summaryrefslogtreecommitdiff
path: root/2360
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2360
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2360')
-rwxr-xr-x2360/CH2/EX2.1/ex2_1.sce15
-rwxr-xr-x2360/CH2/EX2.10/ex2_10.sce16
-rwxr-xr-x2360/CH2/EX2.11/ex2_11.sce10
-rwxr-xr-x2360/CH2/EX2.12/ex2_12.sce8
-rwxr-xr-x2360/CH2/EX2.13/ex2_13.sce8
-rwxr-xr-x2360/CH2/EX2.14/ex2_14.sce24
-rwxr-xr-x2360/CH2/EX2.15/ex2_15.sce22
-rwxr-xr-x2360/CH2/EX2.16/ex2_16.sce21
-rwxr-xr-x2360/CH2/EX2.17/ex2_17.sce16
-rwxr-xr-x2360/CH2/EX2.18/ex2_18.sce16
-rwxr-xr-x2360/CH2/EX2.19/ex2_19.sce18
-rwxr-xr-x2360/CH2/EX2.2/ex2_2.sce17
-rwxr-xr-x2360/CH2/EX2.20/ex2_20.sce27
-rwxr-xr-x2360/CH2/EX2.21/ex2_21.sce22
-rwxr-xr-x2360/CH2/EX2.22/ex2_22.sce26
-rwxr-xr-x2360/CH2/EX2.23/ex2_23.sce8
-rwxr-xr-x2360/CH2/EX2.24/ex2_24.sce8
-rwxr-xr-x2360/CH2/EX2.25/ex2_25.sce9
-rwxr-xr-x2360/CH2/EX2.3/ex2_4.sce9
-rwxr-xr-x2360/CH2/EX2.4/ex2_4.sce9
-rwxr-xr-x2360/CH2/EX2.5/ex2_5.sce24
-rwxr-xr-x2360/CH2/EX2.6/ex2_6.sce22
-rwxr-xr-x2360/CH2/EX2.7/ex2_7.sce10
-rwxr-xr-x2360/CH2/EX2.8/ex2_8.sce14
-rwxr-xr-x2360/CH2/EX2.9/ex2_9.sce14
-rwxr-xr-x2360/CH3/EX3.1/ex3_1.sce16
-rwxr-xr-x2360/CH3/EX3.10/ex3_10.sce28
-rwxr-xr-x2360/CH3/EX3.11/ex3_11.sce27
-rwxr-xr-x2360/CH3/EX3.12/ex3_12.sce11
-rwxr-xr-x2360/CH3/EX3.13/ex3_13.sce18
-rwxr-xr-x2360/CH3/EX3.14/ex3_14.sce25
-rwxr-xr-x2360/CH3/EX3.15/ex3_15.sce29
-rwxr-xr-x2360/CH3/EX3.16/ex3_16.sce15
-rwxr-xr-x2360/CH3/EX3.17/ex3_17.sce12
-rwxr-xr-x2360/CH3/EX3.18/ex3_18.sce7
-rwxr-xr-x2360/CH3/EX3.19/ex3_19.sce21
-rwxr-xr-x2360/CH3/EX3.2/ex3_2.sce24
-rwxr-xr-x2360/CH3/EX3.20/ex3_20.sce14
-rwxr-xr-x2360/CH3/EX3.21/ex3_21.sce20
-rwxr-xr-x2360/CH3/EX3.22/ex3_22.sce18
-rwxr-xr-x2360/CH3/EX3.23/ex3_23.sce30
-rwxr-xr-x2360/CH3/EX3.24/ex3_24.sce12
-rwxr-xr-x2360/CH3/EX3.25/ex3_25.sce21
-rwxr-xr-x2360/CH3/EX3.26/ex3_26.sce21
-rwxr-xr-x2360/CH3/EX3.27/ex3_27.sce14
-rwxr-xr-x2360/CH3/EX3.28/ex3_28.sce24
-rwxr-xr-x2360/CH3/EX3.29/ex3_29.sce16
-rwxr-xr-x2360/CH3/EX3.3/ex3_3.sce48
-rwxr-xr-x2360/CH3/EX3.30/ex3_30.sce10
-rwxr-xr-x2360/CH3/EX3.4/ex3_4.sce12
-rwxr-xr-x2360/CH3/EX3.5/ex3_5.sce16
-rwxr-xr-x2360/CH3/EX3.6/ex3_6.sce17
-rwxr-xr-x2360/CH3/EX3.7/ex3_7.sce22
-rwxr-xr-x2360/CH3/EX3.8/ex3_8.sce11
-rwxr-xr-x2360/CH3/EX3.9/ex3_9.sce15
-rwxr-xr-x2360/CH4/EX4.1/ex4_1.sce14
-rwxr-xr-x2360/CH4/EX4.2/ex4_2.sce8
-rwxr-xr-x2360/CH4/EX4.3/ex4_3.sce13
-rwxr-xr-x2360/CH4/EX4.4/ex4_4.sce10
-rwxr-xr-x2360/CH4/EX4.5/ex4_5.sce11
-rwxr-xr-x2360/CH4/EX4.6/ex4_6.sce9
-rwxr-xr-x2360/CH4/EX4.7/ex4_7.sce13
-rwxr-xr-x2360/CH4/EX4.8/ex4_8.sce16
-rwxr-xr-x2360/CH5/EX5.1/ex5_1.sce16
-rwxr-xr-x2360/CH5/EX5.10/ex5_10.sce17
-rwxr-xr-x2360/CH5/EX5.11/ex5_11.sce22
-rwxr-xr-x2360/CH5/EX5.12/ex5_12.sce10
-rwxr-xr-x2360/CH5/EX5.13/ex5_13.sce14
-rwxr-xr-x2360/CH5/EX5.14/ex5_14.sce22
-rwxr-xr-x2360/CH5/EX5.15/ex5_15.sce25
-rwxr-xr-x2360/CH5/EX5.16/ex5_16.sce13
-rwxr-xr-x2360/CH5/EX5.2/ex5_2.sce8
-rwxr-xr-x2360/CH5/EX5.3/ex5_3.sce17
-rwxr-xr-x2360/CH5/EX5.4/ex5_4.sce14
-rwxr-xr-x2360/CH5/EX5.5/ex5_5.sce22
-rwxr-xr-x2360/CH5/EX5.6/ex5_6.sce18
-rwxr-xr-x2360/CH5/EX5.7/ex5_7.sce13
-rwxr-xr-x2360/CH5/EX5.8/ex5_8.sce9
-rwxr-xr-x2360/CH5/EX5.9/ex5_9.sce20
-rwxr-xr-x2360/CH6/EX6.1/ex6_1.sce16
-rwxr-xr-x2360/CH6/EX6.10/ex6_10.sce15
-rwxr-xr-x2360/CH6/EX6.11/ex6_11.sce14
-rwxr-xr-x2360/CH6/EX6.12/ex6_12.sce13
-rwxr-xr-x2360/CH6/EX6.13/ex6_13.sce15
-rwxr-xr-x2360/CH6/EX6.14/ex6_14.sce14
-rwxr-xr-x2360/CH6/EX6.15/ex6_15.sce22
-rwxr-xr-x2360/CH6/EX6.16/ex6_16.sce22
-rwxr-xr-x2360/CH6/EX6.17/ex6_17.sce25
-rwxr-xr-x2360/CH6/EX6.18/ex6_18.sce17
-rwxr-xr-x2360/CH6/EX6.19/ex6_19.sce27
-rwxr-xr-x2360/CH6/EX6.2/ex6_2.sce34
-rwxr-xr-x2360/CH6/EX6.20/ex6_20.sce24
-rwxr-xr-x2360/CH6/EX6.21/ex6_21.sce28
-rwxr-xr-x2360/CH6/EX6.22/ex6_22.sce24
-rwxr-xr-x2360/CH6/EX6.23/ex6_23.sce28
-rwxr-xr-x2360/CH6/EX6.24/ex6_24.sce25
-rwxr-xr-x2360/CH6/EX6.25/ex6_25.sce15
-rwxr-xr-x2360/CH6/EX6.26/ex6_26.sce21
-rwxr-xr-x2360/CH6/EX6.27/ex6_27.sce34
-rwxr-xr-x2360/CH6/EX6.28/ex6_28.sce34
-rwxr-xr-x2360/CH6/EX6.29/ex6_29.sce25
-rwxr-xr-x2360/CH6/EX6.3/ex6_3.sce17
-rwxr-xr-x2360/CH6/EX6.30/ex6_30.sce17
-rwxr-xr-x2360/CH6/EX6.31/ex6_31.sce27
-rwxr-xr-x2360/CH6/EX6.32/ex6_32.sce23
-rwxr-xr-x2360/CH6/EX6.33/ex6_33.sce22
-rwxr-xr-x2360/CH6/EX6.34/ex6_34.sce20
-rwxr-xr-x2360/CH6/EX6.35/ex6_35.sce29
-rwxr-xr-x2360/CH6/EX6.36/ex6_36.sce18
-rwxr-xr-x2360/CH6/EX6.37/ex6_37.sce17
-rwxr-xr-x2360/CH6/EX6.38/ex6_38.sce21
-rwxr-xr-x2360/CH6/EX6.39/ex6_39.sce22
-rwxr-xr-x2360/CH6/EX6.4/ex6_4.sce17
-rwxr-xr-x2360/CH6/EX6.40/ex6_40.sce23
-rwxr-xr-x2360/CH6/EX6.41/ex6_41.sce11
-rwxr-xr-x2360/CH6/EX6.42/ex6_42.sce16
-rwxr-xr-x2360/CH6/EX6.5/ex6_5.sce15
-rwxr-xr-x2360/CH6/EX6.6/ex6_6.sce13
