/null +++ b/2384/CH6/EX6.5/ex6_5.sce @@ -0,0 +1,19 @@ +// Exa 6.5
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 230;// in V
+I = 35;// in A
+N = 200;
+t = 64;// in sec
+kwh = 500;
+phi= acosd(0.8);// in °
+Er = N/kwh;// in kWh
+Et = V*I*cosd(phi)*t;// in Joules
+Et = Et/3600;// in W hour
+Et = Et * 10^-3;// in kWh
+// percentage error
+PerError = ((Er-Et)/Et)*100;// in %
+disp(PerError,"The percentage error in % is");
diff --git a/2384/CH6/EX6.6/ex6_6.sce b/2384/CH6/EX6.6/ex6_6.sce new file mode 100755 index 000000000..e73b2b157 --- /dev/null +++ b/2384/CH6/EX6.6/ex6_6.sce @@ -0,0 +1,19 @@ +// Exa 6.6
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+I = 50;// in A
+V = 230;// in V
+N = 61;
+t = 37;// in sec
+KWh = 500;
+phi= acosd(1);// in °
+Er = N/KWh;// in kWh
+Et = V*I*cosd(phi)*t;// in Joules
+Et = Et/3600;// in Wh
+Et = Et*10^-3;// in kWh
+// Percentage error
+PerError = ((Er-Et)/Et)*100;// in %
+disp(PerError,"The percentage error in % is");
diff --git a/2384/CH6/EX6.7/ex6_7.sce b/2384/CH6/EX6.7/ex6_7.sce new file mode 100755 index 000000000..610262bfa --- /dev/null +++ b/2384/CH6/EX6.7/ex6_7.sce @@ -0,0 +1,14 @@ +// Exa 6.7
+clc;
+clear;
+close;
+format('v',9)
+// Given data
+Im = 20;// in mA
+Im = Im * 10^-3;// in A
+Vm = 50;// in mV
+Vm = Vm * 10^-3;// in V
+V = 500;// in V
+Rm = Vm/Im;// in ohm
+Rs = (V/Im)-Rm;// in ohm
+disp(Rs,"The series resistance in ohm is");
diff --git a/2384/CH6/EX6.8/ex6_8.sce b/2384/CH6/EX6.8/ex6_8.sce new file mode 100755 index 000000000..40b0c3850 --- /dev/null +++ b/2384/CH6/EX6.8/ex6_8.sce @@ -0,0 +1,15 @@ +// Exa 6.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rm = 50;// in ohm
+Im = 10;// in mA
+Im = Im * 10^-3;// in A
+V = 100;// in V
+Rs = (V/Im)-Rm;// in ohm
+disp(Rs,"The value of Rs in Ω is");
+N = 1/Im;
+Rsh = Rm/(N-1);// in ohm
+disp(Rsh,"The value of Rsh in Ω is");
diff --git a/2384/CH6/EX6.9/ex6_9.sce b/2384/CH6/EX6.9/ex6_9.sce new file mode 100755 index 000000000..5005162c8 --- /dev/null +++ b/2384/CH6/EX6.9/ex6_9.sce @@ -0,0 +1,19 @@ +// Exa 6.9
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+I = 40;// in A
+V = 230;// in V
+N = 600;
+t = 46;// in sec
+phi= acosd(1);// in °
+P = V*I*cosd(phi);// in W
+P = P * 10^-3;// in kW
+// 1 kWh = 500 revolution
+P = P * 500;// in revolution
+T = (3600/t)*60;// in revolution
+// Percentage error
+PerError = ((T-P)/P)*100;// in %
+disp(PerError,"The percentage error in % is");
diff --git a/2384/CH8/EX8.1/ex8_1.sce b/2384/CH8/EX8.1/ex8_1.sce new file mode 100755 index 000000000..4ad0a1019 --- /dev/null +++ b/2384/CH8/EX8.1/ex8_1.sce @@ -0,0 +1,20 @@ +// Exa 8.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+a = 3;// in cm^2
+a = a * 10^-4;// in m^2
+d = 20;// in cm
+N = 500;
+phi = 0.5*10^-3;// in Wb
+miu_r = 833.33;
+miu_o = 4*%pi*10^-7;
+l = %pi*d;// in cm
+l = l * 10^-2;// in m
+S = l/(miu_o*miu_r*a);// in AT/Wb
+//Calculation of the current with the help of flux
+//Formula phi = (m*m*f)/S = (N*I)/S;
+I = (phi*S)/N;// in A
+disp(I,"The current in A is");
diff --git a/2384/CH8/EX8.10/ex8_10.sce b/2384/CH8/EX8.10/ex8_10.sce new file mode 100755 index 000000000..d02c75096 --- /dev/null +++ b/2384/CH8/EX8.10/ex8_10.sce @@ -0,0 +1,23 @@ +// Exa 8.10
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+N = 1000;
+a = 5;// in cm^2
+a = a * 10^-4;// in m^2
+l_g = 2;// in mm
+l_g = l_g * 10^-3;// in m
+B = 0.5;// in T
+miu_r= %inf;
+phi = B*a;// in Wb
+miu_o = 4*%pi*10^-7;
+S = l_g/(miu_o*a);// in AT/Wb
+// Calculation of current with the help of flux
+//phi = mmf/S = N*I/S;
+I = (phi*S)/N;// in A
+disp(I,"The current required in A is");
+// Evaluation of coil inductance