-rwxr-xr-x2360/CH6/EX6.7/ex6_7.sce17
-rwxr-xr-x2360/CH6/EX6.8/ex6_8.sce22
-rwxr-xr-x2360/CH6/EX6.9/ex6_9.sce24
-rwxr-xr-x2360/CH7/EX7.1/ex7_1.sce12
-rwxr-xr-x2360/CH7/EX7.10/ex7_10.sce13
-rwxr-xr-x2360/CH7/EX7.11/ex7_11.sce16
-rwxr-xr-x2360/CH7/EX7.2/ex7_2.sce12
-rwxr-xr-x2360/CH7/EX7.3/ex7_3.sce14
-rwxr-xr-x2360/CH7/EX7.4/ex7_4.sce16
-rwxr-xr-x2360/CH7/EX7.5/ex7_5.sce7
-rwxr-xr-x2360/CH7/EX7.6/ex7_6.sce9
-rwxr-xr-x2360/CH7/EX7.7/ex7_7.sce10
-rwxr-xr-x2360/CH7/EX7.8/ex7_8.sce14
-rwxr-xr-x2360/CH7/EX7.9/ex7_9.sce8
-rwxr-xr-x2360/CH8/EX8.1/ex7_1.sce12
133 files changed, 2347 insertions, 0 deletions
diff --git a/2360/CH2/EX2.1/ex2_1.sce b/2360/CH2/EX2.1/ex2_1.sce
new file mode 100755
index 000000000..3fea4cb0d
--- /dev/null
+++ b/2360/CH2/EX2.1/ex2_1.sce
@@ -0,0 +1,15 @@
+// Exa 2.1
+format('v',6);clc;clear;close;
+// Given data
+// Values of measurements
+x1 = 49;
+x2 = 51;
+x3 = 52;
+x4 = 50;
+x5 = 49;
+n = 5;// numbers of reading
+Xn_bar = (x1+x2+x3+x4+x5)/n;// average value for the set of measurements
+// For n = 3
+P = 1 - abs( (x3-Xn_bar)/x3);// the value of third measurement
+P = P * 100;// in %
+disp(P,"The precision of the 3rd measurement in % is");
diff --git a/2360/CH2/EX2.10/ex2_10.sce b/2360/CH2/EX2.10/ex2_10.sce
new file mode 100755
index 000000000..4ca2361bd
--- /dev/null
+++ b/2360/CH2/EX2.10/ex2_10.sce
@@ -0,0 +1,16 @@
+// Exa 2.10
+format('v',7);clc;clear;close;
+// Given data
+R1= 100;//resistance in Ω
+Re1= 0.1;//error in Ω
+R2= 50;//resistance in Ω
+Re2= 0.03;//error in Ω
+R= R1+R2;//resistance in Ω
+w= sqrt(Re1^2+Re2^2);
+disp("For Series connection, R= "+string(R)+" ± "+string(w)+" Ω")
+R= R1*R2/(R1+R2);// in Ω
+del_RbyR1= ((R1+R2)*R2-R1*R2)/(R1+R2)^2;
+del_RbyR2= ((R1+R2)*R1-R1*R2)/(R1+R2)^2;
+w= sqrt(del_RbyR1^2*Re1^2+del_RbyR2^2*Re2^2);
+disp("For Parallel connection, R= "+string(R)+" ± "+string(w)+" Ω")
+
diff --git a/2360/CH2/EX2.11/ex2_11.sce b/2360/CH2/EX2.11/ex2_11.sce
new file mode 100755
index 000000000..6f3c28451
--- /dev/null
+++ b/2360/CH2/EX2.11/ex2_11.sce
@@ -0,0 +1,10 @@
+// Exa 2.11
+format('v',5);clc;clear;close;
+// Given data
+At = 8.5;//true value in A
+Am = 8.3;//measured value in A
+Absoluteerror = At - Am;//absolute error in A
+disp(Absoluteerror,"The Absolute error in A is");
+// Relative percentage error
+Per_Error = ((At-Am)/At)*100;// %e in %
+disp(Per_Error,"The relative percentage error in % is");
diff --git a/2360/CH2/EX2.12/ex2_12.sce b/2360/CH2/EX2.12/ex2_12.sce
new file mode 100755
index 000000000..f91b92162
--- /dev/null
+++ b/2360/CH2/EX2.12/ex2_12.sce
@@ -0,0 +1,8 @@
+// Exa 2.12
+format('v',7);clc;clear;close;
+// Given data
+Am = 111.5;//measured value in V
+Per_Error = 5.3;// %e in %
+// Per_Error = ((At-Am)/At)*100;
+At = Am/(1 - (Per_Error/100));//true value of voltage in V
+disp(At,"The true value of voltage in V is");
diff --git a/2360/CH2/EX2.13/ex2_13.sce b/2360/CH2/EX2.13/ex2_13.sce
new file mode 100755
index 000000000..ee0325d36
--- /dev/null
+++ b/2360/CH2/EX2.13/ex2_13.sce
@@ -0,0 +1,8 @@
+// Exa 2.13
+format('v',7);clc;clear;close;
+// Given data
+fullscaledivision = 100;//full scale division in V
+n = 200;//number of divisions
+scaledivision = fullscaledivision/n;//scale division in V
+Resolution = 1/2*scaledivision;// in V
+disp(Resolution,"The Resolution of meter in V is");
diff --git a/2360/CH2/EX2.14/ex2_14.sce b/2360/CH2/EX2.14/ex2_14.sce
new file mode 100755
index 000000000..5f961f8d3
--- /dev/null
+++ b/2360/CH2/EX2.14/ex2_14.sce
@@ -0,0 +1,24 @@
+// Exa 2.14
+format('v',6);clc;clear;close;
+// Given data
+V = 150;//voltage in V
+R1 = 50;//resistance in k ohm
+R2 = 100;//resistance in k ohm
+V_AB = R1 * (V/(R1+R2));// in V
+sensitivity = 1;// in k ohm/V
+R = sensitivity*V_AB;// in k ohm
+V_AB1 = ((R1*R)/(R1+R))*( V/(R2+(R1*R)/(R1+R)) );//voltage reading on the voltmeter in V
+disp("Part (i) When voltmeter sensitivity is 1 kΩ/volt : ")
+disp(V_AB1,"The voltage reading on the voltmeter in V is : ")
+Per_Error= ((V_AB-V_AB1)/V_AB)*100;// %e in %
+disp(Per_Error,"The percentage error in % is : ")
+sensitivity = 25;// in k ohm/V
+R = sensitivity*V_AB;// in k ohm
+Rnet = (R1*R)/(R1+R);// assumed for calculation
+V_AB2 = Rnet*( V/(R2+Rnet) );// in V
+disp("Part (ii) When voltmeter sensitivity is 25 kΩ/volt : ")
+disp(V_AB2,"The voltage reading on the voltmeter in V is : ")
+Per_Error = ((V_AB-V_AB2)/V_AB)*100;// %e in %
+disp(Per_Error,"The percentage error in % is : ")
+disp("Thus the voltmeter with low sensitivity shows more error");
+disp(" while voltmeter with high sensitivity shows less error.")
diff --git a/2360/CH2/EX2.15/ex2_15.sce b/2360/CH2/EX2.15/ex2_15.sce
new file mode 100755
index 000000000..fb7cd6b5a
--- /dev/null
+++ b/2360/CH2/EX2.15/ex2_15.sce
@@ -0,0 +1,22 @@
+// Exa 2.15
+format('v',6);clc;clear;close;
+// Given data
+V = 80;// in V
+I = 15;// in mA
+I = I * 10^-3;// in A
+R_T = V/I;// in ohm
+R_T = R_T * 10^-3;//apparent resistance in k ohm
+Rapp = R_T;// in k ohm
+disp(Rapp,"The apparent resistance in kΩ is");
+sensitivity = 1.5;// in k ohm
+f_s_reading = 150;//full scale reading in V
+Rv = sensitivity*f_s_reading;// in k ohm
+//R_T = (Rx*Rv)/(Rx+Rv);
+Rx = (R_T*Rv)/(Rv-R_T);//Actual resistance of unknown resistor in k ohm
+disp(Rx,"Actual resistance of unknown resistor in kΩ is");
+At = Rx;// in k ohm
+Am = Rapp;// in k ohm
+PerError = ((At-Am)/At)*100;//Error due to loading effect of voltmeter in %
+disp(PerError,"Error due to loading effect of voltmeter in % is");
+PerAccu = (1-abs(PerError*10^-2))*100;//Percentage relative accuracy in %
+disp(PerAccu,"Percentage relative accuracy in % is");
diff --git a/2360/CH2/EX2.16/ex2_16.sce b/2360/CH2/EX2.16/ex2_16.sce
new file mode 100755
index 000000000..12e17bc09
--- /dev/null
+++ b/2360/CH2/EX2.16/ex2_16.sce
@@ -0,0 +1,21 @@
+// Exa 2.16
+format('v',7);clc;clear;close;
+// Given data
+// Values of resistance
+R1 = 200;// in ohm
+R2 = 100;// in ohm
+R3 = 50;// in ohm
+R_T = R1+R2+R3;//resultant resistance in ohm
+// Error in resistance
+e1 = 5;// in %
+e2 = e1;// in %
+e3 = e1;// in %
+a1 = R1;// in ohm
+a2 = R2;// in ohm
+a3 = R3;// in ohm
+Per_e_T = ( ((R1/R_T)*e1) + ((R2/R_T)*e2) + ((R3/R_T)*e3) );// in %
+// Per_e_T= del_R_T/R_T*100;
+del_R_T= Per_e_T*R_T/100;// in Ω
+disp(R_T,"The magnitude of the resultant resistance in Ω is : ")
+disp("The limiting error (in percentage) is : ± "+string(Per_e_T)+" %")
+disp("The limiting error (in ohm) is : ± "+string(del_R_T)+" Ω")
diff --git a/2360/CH2/EX2.17/ex2_17.sce b/2360/CH2/EX2.17/ex2_17.sce
new file mode 100755
index 000000000..7672c0352
--- /dev/null
+++ b/2360/CH2/EX2.17/ex2_17.sce
@@ -0,0 +1,16 @@
+// Exa 2.17
+format('v',7);clc;clear;close;
+// Given data
+// Values of resistances
+R1 = 36;// in ohm
+R2 = 75;// in ohm
+R_T = (R1*R2)/(R1+R2);// in ohm
+// Error in resistance
+e1 = 5;// in %
+e_1 = e1+e1;// in % assumed
+e2 = ( ((R1/(R1+R2))*e1) + ((R2/(R1+R2))*e1) );// in %
+e_T = e_1+e2;//limiting error in %
+// Per_e_T= del_R_T/R_T*100;
+del_R_T= e_T*R_T/100;//limiting error in Ω
+disp("The limiting error (in percentage) is : ± "+string(e_T)+" %")
+disp("The limiting error (in ohm) is : ± "+string(del_R_T)+" Ω")
diff --git a/2360/CH2/EX2.18/ex2_18.sce b/2360/CH2/EX2.18/ex2_18.sce
new file mode 100755
index 000000000..5dee36b18
--- /dev/null
+++ b/2360/CH2/EX2.18/ex2_18.sce
@@ -0,0 +1,16 @@
+// Exa 2.18
+format('v',7);clc;clear;close;
+// Given data
+Error = 2/100;
+Voltmeterrange = 50;//voltmeter range in V
+Ammeterrange = 125;//ammeter range in mA
+A1 = 40;//voltmeter reading in V
+A2 = 125;//ammeter reading in mA
+del_a1 = Error*Voltmeterrange;// in V
+del_a2 = Error*Ammeterrange;// in mA
+e1 = del_a1/A1;// error in voltage
+e2 = del_a2/A2;// error in current
+e_T= (e1+e2)*100;//limiting error of the power calculated in %
+disp("The limiting error of the power calculated is : ± "+string(e_T)+" %")
+
+
diff --git a/2360/CH2/EX2.19/ex2_19.sce b/2360/CH2/EX2.19/ex2_19.sce
new file mode 100755
index 000000000..de50440ee
--- /dev/null
+++ b/2360/CH2/EX2.19/ex2_19.sce
@@ -0,0 +1,18 @@
+// Exa 2.19
+format('v',7);clc;clear;close;
+// Given data
+R1 = 120;//resistance in ohm
+e1= 0.1;//error in %
+R2 = 2700;//resistance in ohm
+e2= 0.5;//error in %
+R3 = 470;//resistance in ohm
+e3= 0.5;//error in %
+Rx = (R2*R3)/R1;//magnitude of the unknown resistance in ohm
+disp(Rx,"The magnitude of the unknown resistance in Ω is : ")
+e_T= e1+e2+e3;//limiting error in %
+// Per_e_T= del_R_T/R_T*100;
+del_Rx= e_T*Rx/100;//limiting error in Ω
+disp("The limiting error (in percentage) is : ± "+string(e_T)+" %")
+disp("The limiting error (in ohm) is : ± "+string(del_Rx)+" Ω")
+disp("Hence the guaranteed values of the resistance is between")
+disp(string(Rx-del_Rx)+" Ω to "+string(Rx+del_Rx)+" Ω")
diff --git a/2360/CH2/EX2.2/ex2_2.sce b/2360/CH2/EX2.2/ex2_2.sce
new file mode 100755
index 000000000..55ae4f25a
--- /dev/null
+++ b/2360/CH2/EX2.2/ex2_2.sce
@@ -0,0 +1,17 @@
+// Exa 2.2
+format('v',6);clc;clear;close;
+// Given data
+At = 150;// in V
+Am = 149;// in V
+e = At-Am;//absolute error in V
+disp(e,"The absolute error in V is");
+e_r = ((At-Am)/At)*100;// e_r stands for %e_r in %
+disp(e_r,"The percentage error in % is");
+A = 1 - abs( (At-Am)/At );// relative accuracy
+disp(A,"The Relative accuracy is");
+a = A*100;//Relative accuracy in %
+disp(a,"The percentage accuracy in % is");
+fsd = 200;//full scale reading in V
+// Percentage error