+L = (N^2)/S;// in H
+disp(L,"The coil inductance in H is");
diff --git a/2384/CH8/EX8.11/ex8_11.sce b/2384/CH8/EX8.11/ex8_11.sce new file mode 100755 index 000000000..a1b942fe3 --- /dev/null +++ b/2384/CH8/EX8.11/ex8_11.sce @@ -0,0 +1,14 @@ +// Exa 8.11
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+l_g = 4;// in mm
+l_g = l_g * 10^-3;// in m
+Bg = 1.3;// in Wb/m^2
+miu_o = 4*%pi*10^-7;
+Hg = Bg/miu_o;
+// Ampere turns for the gap
+AT = Hg*l_g;// in AT
+disp(AT,"The amphere turns in AT is");
diff --git a/2384/CH8/EX8.12/ex8_12.sce b/2384/CH8/EX8.12/ex8_12.sce new file mode 100755 index 000000000..ec8b0f18c --- /dev/null +++ b/2384/CH8/EX8.12/ex8_12.sce @@ -0,0 +1,16 @@ +// Exa 8.12
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+phi = 0.015;// in Wb
+l_g = 2.5;// in mm
+l_g = l_g * 10^-3;// in m
+a = 200;// in cm^2
+a = a * 10^-4;// in m^2
+miu_o = 4*%pi*10^-7;
+// Calculation of reluctance of air gap
+Sg = l_g/(miu_o*a);// in AT/Wb
+mmf = phi*Sg;// in AT
+disp(mmf,"The mmf required in AT is");
diff --git a/2384/CH8/EX8.13/ex8_13.sce b/2384/CH8/EX8.13/ex8_13.sce new file mode 100755 index 000000000..ac370d0e5 --- /dev/null +++ b/2384/CH8/EX8.13/ex8_13.sce @@ -0,0 +1,32 @@ +// Exa 8.13
+clc;
+clear;
+close;
+format('v',9)
+// Given data
+a = 12;// in cm^2
+a = a * 10^-4;// in m^2
+l_i = 50;// in cm
+l_i = l_i * 10^-2;// in m
+l_g = 0.4;// in cm
+l_g = l_g * 10^-2;// in m
+N = 2*400;
+I = 1;// in A
+miu_r = 1300;
+miu_o = 4*%pi*10^-7;
+Si = l_i/(miu_o*miu_r*a);// in AT/Wb
+disp(Si,"The reluctance of magnetic circuit in AT/Wb is");
+miu_r = 1;
+Sg = l_g/(miu_o*miu_r*a);// in AT/Wb
+disp(Sg,"The reluctance of air gap in AT/Wb is");
+S_T = Si+Sg;// in AT/Wb
+disp(S_T,"Total reluctance in AT/Wb is");
+format('v',7)
+mmf = N*I;// in AT
+phi_T = mmf/S_T;// in Wb
+phi_T= phi_T*10^3;// in mWb
+disp(phi_T,"The total flux in mWb is");
+phi_T= phi_T*10^-3;// in Wb
+//phi_T =B*a;
+B = (phi_T)/a;// in Wb/m^2
+disp(B,"The flux density of air gap in Wb/m^2 is");
diff --git a/2384/CH8/EX8.14/ex8_14.sce b/2384/CH8/EX8.14/ex8_14.sce new file mode 100755 index 000000000..aad73602c --- /dev/null +++ b/2384/CH8/EX8.14/ex8_14.sce @@ -0,0 +1,24 @@ +// Exa 8.14
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+l = 30;// in cm
+d = 2;// in cm
+N = 500;
+phi = 0.5;// in mWb
+Airgap = 1;// in mm
+miu_r = 4000;
+miu_o = 4*%pi*10^-7;
+Ac = (%pi/4)*(d^2);// in cm^2
+Ac = Ac * 10^-4;// in m^2
+l_i = (l*10^-2)-(Airgap*10^-3);// in m
+l_g = 1;// in mm
+l_g = l_g * 10^-3;// in m
+Si = l_i/(miu_r*miu_o*Ac);// in AT/Wb
+Sg = l_g/(miu_o*Ac);// in AT/Wb
+S =Si+Sg;// in AT/Wb
+//phi = mmf/S = N*I/S;
+I = (phi*10^-3*S)/N;// in A
+disp(I,"The current required in A is");
diff --git a/2384/CH8/EX8.15/ex8_15.sce b/2384/CH8/EX8.15/ex8_15.sce new file mode 100755 index 000000000..8c29babc8 --- /dev/null +++ b/2384/CH8/EX8.15/ex8_15.sce @@ -0,0 +1,22 @@ +// Exa 8.15
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+l = 40;// in cm
+l = l * 10^-2;// in m
+a = 4;// in cm^2
+a = a * 10^-4;// in m^2
+miu_r = 1000;
+miu_o = 4*%pi*10^-7;
+l_g = 1;// in mm
+l_g = l_g * 10^-3;// in m
+N = 1000;
+l_i = l-l_g;// in m
+Si = l_i/(miu_r*miu_o*a);// in AT/Wb
+Sg = l_g/(miu_o*a);// in AT/Wb
+S = Si+Sg;// in AT/Wb
+// The inductnace of the coil
+L = (N^2)/S;// in H
+disp(L,"The inductnace of the coil in H is");
diff --git a/2384/CH8/EX8.2/ex8_2.sce b/2384/CH8/EX8.2/ex8_2.sce new file mode 100755 index 000000000..714fd3ca9 --- /dev/null +++ b/2384/CH8/EX8.2/ex8_2.sce @@ -0,0 +1,26 @@ +// Exa 8.2
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+N = 300;
+miu_r = 900;
+l = 40;// in cm
+a = 5;// in cm^2
+R = 100;// in ohm