+PerError = ((At-Am)/fsd)*100;// in %
+disp(PerError,"Percentage error expressed as percentage of full scale reading in % is");
diff --git a/2360/CH2/EX2.20/ex2_20.sce b/2360/CH2/EX2.20/ex2_20.sce
new file mode 100755
index 000000000..0ed009edc
--- /dev/null
+++ b/2360/CH2/EX2.20/ex2_20.sce
@@ -0,0 +1,27 @@
+// Exa 2.20
+format('v',7);clc;clear;close;
+// Given data
+x=[101.2 101.4 101.7 101.3 101.3 101.2 101.0 101.3 101.5 101.1];// measured value
+n = 10;// number of reading
+sigma_x= 0;// initialization of variable
+for i=1:1:n
+ sigma_x= sigma_x+x(i);// sum of readings
+end
+x_bar=sigma_x/n;// mean value
+disp(x_bar,"The arithmatic mean is");
+sigma_d_sq=0;// initialization of variable
+sigma_d=0;// initialization of variable
+for i=1:1:n
+ d(i)=x(i)-x_bar
+ sigma_d= sigma_d+abs(d(i));
+ sigma_d_sq= sigma_d_sq+d(i)*d(i);
+end
+DevFrommean =sigma_d/n;// Deviation from mean
+disp(DevFrommean,"The Deviation from mean is");
+sigma = sqrt( sigma_d_sq/(n-1) );//standard deviation in V
+disp(sigma,"The standard deviation in V is");
+ProError= 0.6745*sigma;//probable error of one reading in V
+disp(ProError,"The probable error of one reading in V is : ")
+ProError = 0.6745*sigma;// in V
+e_m = ProError/( sqrt(n-1) );// probable error of mean
+disp(e_m,"The probable error of mean is : ");
diff --git a/2360/CH2/EX2.21/ex2_21.sce b/2360/CH2/EX2.21/ex2_21.sce
new file mode 100755
index 000000000..583722b31
--- /dev/null
+++ b/2360/CH2/EX2.21/ex2_21.sce
@@ -0,0 +1,22 @@
+// Exa 2.21
+format('v',7);clc;clear;close;
+// Given data
+x= [29.6 32.4 39.4 28.9 30.0 33.3 31.4 29.5 30.5 31.7 33.0 29.2];// measured value
+n = 12;// number of reading
+sigma_x= 0;// initialization of variable
+for i=1:1:n
+ sigma_x= sigma_x+x(i);// sum of readings
+end
+x_bar=sigma_x/n;// mean value
+disp(x_bar,"The mean value is");
+sorted_x= gsort(x);
+x_median= (sorted_x(n/2)+sorted_x(n/2+1))/2;// median value
+disp(x_median,"The median value is : ")
+sigma_d_sq=0;
+for i=1:1:n
+ d(i)=x(i)-x_bar
+ sigma_d_sq= sigma_d_sq+d(i)*d(i);
+end
+sigma = sqrt( sigma_d_sq/(n-1) );//standard deviation in V
+disp(sigma,"The standard deviation in V is");
+
diff --git a/2360/CH2/EX2.22/ex2_22.sce b/2360/CH2/EX2.22/ex2_22.sce
new file mode 100755
index 000000000..119d4957a
--- /dev/null
+++ b/2360/CH2/EX2.22/ex2_22.sce
@@ -0,0 +1,26 @@
+// Exa 2.22
+format('v',7);clc;clear;close;
+// Given data
+x= [41.7 42.0 41.8 42.0 42.1 41.9 42.0 41.9 42.5 41.8];// measured value
+n = 10;// number of reading
+sigma_x= 0;// initialization of variable
+for i=1:1:n
+ sigma_x= sigma_x+x(i);// sum of reading
+end
+x_bar=sigma_x/n;// mean
+disp(x_bar,"The mean is");
+sigma_d_sq=0;
+for i=1:1:n
+ d(i)=x(i)-x_bar
+ sigma_d_sq= sigma_d_sq+d(i)*d(i);
+end
+sigma = sqrt( sigma_d_sq/(n-1) );//standard deviation in V
+disp(sigma,"The standard deviation in V is");
+ProError= 0.6745*sigma;//probable error of one reading in V
+disp(ProError,"The probable error of one reading in V is : ")
+ProError = 0.6745*sigma;// in V
+e_m = ProError/( sqrt(n-1) );// probable error of mean
+disp(e_m,"The probable error of mean is : ");
+sorted_x= gsort(x);
+Range= sorted_x(1)-sorted_x(n);// range
+disp("Range = "+string(sorted_x(n))+" to "+string(sorted_x(1))+" = "+string(Range))
diff --git a/2360/CH2/EX2.23/ex2_23.sce b/2360/CH2/EX2.23/ex2_23.sce
new file mode 100755
index 000000000..f924a5194
--- /dev/null
+++ b/2360/CH2/EX2.23/ex2_23.sce
@@ -0,0 +1,8 @@
+// Exa 2.23
+format('v',7);clc;clear;close;
+// Given data
+Vrange= 600;//range in V
+del_A= 2.5*Vrange/100;//limiting error at full scale in V
+V= 400;//voltage in V
+PerError= del_A/V*100;//percentage error in %
+disp("The limiting error is : ± "+string(PerError)+" %")
diff --git a/2360/CH2/EX2.24/ex2_24.sce b/2360/CH2/EX2.24/ex2_24.sce
new file mode 100755
index 000000000..d4b1dc6c2
--- /dev/null
+++ b/2360/CH2/EX2.24/ex2_24.sce
@@ -0,0 +1,8 @@
+// Exa 2.24
+format('v',7);clc;clear;close;
+// Given data
+At = 6.54;//true value in A
+Am = 6.7;//measured value in A
+AbsError = At-Am;// absolute error
+PerError= ((At-Am)/At)*100;// percentage error
+disp(PerError,"The error in % is");
diff --git a/2360/CH2/EX2.25/ex2_25.sce b/2360/CH2/EX2.25/ex2_25.sce
new file mode 100755
index 000000000..0e48d5eb3
--- /dev/null
+++ b/2360/CH2/EX2.25/ex2_25.sce
@@ -0,0 +1,9 @@
+// Exa 2.25
+format('v',7);clc;clear;close;
+// Given data
+Wrange= 500;//wattmeter range in W
+del_A= 1.5*Wrange/100;//limiting error at full scale in W
+P= 50;//power in W
+Pmin= P-del_A;// minimum power in W
+Pmax= P+del_A;// maximum power in W
+disp("The range of the reading is : "+string(Pmin)+" watts to "+string(Pmax)+" watts");
diff --git a/2360/CH2/EX2.3/ex2_4.sce b/2360/CH2/EX2.3/ex2_4.sce