+V = 250;// in V
+miu_o = 4*%pi*10^-7;
+I = V/R;// in A
+mmf = N*I;// in AT
+disp(mmf,"The coil mmf in AT is");
+H = (N*I)/(l*10^-2);// in AT/m
+disp(H,"The field strength in AT/m is");
+B = miu_o*miu_r*H;// in Wb/m^2
+phi = B*a*10^-4;// in Wb
+disp(phi,"Total flux in Wb is");
+S = mmf/phi;// in AT/Wb
+disp(S,"The reluctance of the ring in AT/Wb is");
+// Permeance is recipocal of reluctance
+Permeance = 1/S;// in Wb/AT
+disp(Permeance,"Permeance of the ring in Wb/AT is");
diff --git a/2384/CH8/EX8.3/ex8_3.sce b/2384/CH8/EX8.3/ex8_3.sce new file mode 100755 index 000000000..3280a20d9 --- /dev/null +++ b/2384/CH8/EX8.3/ex8_3.sce @@ -0,0 +1,16 @@ +// Exa 8.3
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Ig = 4;// in mm
+Ig = Ig * 10^-3;// in m
+B = 1.3;// in Wb/m^2
+miu_r = 1;
+miu_o = 4*%pi*10^-7;
+H = B/(miu_o*miu_r);// in AT/m
+Hg = H;// in AT/m
+// Ampere turn required for air gap
+AT = Hg*Ig;// AT for air gap in AT
+disp(AT,"The amphere turns for the gap in AT is");
diff --git a/2384/CH8/EX8.4/ex8_4.sce b/2384/CH8/EX8.4/ex8_4.sce new file mode 100755 index 000000000..afb832011 --- /dev/null +++ b/2384/CH8/EX8.4/ex8_4.sce @@ -0,0 +1,24 @@ +// Exa 8.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+N = 500;
+R = 4;// in ohm
+d = 0.25;// in m
+a = 700;// in mm^2
+a = a*10^-6;// in m^2
+V = 6;// in V
+miu_r = 550;
+miu_o = 4*%pi*10^-7;
+// Evaluation of current by ohm's law
+I = V/R;// in A
+l = %pi*d;// in m
+H = (N*I)/l;// in A/m
+// Evaluation of flux density
+B = miu_o*miu_r*H;// in T
+// Evaluation of total flux
+phi = B*a;// in Wb
+phi= phi*10^3;// in mWb
+disp(phi,"The total flux in the coil in m/Wb is");
diff --git a/2384/CH8/EX8.5/ex8_5.sce b/2384/CH8/EX8.5/ex8_5.sce new file mode 100755 index 000000000..54404c70b --- /dev/null +++ b/2384/CH8/EX8.5/ex8_5.sce @@ -0,0 +1,31 @@ +// Exa 8.5
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+d_r = 8;// diameter of ring in cm
+d_r = d_r*10^-2;// in m
+d_i = 1;// diameter of iron in cm
+d_i = d_i * 10^-2;// in m
+Permeability = 900;
+gap = 2;// in mm
+gap = gap * 10^-3;// in m
+N = 400;
+I = 3.5;// in A
+l_i = (%pi*d_r)-gap;// length of iron in m
+a = (%pi/4)*(d_i^2);// in m^2
+mmf = N*I;// in AT
+disp(mmf,"The mmf in AT is");
+miu_o = 4*%pi*10^-7;
+miu_r = 900;
+Si = l_i/(miu_o*miu_r*a);// in AT/Wb
+miu_r = 1;
+Sg = gap/(miu_o*miu_r*a);// in AT/Wb
+S_T = Si+Sg;// in AT/Wb
+disp(S_T,"The total reluctance in AT/Wb is");
+phi = mmf/S_T;// in Wb
+disp(phi,"The flux in Wb is");
+// phi = B*a;
+B = phi/a;// in Wb/m^2
+disp(B,"The flux density of the ring in Wb/m^2");
diff --git a/2384/CH8/EX8.6/ex8_6.sce b/2384/CH8/EX8.6/ex8_6.sce new file mode 100755 index 000000000..d0db4a35d --- /dev/null +++ b/2384/CH8/EX8.6/ex8_6.sce @@ -0,0 +1,21 @@ +// Exa 8.6
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+miu_r = 1400;
+l = 70;// in cm
+l = l * 10^-2;// in m
+a = 5;// in cm^2
+a = a * 10^-4;// in m^2
+N = 1000;
+miu_o = 4*%pi*10^-7;
+S = l/(miu_o*miu_r*a);// in AT/Wb
+disp(S,"The reluctance of the magnetic circuit in AT/Wb is");
+format('v',7)
+// Calculation of inductance of the coil
+L = (N^2)/S;// in H
+disp(L,"The inductance of the coil in H is");
+
+// Note: In the book the calculated value of L is correct but at last they print its value wrong
diff --git a/2384/CH8/EX8.7/ex8_7.sce b/2384/CH8/EX8.7/ex8_7.sce new file mode 100755 index 000000000..139e4a2c0 --- /dev/null +++ b/2384/CH8/EX8.7/ex8_7.sce @@ -0,0 +1,28 @@ +// Exa 8.7
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+l1 = 25;// in cm
+l1 = l1 * 10^-2;// in m
+miu_o = 4*%pi*10^-7;
+miu_r = 750;
+a1 = 2.5*2.5*10^-4;// in m
+S1 = l1/(miu_o*miu_r*a1);// in AT/Wb
+l2 = 40;// in cm
+l2 = l2 * 10^-2;// in m
+S2 = l2/(miu_o*miu_r*a1);// in AT/Wb
+phi2 = 2.5*10^-3;// in Wb
+N = 500;
+//mmf = phi1*S1 = phi2*S2;
+phi1 = (phi2*S2)/S1;// in Wb
+phi = phi1+phi2;// in Wb
+// Sum of mmf required for AEFB
+S_AEFB = S2;// in AT/Wb
+mmfforAEFB = S_AEFB*phi;//mmf for AEFB in AT
+totalmmf = mmfforAEFB+(phi1*S1);//total mmf in AT
+// N*I = totalmmf;
+// Calculation of current
+I = totalmmf/N;// in A
+disp(I,"The current in A is");
diff --git a/2384/CH8/EX8.8/ex8_8.sce b/2384/CH8/EX8.8/ex8_8.sce new file mode 100755 index 000000000..bc3ff1e64 --- /dev/null +++ b/2384/CH8/EX8.8/ex8_8.sce @@ -0,0 +1,22 @@ +// Exa 8.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+a = 16*10^-4;// in m^2
+lg = 2*10^-3;// in m
+N = 1000;
+phi = 4*10^-3;// in Wb
+miu_r = 2000;
+miu_o = 4*%pi*10^-7;
+l=25;// length of magnetic in cm
+w= 20;// in cm (width)
+t= 4;// in cm (thickness)
+li= {[w-t]*t/2+[l-t]*t/2-0.2};// in cm
+li= li*10^-2;// in m
+S_T= 1/(miu_o*a)*(li/miu_r+lg)
+// Calculation of current with the help of flux
+//phi = mmf/S_T = N*I/S_T;
+I = (phi*S_T)/N;// in A
+disp(I,"The current in A is");
diff --git a/2384/CH8/EX8.9/ex8_9.sce b/2384/CH8/EX8.9/ex8_9.sce new file mode 100755 index 000000000..1626aa6cc --- /dev/null +++ b/2384/CH8/EX8.9/ex8_9.sce @@ -0,0 +1,25 @@ +// Exa 8.9
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+N = 500;
+R = 4;// in ohm
+d_mean = 0.25;// in m
+a = 700;// in mm^2
+a = a * 10^-6;// in m
+V = 6;// in V
+miu_r = 550;
+miu_o = 4*%pi*10^-7;
+l_i = %pi*d_mean;// in m
+S = l_i/(miu_o*miu_r*a);// in AT/Wb
+I = V/R;// in A
+// Calculation of mmf
+mmf = N*I;// in AT
+// total flux
+phi = mmf/S;// in Wb
+phi = phi * 10^6;// in µWb
+disp(phi,"The total flux in the ring in µWb is");
+
+// Note: In the book the value of flux calculated correct in µWb but at last they print only in Wb, so the answer in the book is wrong.
diff --git a/2384/CH9/EX9.1/ex9_1.sce b/2384/CH9/EX9.1/ex9_1.sce new file mode 100755 index 000000000..0bee43343 --- /dev/null +++ b/2384/CH9/EX9.1/ex9_1.sce @@ -0,0 +1,18 @@ +// Exa 9.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V1 = 3000;// in V
+V2 = 300;// in V
+N2 = 86;// in Turns
+Rating = 60*10^3;// in VA
+K = V2/V1;
+//Transformer ratio, N2/N1 = K;
+N1 = N2/K;// in turns
+disp(N1,"The numbers of primary turns is");
+I2 = Rating/V2;// in A
+disp(I2,"The secondary full load current in A is");
+I1 = Rating/V1;// in A
+disp(I1,"The primary full load current in A is");
diff --git a/2384/CH9/EX9.10/ex9_10.sce b/2384/CH9/EX9.10/ex9_10.sce new file mode 100755 index 000000000..d59ab58df --- /dev/null +++ b/2384/CH9/EX9.10/ex9_10.sce @@ -0,0 +1,18 @@ +// Exa 9.10
+clc;
+clear;
+close;
+format('v',9)
+// Given data
+phi= acosd(1);// in °
+Pout = 500;// in kW
+Pout = Pout*10^3;// in W
+Eta = 90;// in %
+n=1/2;
+// For full load, Eta= Pout*100/(Pout+Pi+Pcu_f1) or Pi+Pcu_f1= (Pout*100-Eta*Pout)/Eta (i)
+// For half load, Eta= n*Pout*100/(n*Pout+Pi+n^2*Pcu_f1) or Pi+n^2*Pcu_f1= (n*Pout*100-n*Eta*Pout)/Eta (ii)
+// From eq(i) and (ii)
+Pcu_fl= [(n*Pout*100-n*Eta*Pout)/Eta-(Pout*100-Eta*Pout)/Eta]/(n^2-1)
+Pi=(Pout*100-Eta*Pout)/Eta-Pcu_fl
+disp(Pi,"The iron loss in W is : ")
+disp(Pcu_fl,"The full load copper loss in watt")
diff --git a/2384/CH9/EX9.11/ex9_11.sce b/2384/CH9/EX9.11/ex9_11.sce new file mode 100755 index 000000000..3a227d18d --- /dev/null +++ b/2384/CH9/EX9.11/ex9_11.sce @@ -0,0 +1,20 @@ +// Exa 9.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Io = 10;// in A
+phi_o= acosd(0.25);// in °
+V1 = 400;// in V
+f = 50;// in Hz
+N1 =500;
+Im = Io*sind(phi_o);// in A
+disp(Im,"The magnetizing component of no load current in A is");