new file mode 100755
index 000000000..999d9a7d2
--- /dev/null
+++ b/2360/CH2/EX2.3/ex2_4.sce
@@ -0,0 +1,9 @@
+// Exa 2.4
+format('v',7);clc;clear;close;
+// Given data
+Fullscaledeflection = 30;//full scale deflection in cm
+n = 30;// number of divisions
+scaledivision = Fullscaledeflection/n;//scale division in cm
+scaledivision = scaledivision * 10;// in mm
+Resolution = (1/20)*scaledivision;// in mm
+disp(Resolution,"The Resolution of the scale in mm is");
diff --git a/2360/CH2/EX2.4/ex2_4.sce b/2360/CH2/EX2.4/ex2_4.sce
new file mode 100755
index 000000000..999d9a7d2
--- /dev/null
+++ b/2360/CH2/EX2.4/ex2_4.sce
@@ -0,0 +1,9 @@
+// Exa 2.4
+format('v',7);clc;clear;close;
+// Given data
+Fullscaledeflection = 30;//full scale deflection in cm
+n = 30;// number of divisions
+scaledivision = Fullscaledeflection/n;//scale division in cm
+scaledivision = scaledivision * 10;// in mm
+Resolution = (1/20)*scaledivision;// in mm
+disp(Resolution,"The Resolution of the scale in mm is");
diff --git a/2360/CH2/EX2.5/ex2_5.sce b/2360/CH2/EX2.5/ex2_5.sce
new file mode 100755
index 000000000..d293d59aa
--- /dev/null
+++ b/2360/CH2/EX2.5/ex2_5.sce
@@ -0,0 +1,24 @@
+// Exa 2.5
+format('v',7);clc;clear;close;
+// Given data
+// Reported values for average petrol consumption
+x= [25.5 30.3 31.1 29.6 32.4 39.4 28.9 30.0 33.3 31.4 29.5 30.5 31.7 33.0 29.2];
+n = 15;// number of reading
+sigma_x=0;// initialization of variable
+for i=1:1:15
+ sigma_x= sigma_x+x(i);// sum of reading
+end
+Mean =sigma_x/n;// mean value
+disp(Mean,"The mean value is");
+sorted_x= gsort(x);
+Xmedian = sorted_x((n+1)/2);// median value
+disp(Xmedian,"The median value is");
+sigma_d_sq=0;
+for i=1:1:15
+ d(i)=x(i)-Mean
+ sigma_d_sq= sigma_d_sq+d(i)*d(i);
+end
+sigma = round(sqrt( sigma_d_sq/(n-1) ));// standard deviation
+disp(sigma,"The standard deviation is");
+V = sigma^2;// variance
+disp(V,"The variance is");
diff --git a/2360/CH2/EX2.6/ex2_6.sce b/2360/CH2/EX2.6/ex2_6.sce
new file mode 100755
index 000000000..96092a493
--- /dev/null
+++ b/2360/CH2/EX2.6/ex2_6.sce
@@ -0,0 +1,22 @@
+// Exa 2.6
+format('v',7);clc;clear;close;
+// Given data
+// Value of readings
+x=[147.2 147.4 147.9 148.1 147.7 147.5 147.6 147.4 147.6 147.5]
+n = 10;// number of reading
+sigma_x=0;// initialization of variable
+for i=1:1:n
+ sigma_x= sigma_x+x(i);// sum of readings
+end
+x_bar= sigma_x/n;// mean value
+disp(x_bar,"The arthmatic mean is");
+sigma_d_sq=0;
+for i=1:1:n
+ d(i)=x(i)-x_bar;
+ sigma_d_sq= sigma_d_sq+d(i)*d(i);
+end
+sigma = sqrt( sigma_d_sq/(n-1) );// standard deviation
+disp(sigma,"The standard deviation is");
+// probable error of average of the ten reading
+e_m = 0.6745 * ( sigma/(sqrt(n-1)) );
+disp(e_m,"The probable error of average of the ten reading is");
diff --git a/2360/CH2/EX2.7/ex2_7.sce b/2360/CH2/EX2.7/ex2_7.sce
new file mode 100755
index 000000000..6b53ec9b8
--- /dev/null
+++ b/2360/CH2/EX2.7/ex2_7.sce
@@ -0,0 +1,10 @@
+// Exa 2.7
+format('v',5);clc;clear;close;
+// Given data
+Vrange=50;//range of voltmeter in V
+V= 15;//instrument reading in V
+// Limiting error at full scale
+del_A= Vrange*1/100;// in V
+// limiting error
+PerE= del_A/V*100;// in %
+disp(PerE,"The limiting error in % is : ")
diff --git a/2360/CH2/EX2.8/ex2_8.sce b/2360/CH2/EX2.8/ex2_8.sce
new file mode 100755
index 000000000..5ee04efee
--- /dev/null
+++ b/2360/CH2/EX2.8/ex2_8.sce
@@ -0,0 +1,14 @@
+// Exa 2.8
+format('v',6);clc;clear;close;
+// Given data
+del_a1 = 0.02;// limiting error in current
+del_a2 = 0.5;// limiting error in resistor
+A1 = 2;
+A2 = 120;
+e1 = del_a1/A1;
+e2 = del_a2/A2;
+n = 2;
+// limiting error
+e_T = (n*e1)+e2;
+e_T_Per= e_T*100;// limiting error in percentage
+disp("The limiting error is ± "+string(e_T)+" or ± "+string(e_T_Per)+" %")
diff --git a/2360/CH2/EX2.9/ex2_9.sce b/2360/CH2/EX2.9/ex2_9.sce
new file mode 100755
index 000000000..e08a7f89c
--- /dev/null
+++ b/2360/CH2/EX2.9/ex2_9.sce
@@ -0,0 +1,14 @@
+// Exa 2.9
+format('v',5);clc;clear;close;
+// Given data
+R1= 15;//value of resistance in Ω
+Re1= R1*5/100;//error in resistance in Ω
+R2= 33;//value of resistance in Ω
+Re2= R2*2/100;//error in resistance in Ω
+R3= 75;//value of resistance in Ω
+Re3= R3*5/100;//error in resistance in Ω
+R_T= R1+R2+R3;//resultant resistance in Ω
+R_T_e= Re1+Re2+Re3;//limiting error in resistance in Ω
+disp("The resultant is "+string(R_T)+" Ω with the limiting error of "+string(R_T_e)+" Ω")
+e_T= R_T_e/R_T*100;// in %
+disp("The percentage relative limiting error in resultant is ± "+string(e_T)+" %")
diff --git a/2360/CH3/EX3.1/ex3_1.sce b/2360/CH3/EX3.1/ex3_1.sce
new file mode 100755
index 000000000..e9c7e8d49
--- /dev/null