+Pi = V1*Io*cosd(phi_o);// in W
+disp(Pi,"The iron loss in W is");
+E1 = V1;// in V
+//E1 v= 4.44*f*phi_m*N1;
+phi_m = E1/(4.44*f*N1);// in Wb
+phi_m=phi_m*10^3;// in mWb
+disp(phi_m,"The maximum value of flux in mWb is");
diff --git a/2384/CH9/EX9.12/ex9_12.sce b/2384/CH9/EX9.12/ex9_12.sce new file mode 100755 index 000000000..76ca80a8d --- /dev/null +++ b/2384/CH9/EX9.12/ex9_12.sce @@ -0,0 +1,25 @@ +// Exa 9.12
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 30*10^3;// in VA
+V1 = 2000;// in V
+V2 = 200;// in V
+f = 50;// in Hz
+R1 = 3.5;// in ohm
+X1 = 4.5;// in ohm
+R2 = 0.015;// in ohm
+X2 = 0.02;// in ohm
+K = V2/V1;
+R1e = R1 + (R2/(K^2));// in ohm
+disp(R1e,"The equivalent resistance to primary side in ohm is");
+X1e = X1 + (X2/(K^2));// in ohm
+disp(X1e,"The equivalent reactance to primary side in ohm is");
+Z1e = sqrt( (R1e^2) + (X1e^2) );// in ohm
+disp(Z1e,"The equivalent impedance to primary side in ohm is");
+I1 = Rating/V1;// in A
+// Total copper loss in transformer
+Pcu_total = (I1^2)*R1e;// in W
+disp(Pcu_total,"Total copper loss in W is");
diff --git a/2384/CH9/EX9.13/ex9_13.sce b/2384/CH9/EX9.13/ex9_13.sce new file mode 100755 index 000000000..6ce15f94c --- /dev/null +++ b/2384/CH9/EX9.13/ex9_13.sce @@ -0,0 +1,28 @@ +// Exa 9.13
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Rating = 10;// in KVA
+phi= acosd(0.8)
+V1 = 2000;// in V
+V2 = 400;// in V
+R1 = 5.5;// in ohm
+X1 = 12;// in ohm
+R2 = 0.2;// in ohm
+X2 = 0.45;// in ohm
+K = V2/V1;
+//R1e = R1 + R_2 = R1 + (R2/(K^2));
+R1e = R1 + (R2/(K^2));// in ohm
+//X1e = X1 + X_ = X1 + (X2/(K^2));
+X1e = X1 + (X2/(K^2));// in ohm
+I2 = (Rating*10^3)/V2;// in A
+R2e = (K^2)*R1e;// in ohm
+X2e = (K^2)*X1e;// in ohm
+Vdrop = I2 * ( (R2e*cosd(phi)) + (X2e*sind(phi)) );// voltage drop in V
+//E2 = V2 +Vd;
+E2 = V2;// in V
+// The full load secondary voltage
+V2 = E2-Vdrop;// in V
+disp(V2,"The full load secondary voltage in V is");
diff --git a/2384/CH9/EX9.14/ex9_14.sce b/2384/CH9/EX9.14/ex9_14.sce new file mode 100755 index 000000000..b17bc5d5f --- /dev/null +++ b/2384/CH9/EX9.14/ex9_14.sce @@ -0,0 +1,16 @@ +// Exa 9.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 40*10^3;// in VA
+Pi = 400;// in W
+Pcu_f1 = 800;// in W
+phi= acosd(0.9);// in °
+Eta_f1 = ((Rating*cosd(phi))/( (Rating*cosd(phi)) + Pi + Pcu_f1 ))*100;// in %
+disp(Eta_f1,"Full load efficiency in % is");
+// percentage of the full load
+Eta_max = Rating*sqrt( Pi/Pcu_f1);// in KVA
+Eta_max = Eta_max/Rating*100;// in %
+disp(Eta_max,"The percentage of the full load in % is");
diff --git a/2384/CH9/EX9.15/ex9_15.sce b/2384/CH9/EX9.15/ex9_15.sce new file mode 100755 index 000000000..aaea45d62 --- /dev/null +++ b/2384/CH9/EX9.15/ex9_15.sce @@ -0,0 +1,17 @@ +// Exa 9.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 8*10^3;// in VA
+phi= acosd(0.8);// in °
+V1 = 400;// in V
+V2 = 100;// in V
+f = 50;// in Hz
+Pi = 60;// in W
+Wo = Pi;// in W
+Pcu = 100;// in W
+// The full load efficiency
+Eta_f1 = ((Rating*cosd(phi))/((Rating*cosd(phi)) + Pi + Pcu))*100;// in %
+disp(Eta_f1,"The full load efficiency in % is");
diff --git a/2384/CH9/EX9.16/ex9_16.sce b/2384/CH9/EX9.16/ex9_16.sce new file mode 100755 index 000000000..8fcca3b8d --- /dev/null +++ b/2384/CH9/EX9.16/ex9_16.sce @@ -0,0 +1,19 @@ +// Exa 9.16
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 10*10^3;// in VA
+phi= acosd(0.8);// in °
+V1 = 500;// in V
+V2 = 250;// in V
+Pi = 200;// in W
+Pcu = 300;// in W
+Isc = 30;// in A
+I1 = Rating/V1;// in A
+// Pcu/(Pcu(f1)) = (Isc^2)/(I1^2);
+Pcu_f1 = Pcu * ((I1^2)/(Isc^2));// in W
+// The efficiency at full load
+Eta_f1 = Rating*cosd(phi)/(Rating*cosd(phi) + Pi + Pcu_f1)*100;// in %
+disp(Eta_f1,"The full load efficiency in % is");
diff --git a/2384/CH9/EX9.17/ex9_17.sce b/2384/CH9/EX9.17/ex9_17.sce new file mode 100755 index 000000000..97337626c --- /dev/null +++ b/2384/CH9/EX9.17/ex9_17.sce @@ -0,0 +1,17 @@ +// Exa 9.17
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Rating = 20*10^3;// in VA
+phi= acosd(0.8);// in °
+V1 = 2000;// in V
+V2 = 200;// in V
+Pi = 120;// in W
+Pcu = 300;// in W
+Eta_max = Rating*(sqrt( Pi/Pcu ));// in VA
+Pcu = Pi;// in W
+// The maximum efficiency of transformer
+Eta_max = ((Eta_max*cosd(phi))/( Eta_max*cosd(phi) + (2*Pi) ))*100;// in %
+disp(Eta_max,"The maximum efficiency of transformer in % is");
diff --git a/2384/CH9/EX9.18/ex9_18.sce b/2384/CH9/EX9.18/ex9_18.sce new file mode 100755 index 000000000..649a2e909 --- /dev/null +++ b/2384/CH9/EX9.18/ex9_18.sce @@ -0,0 +1,26 @@ +// Exa 9.18
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Turnratio = 5;
+R1 = 0.5;// in ohm
+R2 = 0.021;// in ohm
+X1 = 3.2;// in ohm
+X2 = 0.12;// in ohm
+Rc = 350;// in ohm
+Xm = 98;// in ohm
+N1 = 5;
+N2 = 1;
+K = N2/N1;
+// Evaluation of the equivalent parameters referred to secondary side
+R2e = R2 + ((K^2)*R1);// in ohm
+disp("The equivalent parameters referred to secondary side are : ")
+disp("The value of R_2e is : "+string(R2e)+" Ω")
+X2e = X2 + ((K^2)*X1);// in ohm
+disp("The value of X_2e is : "+string(X2e)+" Ω")
+R_c = (K^2)*Rc;// in ohm
+disp("The value of R''c is : "+string(R_c)+" Ω")
+X_m = (K^2)*Xm;// in ohm
+disp("The value of X''m is : "+string(X_m)+" Ω")
diff --git a/2384/CH9/EX9.19/ex9_19.sce b/2384/CH9/EX9.19/ex9_19.sce new file mode 100755 index 000000000..7102dd91e --- /dev/null +++ b/2384/CH9/EX9.19/ex9_19.sce @@ -0,0 +1,35 @@ +// Exa 9.19
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Rating = 100*10^3;// in VA
+V1 = 11000;// in V
+V2 = 220;// in V
+Wo = 2*10^3;// in W
+Vo = 220;// in V
+Io = 45;// in A
+phi_o = acosd(Wo/(Vo*Io));
+I_c = Io*cosd(phi_o);// in A
+I_m = Io*sind(phi_o);// in A
+Ro= V2/I_c;// in ohm
+Xo= V2/I_m;// in ohm
+Wsc= 3*10^3;// in W
+Vsc= 500;// in V
+Isc= 9.09;// in A
+R1e= Wsc/Isc^2;// in ohm
+Z1e= Vsc/Isc;// in ohm
+X1e= sqrt(Z1e^2-R1e^2);// in ohm
+K= V2/V1;
+R2e= K^2*R1e;// in ohm
+X2e= K^2*X1e;// in ohm
+Z2e= K^2*Z1e;// in ohm
+disp("The value of R''o is : "+string(Ro)+" Ω")
+disp("The value of X''o is : "+string(Xo)+" Ω")
+disp("The value of R1e is : "+string(R1e)+" Ω")
+disp("The value of Z1e is : "+string(Z1e)+" Ω")
+disp("The value of X1e is : "+string(X1e)+" Ω")
+disp("The value of R2e is : "+string(R2e)+" Ω")
+disp("The value of X2e is : "+string(X2e)+" Ω")
+disp("The value of Z2e is : "+string(Z2e)+" Ω")
diff --git a/2384/CH9/EX9.2/ex9_2.sce b/2384/CH9/EX9.2/ex9_2.sce new file mode 100755 index 000000000..5adca1314 --- /dev/null +++ b/2384/CH9/EX9.2/ex9_2.sce @@ -0,0 +1,15 @@ +// Exa 9.2
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+E1 = 3000;// in V
+E2 = 200;// in V
+f = 50;// in Hz
+a = 150;// in cm^2
+N2 = 80;// turns
+//Formula E2 = 4.44*phi_m*f*N2;
+phi_m = E2/(4.44*f*N2);// in Wb
+Bm = phi_m/(a*10^-4);// in Wb/m^2
+disp(Bm,"The maximum flux density in Wb/m^2 is");
diff --git a/2384/CH9/EX9.20/ex9_20.sce b/2384/CH9/EX9.20/ex9_20.sce new file mode 100755 index 000000000..ba9ee7d7a --- /dev/null +++ b/2384/CH9/EX9.20/ex9_20.sce @@ -0,0 +1,16 @@ +// Exa 9.20
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V1 = 250;// in V
+V2 = 500;// in V
+Pcu = 100;// in W
+Pi = 80;// in W
+V = V2;// in V
+A = 12;// in A
+phi= acosd(0.85);// in °
+// The efficiency of the transformer