+++ b/2360/CH3/EX3.1/ex3_1.sce
@@ -0,0 +1,16 @@
+// Exa 3.1
+format('v',7);clc;clear;close;
+// Given data
+N = 100;// number o turns
+B = 0.15;//air gap in Wb/m^2
+I = 5;//current in mA
+I = I * 10^-3;// in A
+l= 10;//length in mm
+b = 8;//width in mm
+A = l*b;//area in mm^2
+A = A * 10^-6;// in m^2
+Td = N*B*A*I;//deflecting torque in Nm
+K = 0.2*10^-6;// in Nm/degree
+// Td = Tc= K*theta;
+theta = Td/K;//deflecting in degrees
+disp(theta,"The deflecting in degrees is");
diff --git a/2360/CH3/EX3.10/ex3_10.sce b/2360/CH3/EX3.10/ex3_10.sce
new file mode 100755
index 000000000..012f64a02
--- /dev/null
+++ b/2360/CH3/EX3.10/ex3_10.sce
@@ -0,0 +1,28 @@
+// Exa 3.10
+format('v',7);clc;clear;close;
+// Given data
+Rm = 50;//resistance of meter in ohm
+Im = 2;//current in mA
+Im = Im * 10^-3;// in A
+V4 = 10;//voltage in V
+R4 = (V4/Im) - Rm;// in ohm
+R4= R4*10^-3;// in k ohm
+disp(R4,"The value of R4 in kΩ is");
+R4= R4*10^3;// in ohm
+V3 = 50;// in V
+// (R3+R4) = (V3/Im) - Rm;
+R3 = (V3/Im) - Rm-R4;// in ohm
+R3= R3*10^-3;// in k ohm
+disp(R3,"The value of R3 in kΩ is");
+R3= R3*10^3;// in ohm
+V2 = 100;// in V
+//(R2+R3+R4) = (V2/Im) - Rm;
+R2 = (V2/Im) - Rm - R3 - R4;// in ohm
+R2= R2*10^-3;// in k ohm
+disp(R2,"The value of R2 in kΩ is");
+R2= R2*10^3;// in ohm
+V1 = 500;// in V
+// (R1+R2+R3+R4) = (V1/Im) - Rm;
+R1 = (V1/Im) - Rm - R4 - R3 - R2;// in ohm
+R1= R1*10^-3;// in k ohm
+disp(R1,"The value of R1 in kΩ is");
diff --git a/2360/CH3/EX3.11/ex3_11.sce b/2360/CH3/EX3.11/ex3_11.sce
new file mode 100755
index 000000000..ad09767d9
--- /dev/null
+++ b/2360/CH3/EX3.11/ex3_11.sce
@@ -0,0 +1,27 @@
+// Exa 3.11
+format('v',7);clc;clear;close;
+// Given data
+Rm = 50;//meter resistance in ohm
+Im = 2;//current in mA
+Im = Im * 10^-3;// in A
+S = 1/Im;//sensitivity in ohm/V
+// Voltage ranges
+V1 = 500;// in V
+V2 = 100;// in V
+V3 = 50;// in V
+V4 = 10;// in V
+R4 = (S*V4) - Rm;// in ohm
+R4= R4*10^-3;// in k ohm
+disp(R4,"The value of R4 in kΩ is");
+R4= R4*10^3;// in ohm
+R3 = (S*V3) - (Rm+R4);// in ohm
+R3= R3*10^-3;// in k ohm
+disp(R3,"The value of R3 in kΩ is");
+R3= R3*10^3;// in ohm
+R2 = (S*V2) - (Rm+R4+R3);// in ohm
+R2= R2*10^-3;// in k ohm
+disp(R2,"The value of R2 in kΩ is");
+R2= R2*10^3;// in ohm
+R1 = (S*V1) - (Rm+R2+R3+R4);// in ohm
+R1= R1*10^-3;// in k ohm
+disp(R1,"The value of R1 in kΩ is");
diff --git a/2360/CH3/EX3.12/ex3_12.sce b/2360/CH3/EX3.12/ex3_12.sce
new file mode 100755
index 000000000..8543f7928
--- /dev/null
+++ b/2360/CH3/EX3.12/ex3_12.sce
@@ -0,0 +1,11 @@
+// Exa 3.12
+format('v',7);clc;clear;close;
+// Given data
+Im = 50;//current in µA
+Im = Im * 10^-6;// in A
+S = 1/Im;// in ohm/V
+V = 500;// in V
+Rm = 200;//internal resistance in ohm
+Rs = (S*V) - Rm;//multiplier resistance in ohm
+Rs = Rs * 10^-6;// in Mohm
+disp(Rs,"The value of multiplier resistance in MΩ is");
diff --git a/2360/CH3/EX3.13/ex3_13.sce b/2360/CH3/EX3.13/ex3_13.sce
new file mode 100755
index 000000000..235b06147
--- /dev/null
+++ b/2360/CH3/EX3.13/ex3_13.sce
@@ -0,0 +1,18 @@
+// Exa 3.13
+format('v',7);clc;clear;close;
+// Given data
+Rs = 25;//resistance in k ohm
+Rs = Rs * 10^3;// in ohm
+Rm = 1;//meter resistance in k ohm
+Rm = Rm * 10^3;// in k ohm
+V = 100;//voltage in V
+// Rs = (S*V) - Rm;
+S = (Rs+Rm)/V;//sensitivity in ohm/V
+disp("For meter A: The value of S is : "+string(S)+" Ω/V")
+Rs = 150;// in k ohm
+Rs = Rs * 10^3;// in ohm
+V = 1000;// in V
+// Rs = (S*V) - Rm;
+S = (Rs+Rm)/V;// in ohm/V meter B
+disp("For meter B: The value of S is : "+string(S)+" Ω/V")
+disp("The meter A is more sensitive than meter B")
diff --git a/2360/CH3/EX3.14/ex3_14.sce b/2360/CH3/EX3.14/ex3_14.sce
new file mode 100755
index 000000000..9cf5fd98f
--- /dev/null
+++ b/2360/CH3/EX3.14/ex3_14.sce
@@ -0,0 +1,25 @@
+// Exa 3.14
+format('v',7);clc;clear;close;
+// Given data
+// Case (i): When voltmeter having a sensitivity of 500 Ω/V
+R1 = 20;// in k ohm
+R2 = 25;// in k ohm
+Vdc = 250;// in V
+V = (Vdc/(R1+R2))*R2;// in V
+Vrange = 150;// in V
+S = 500;// in ohm/V
+R_V = S*Vrange;// in ohm
+R_V = R_V * 10^-3;// in k ohm
+Req = (R2*R_V)/(R2+R_V);// in k ohm
+V = (Req/(Req+R1))*Vdc;// in V voltmeter first
+disp("Case (i): When voltmeter having a sensitivity of 500 Ω/V")
+disp(" The voltmeter will reads : "+string(V)+" V");
+// Case (ii): When voltmeter having a sensitivity of 1000 Ω/V
+S = 10000;// in ohm/V
+R_V = S*Vrange;// in ohm
+R_V = R_V * 10^-3;// in k ohm
+Req = (R2*R_V)/(R2+R_V);// in k ohm
+V = (Req/(Req+R1))*Vdc;// in V Voltmeter second
+disp("Case (ii): When voltmeter having a sensitivity of 1000 Ω/V")
+disp(" The voltmeter will reads : "+string(V)+" V");
+disp("Thus the second voltmeter reads more accurately.")