+Eta = ((V*A*cosd(phi))/( V*A*cosd(phi) + Pi+Pcu ))*100;// in %
+disp(Eta,"The efficiency of the transformer in % is");
diff --git a/2384/CH9/EX9.21/ex9_21.sce b/2384/CH9/EX9.21/ex9_21.sce new file mode 100755 index 000000000..6a133b71b --- /dev/null +++ b/2384/CH9/EX9.21/ex9_21.sce @@ -0,0 +1,24 @@ +// Exa 9.21
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+VA = 400*10^3;// in Mean
+Eta_fl = 98.77/100;// in %
+phi1= acosd(0.8);// in °
+phi2= acosd(1);// in °
+Eta_hl = 99.13/100;// in %
+n = 1/2;
+//For full load, Eta_f1 = ((VA*cosd(phi1))/( VA*cosd(phi1) + Pi + Pcu_f1 )) or Pi+Pcu_f1 = VA*cosd(phi1)*(1-Eta_fl)/(Eta_f1) (i)
+//For half load, Eta_hl = n*VA*cosd(phi2)/(n*VA*cosd(phi2)+Pi+n^2*Pcu_f1) or Pi+n^2*Pcu_f1 = n*VA*cosd(phi2)*( 1-Eta_hl)/Eta_hl (ii)
+// From eq(i) and (ii)
+Pcu_fl=(n*VA*cosd(phi2)*( 1-Eta_hl)/Eta_hl-VA*cosd(phi1)*(1-Eta_fl)/(Eta_fl))/(n^2-1);// in W
+Pi=VA*cosd(phi1)*(1-Eta_fl)/(Eta_fl)-Pcu_fl;// in W
+disp(Pi,"The iron loss on full load and half load remain same in W which are : ")
+disp(Pcu_fl,"The copper loss on full load in W is : ")
+// The copper loss on half load
+C_loss_half_load=n^2*Pcu_fl;// in W
+disp(C_loss_half_load,"The copper loss on half load in W is : ")
+
+
diff --git a/2384/CH9/EX9.22/ex9_22.sce b/2384/CH9/EX9.22/ex9_22.sce new file mode 100755 index 000000000..3a1a345f6 --- /dev/null +++ b/2384/CH9/EX9.22/ex9_22.sce @@ -0,0 +1,18 @@ +// Exa 9.22
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+VA = 100*10^3;// in VA
+Eta_max = 98.40/100;// in %
+Eta_max1 = 90/100;// in %
+phi= acosd(1);// in °
+//Eta_max = (Eta_max1*VA*cosd(phi)/(Eta_max1*VA*cosd(phi) + 2*Pi);
+Pi = (Eta_max1*VA*cosd(phi)/Eta_max - Eta_max1*VA*cosd(phi))/2;// in W
+Pcu = Pi;// in W
+n = 0.9;
+// Pcu_fl/Pcu = (VA/(0.9*VA) )^2;
+Pcu_fl = Pcu*(VA/(0.9*VA) )^2;// in W
+Eta_fl = ( (VA*cosd(phi))/( (VA*cosd(phi)) + Pi + Pcu_fl ) )*100;// in %
+disp(Eta_fl,"The efficiency of a transformer in % is");
diff --git a/2384/CH9/EX9.3/ex9_3.sce b/2384/CH9/EX9.3/ex9_3.sce new file mode 100755 index 000000000..67fb3a0f3 --- /dev/null +++ b/2384/CH9/EX9.3/ex9_3.sce @@ -0,0 +1,23 @@ +// Exa 9.3
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+N1 = 500;
+N2 = 40;
+E1 = 3000;// in V
+f = 50;// in Hz
+K = N2/N1;
+Rating = 25*10^3;// in VA
+I1 = Rating/E1;// in A
+disp(I1,"The primary full load current in A is");
+I2 = I1/K;// in A
+disp(I2,"The secondary full load current in A is");
+// K = E2/E1;
+E2 = K*E1;// in V
+disp(E2,"The secondary emf in V is");
+// e.m.f equation of the transformer, E1 = 4.44*phi_m*f*N1;
+phi_m = E1/(4.44*f*N1);// in Wb
+phi_m = phi_m*10^3;// in mWb
+disp(phi_m,"The maximum core flux in mWb is");
diff --git a/2384/CH9/EX9.4/ex9_4.sce b/2384/CH9/EX9.4/ex9_4.sce new file mode 100755 index 000000000..61ec6e140 --- /dev/null +++ b/2384/CH9/EX9.4/ex9_4.sce @@ -0,0 +1,19 @@ +// Exa 9.4
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 25;// in KVA
+f = 50;// in Hz
+Io = 15;// in A
+Wo = 350;// in W
+Vo = 230;// in V
+// No load power factor
+phi_o = acosd(Wo/(Vo*Io));
+// active component of current
+Ic = Io*cosd(phi_o);// in A
+disp(Ic,"The active component of current in A is");
+// magnetizing component of current
+Im = Io*sind(phi_o);// in A
+disp(Im,"The magnetizing component of current in A is");
diff --git a/2384/CH9/EX9.5/ex9_5.sce b/2384/CH9/EX9.5/ex9_5.sce new file mode 100755 index 000000000..19dc27d92 --- /dev/null +++ b/2384/CH9/EX9.5/ex9_5.sce @@ -0,0 +1,30 @@ +// Exa 9.5
+clc;
+clear;
+close;
+format('v',8)
+// Given data
+V1 = 2200;// in V
+V2 = 110;// in V
+R1 = 1.75;// in ohm
+R2 = 0.0045;// in ohm
+X1 = 2.6;// in ohm
+X2 = 0.0075;// in ohm
+K = V2/V1;