diff --git a/2360/CH3/EX3.15/ex3_15.sce b/2360/CH3/EX3.15/ex3_15.sce
new file mode 100755
index 000000000..1cf4c0135
--- /dev/null
+++ b/2360/CH3/EX3.15/ex3_15.sce
@@ -0,0 +1,29 @@
+// Exa 3.15
+format('v',6);clc;clear;close;
+// Given data
+Ra = 5;// in k ohm
+Rb = 1;// in k ohm
+V = 25;// in V
+Vrange = 5;// in V
+S = 1;// in k ohm/V
+// True voltage across Rb
+Vb = (Rb/(Ra+Rb))*V;// in V
+disp(Vb,"The true voltage across Rb in V is");
+R_V = S*Vrange;// in k ohm
+Req = (Rb*R_V)/(Rb+R_V);// in k ohm
+V1 = (Req/(Req+Ra))*V;//reading on the voltmeter 1 in V
+disp(V1,"The reading on the voltmeter 1 in V is");
+S = 20;// in k ohm/V
+R_V = S*Vrange;// in k ohm
+Req = (Rb*R_V)/(Rb+R_V);// in k ohm
+V2 = (Req/(Ra+Req))*V;//reading on the voltmeter 2 in V
+disp(V2,"The reading on the voltmeter 2 in V is");
+PerError1 = ((Vb-V1)/Vb)*100;//percentage error in meter 1 in %
+disp(PerError1,"The percentage error in meter 1 in % is");
+PerError2 = ((Vb-V2)/Vb)*100;//percentage error in meter 2 in %
+disp(PerError2,"The percentage error in meter 2 in % is");
+PerAccuracy1 = 100 - PerError1;//percentage accuracy of meter 1 in %
+disp(PerAccuracy1,"The percentage accuarcy of meter 1 in % is");
+PerAccuracy2 = 100-PerError2;//percentage accuracy of meter 2 in %
+disp(PerAccuracy2,"The percentage accuracy of meter 2 in % is");
+disp("Thus voltmeter 2 is "+string(PerAccuracy2)+" % accurate while voltmeter 1 is "+string(PerAccuracy1)+" % accurate")
diff --git a/2360/CH3/EX3.16/ex3_16.sce b/2360/CH3/EX3.16/ex3_16.sce
new file mode 100755
index 000000000..5eb22df5e
--- /dev/null
+++ b/2360/CH3/EX3.16/ex3_16.sce
@@ -0,0 +1,15 @@
+// Exa 3.16
+format('v',7);clc;clear;close;
+// Given data
+Erms = 10;//r.m.s. range of the voltmeter in V
+Ep = sqrt(2)*Erms;// in V
+Eav = 0.6*Ep;// in V
+Eav = 9;// in V
+Eavoutput = (1/2)*Eav;// in V
+Edc = 0.45*Erms;// in V
+Idc = 1;// in mA
+Idc = Idc * 10^-3;// in A
+Rm = 200;// in W
+Rs = (Edc/Idc) - Rm;//required multiplier resistance in ohm
+Rs = Rs * 10^-3;// in k ohm
+disp(Rs,"The required multiplier resistance in kΩ is");
diff --git a/2360/CH3/EX3.17/ex3_17.sce b/2360/CH3/EX3.17/ex3_17.sce
new file mode 100755
index 000000000..b9406c7d2
--- /dev/null
+++ b/2360/CH3/EX3.17/ex3_17.sce
@@ -0,0 +1,12 @@
+// Exa 3.17
+format('v',7);clc;clear;close;
+// Given data
+Idc = 2;//dc current in mA
+Idc = Idc * 10^-3;// in A
+Rm = 500;//meter resistance in ohm
+Erms = 10;//r.m.s value in v
+Eav = 9;//average value in V
+Edc = 0.9*Erms;//dc voltage in V
+Rs = (Edc/Idc) - Rm;//multiplier resistance in ohm
+Rs = Rs * 10^-3;// in k ohm
+disp(Rs,"The multiplier resistance in kΩ is");
diff --git a/2360/CH3/EX3.18/ex3_18.sce b/2360/CH3/EX3.18/ex3_18.sce
new file mode 100755
index 000000000..b98753996
--- /dev/null
+++ b/2360/CH3/EX3.18/ex3_18.sce
@@ -0,0 +1,7 @@
+// Exa 3.18
+format('v',7);clc;clear;close;
+// Given data
+Kf_true = 1;// true value of form factor
+Kf_measured= 1.11;// measured value of form factor
+PerError = ((Kf_true-Kf_measured)/Kf_true)*100;//percentage error in the meter reading in %
+disp(PerError,"The percentage error in the meter reading in % is");
diff --git a/2360/CH3/EX3.19/ex3_19.sce b/2360/CH3/EX3.19/ex3_19.sce
new file mode 100755
index 000000000..d78bfe5d5
--- /dev/null
+++ b/2360/CH3/EX3.19/ex3_19.sce
@@ -0,0 +1,21 @@
+// Exa 3.19
+format('v',5);clc;clear;close;
+// Given data
+V1 = 100;// in V
+V2 = 0;// in V
+e1= 0;// in V
+e2= 100;// in V
+T=2;// in sec
+T1 = 0;// in sec
+T2 = 2;// in sec
+// Slope of ramp
+A= (e2-e1)/(T2-T1);// in V/sec
+e= 'A*t';// in sec
+Erms= sqrt(1/T*integrate('(A*t)^2','t',0,T));// in V
+Eav= 1/T*integrate('(A*t)','t',0,T);// in V
+Kf= Erms/Eav;// form factor
+Kf_sine= 1.11;// form factor of sine wave
+True_reading= 1;// true reading
+Meas_reading= Kf_sine/Kf;// measured reading
+PerError= (True_reading-Meas_reading)/True_reading*100;//percentage error in the reading in %
+disp(PerError,"The percentage error in the reading in % is : ")
diff --git a/2360/CH3/EX3.2/ex3_2.sce b/2360/CH3/EX3.2/ex3_2.sce
new file mode 100755
index 000000000..0bbc60246
--- /dev/null
+++ b/2360/CH3/EX3.2/ex3_2.sce
@@ -0,0 +1,24 @@
+// Exa 3.2
+format('v',7);clc;clear;close;
+// Given data
+B = 8*10^-3;//flux density in Wb/m^2
+N = 300;// number of turns
+l = 15;//length in mm
+r = 30;//radius in mm
+K = 2.5*10^-9;//spring constant in Nm/rad
+J = 10*10^-9;// in kg-m^2
+D = 2*10^-9;// in Nm/rads^-1