+//R1e = R1+R_2 = R1 + (R2/(K^2));
+R1e = R1 + (R2/(K^2));// in ohm
+disp(R1e,"Equivalent resistance reffered to primary in ohm is");
+// R2e = R2+R_1 = R2+((K^2)*R1);
+R2e = R2+((K^2)*R1);// in ohm
+disp(R2e,"Equivalent resistance reffered to secondary in ohm is");
+//X1e = X1+X_2 = X1+(X2/(K^2));
+X1e = X1+(X2/(K^2));// in ohm
+disp(X1e,"Equivalent reactance reffered to primary in ohm is");
+// X2e = X2+X_1 = X2 + ((K^2)*X1);
+X2e = X2 + ((K^2)*X1);// in ohm
+disp(X2e,"Equivalent reactance reffered to secondary in ohm is");
+Z1e= R1e+%i*X1e;// in ohm
+Z2e= R2e+%i*X2e;// in ohm
+disp(abs(Z1e),"Equivalent impedance reffered to primary in ohm is : ")
+disp(abs(Z2e),"Equivalent impedance reffered to secondary in ohm is : ")
+
diff --git a/2384/CH9/EX9.6/ex9_6.sce b/2384/CH9/EX9.6/ex9_6.sce new file mode 100755 index 000000000..6bb7c12ef --- /dev/null +++ b/2384/CH9/EX9.6/ex9_6.sce @@ -0,0 +1,23 @@ +// Exa 9.6
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V1 = 2200;// in V
+V2 = 440;// in V
+R1 = 0.3;// in ohm
+R2 = 0.01;// in ohm
+X1 = 1.1;// in ohm
+X2 = 0.035;// in ohm
+K = V2/V1;
+Rating = 100;// in KVA
+I1 = (Rating*10^3)/V1;// in A
+I2 = (Rating*10^3)/V2;// in A
+R1e = R1 + (R2/(K^2));// in ohm
+X1e = X1+(X2/(K^2));// in ohm
+Z1e = sqrt( (R1e^2) + (X1e^2) );// in ohm
+disp(Z1e,"The equivalent impedance of the transformer reffered to primary in ohm is");
+// Total copper loss
+totalcopperloss = (I1^2)*R1e;// in W
+disp(totalcopperloss,"The total copper loss in W is");
diff --git a/2384/CH9/EX9.7/ex9_7.sce b/2384/CH9/EX9.7/ex9_7.sce new file mode 100755 index 000000000..116f5f5de --- /dev/null +++ b/2384/CH9/EX9.7/ex9_7.sce @@ -0,0 +1,17 @@ +// Exa 9.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 150000;// in VA
+phi= acosd(0.8);// in °
+Pcu = 1600;// in W
+Pi = 1400;// in W
+n = 1/4;
+// Total loss of 25% load
+totalloss = Pi + (n^2)*Pcu;// in W
+// efficiency of transformer of 25% load
+Eta = n*Rating*cosd(phi)/(n*Rating*cosd(phi)+Pi+n^2*Pcu)*100;// in %
+disp(Eta,"The efficiency in % is");
+
diff --git a/2384/CH9/EX9.8/ex9_8.sce b/2384/CH9/EX9.8/ex9_8.sce new file mode 100755 index 000000000..2101a95b4 --- /dev/null +++ b/2384/CH9/EX9.8/ex9_8.sce @@ -0,0 +1,26 @@ +// Exa 9.8
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rating = 25;// in KVA
+V1 = 2000;// in V
+V2 = 200;// in V
+Pi = 350;// in W
+Pi = Pi * 10^-3;// in kW
+Pcu = 400;// in W
+Pcu = Pcu * 10^-3;// in kW
+phi= acosd(1);// in °
+output = Rating;
+losses = Pi+Pcu;
+Eta = (output/(output + losses))*100;// %Eta in %
+disp(Eta,"The efficiency of full load power in % is");
+// For half load
+output = Rating/2;// in kW
+h = 1;
+Pcu = Pcu*((h/2)^2);// in kW
+losses = Pi+Pcu;
+// efficiency of half load power
+Eta = (output/(output+losses))*100;// in %
+disp(Eta,"The efficiency of half load power in % is");
diff --git a/2384/CH9/EX9.9/ex9_9.sce b/2384/CH9/EX9.9/ex9_9.sce new file mode 100755 index 000000000..dad32b421 --- /dev/null +++ b/2384/CH9/EX9.9/ex9_9.sce @@ -0,0 +1,21 @@ +// Exa 9.9
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+Rating = 250*10^3;// in VA
+Pi = 1.8;// in kW
+Pi = Pi * 10^3;// in W
+Pcu_f1 = 2000;// in W
+phi= acosd(0.8);// in °
+Eta = ((Rating*cosd(phi))/((Rating*cosd(phi))+Pi+Pcu_f1))*100;// %Eta in %
+disp(Eta,"The efficiency at full load in % is");
+// The maximum efficiency
+Eta_max = Rating * sqrt(Pi/Pcu_f1 );// in VA
+Eta_max = Eta_max *10^-3;// in kVA
+disp(Eta_max,"The maximum efficiency in kVA is");
+Eta_max = Eta_max *10^3;// in VA
+Pcu = Pi;// in W
+Eta_max1 = ((Eta_max*cosd(phi))/((Eta_max*cosd(phi)) + Pi+Pcu ))*100;// in %
+disp(Eta_max1,"The maximum efficiency in % is");
|