+Rg = 80;// in ohm
+A = l*r;// in mm^2
+A = A * 10^-6;// in m^2
+G = N*B*A;// in Nm/A
+i = 1;// in µA
+i = i * 10^-6;// in A
+theta_f = (G*i)/K;// in rad
+r = 1;// in m
+r = r * 10^3;// in mm
+d = 2*theta_f*r;//deflection of galvanometer in mm
+disp(d,"The deflection of galvanometer in mm is");
+Si = d/i;// in mm/A
+Si = Si * 10^-6;//Current sensitivity in mm/µA
+disp(Si,"Current sensitivity in mm/µA is");
diff --git a/2360/CH3/EX3.20/ex3_20.sce b/2360/CH3/EX3.20/ex3_20.sce
new file mode 100755
index 000000000..57fd39f25
--- /dev/null
+++ b/2360/CH3/EX3.20/ex3_20.sce
@@ -0,0 +1,14 @@
+// Exa 3.20
+format('v',7);clc;clear;close;
+// Given data
+Erms = 200;//r.m.s value in V
+Rm = 100;//meter resistance in ohm
+Idc = 25;//dc current in mA
+Idc= Idc*10^-3;// in A
+Rf = 500;// in ohm
+R_D = 2*Rf;// in ohm
+Edc = 0.9*Erms;// in V
+Rs = (Edc/Idc) - Rm;// in ohm
+R_m = Rm+R_D;// in ohm
+Rs = (Edc/Idc) - R_m;//required series resistance in ohm
+disp(Rs,"The required series resistance in Ω is");
diff --git a/2360/CH3/EX3.21/ex3_21.sce b/2360/CH3/EX3.21/ex3_21.sce
new file mode 100755
index 000000000..c020180a6
--- /dev/null
+++ b/2360/CH3/EX3.21/ex3_21.sce
@@ -0,0 +1,20 @@
+// Exa 3.21
+format('v',7);clc;clear;close;
+// Given data
+r = 2;//radius in m
+r = r * 10^3;// in mm
+d = 200;//deflection in mm
+To = 3.1415;// in sec
+J = 2*10^-6;// in kg-m^2
+i = 1;// in µA
+i = i * 10^-6;// in A
+// d = 2*r*theta_f;
+theta_f = d/(2*r);// in rad
+// To = 2*%pi * (sqrt( J/K ));
+K = 4*%pi^2*J/To^2;// in Nm/A
+// theta_f = (G*i)/K;
+G = (theta_f*K)/i;// in Nm/A
+// The required resistance to obtain critical damping
+Rc = G^2/( 2*sqrt(J*K));// in ohm
+Rc = Rc * 10^-3;// in k ohm
+disp(Rc,"The required resistance to obtain critical damping in kΩ is");
diff --git a/2360/CH3/EX3.22/ex3_22.sce b/2360/CH3/EX3.22/ex3_22.sce
new file mode 100755
index 000000000..07c9072e6
--- /dev/null
+++ b/2360/CH3/EX3.22/ex3_22.sce
@@ -0,0 +1,18 @@
+// Exa 3.22
+format('v',6);clc;clear;close;
+// Given data
+theta1 = 128;//first maximum deflection in mm
+theta3 = 90;//second maximum deflection in mm
+theta_f = 70;// in mm
+i = 6.2;// in µA
+// The current sensitivity
+Si = theta_f/i;// in mm/µA
+disp(Si,"The current sensitivity in mm/µA is");
+// The logarithmic decrement
+// Formula %e^(2*lambda)= (theta1-thetaf)/(theta3-thetaf)
+lembda = log((theta1-theta_f)/(theta3-theta_f) )*(1/2);
+disp(lembda,"The logarithmic decrement is");
+// lembda = (%pi*sie)/(sqrt( 1-((sie)^2) ));
+// ((lembda/%pi)^2) = ((sie)^2)/(sqrt( 1-((sie)^2) ));
+sie = lembda/sqrt(lembda^2+%pi^2);// the relative damping
+disp(sie,"The relative damping is");
diff --git a/2360/CH3/EX3.23/ex3_23.sce b/2360/CH3/EX3.23/ex3_23.sce
new file mode 100755
index 000000000..4bc3bb02d
--- /dev/null
+++ b/2360/CH3/EX3.23/ex3_23.sce
@@ -0,0 +1,30 @@
+// Exa 3.23
+format('v',5);clc;clear;close;
+// Given data
+I = 100;// in mA
+Im = 1;// in mA
+Rm = 25;// in ohm
+// m = I/Im = 1 + Rm/Rsh;
+Rsh = Rm/((I/Im) - 1);// in ohm
+del_t = 10;// in °C
+Alpha_c = 0.004;
+Alpha_m = 0.00015;
+// When temperature increase by 10 °C
+R_m = Rm * ( 1 + (Alpha_c*del_t) );// in ohm
+R_sh = Rsh * (1 + (Alpha_m*del_t));// in ohm
+// When I= 100 mA then
+I_m = (R_sh/(R_sh+R_m))*I;// in mA
+// But Im required for full scale deflection
+PerEerror= ((I_m-Im)/Im)*100;// in %
+disp("Part (i) ");
+disp(PerEerror,"The percentage error in % is");
+Rx = 75;// in ohm
+Rtotal = Rm+Rx;// in ohm
+Rsh = Rtotal/((I/Im) - 1);// in ohm
+//R_total =R_m+R_x;
+R_total = R_m + (Rx*(1+(Alpha_m*del_t)));// in ohm
+R_sh = Rsh * (1+( Alpha_m*del_t ));// in ohm
+I_m = (R_sh/(R_sh+R_total))*I;// in mA
+PerEerror = ((I_m-Im)/Im)*100;//percentage error in %
+disp("Part (ii) ");
+disp(PerEerror,"The percentage error in % is");
diff --git a/2360/CH3/EX3.24/ex3_24.sce b/2360/CH3/EX3.24/ex3_24.sce
new file mode 100755
index 000000000..c0628b8dc
--- /dev/null
+++ b/2360/CH3/EX3.24/ex3_24.sce
@@ -0,0 +1,12 @@
+// Exa 3.24
+format('v',7);clc;clear;close;
+// Given data
+Im =25;//current in mA
+Im = Im * 10^-3;// in A
+Rm = 10;//resistance in ohm
+I = 20;// in A
+Rsh = (Im*Rm)/(I-Im);//shunt resistance in ohm
+disp(Rsh,"The value of Rsh in Ω is");
+V = 120;// in V
+Rs = (V/Im)-Rm;// in ohm
+disp(Rs,"The value of Rs in Ω is");
diff --git a/2360/CH3/EX3.25/ex3_25.sce b/2360/CH3/EX3.25/ex3_25.sce
new file mode 100755
index 000000000..25cb62944
--- /dev/null
+++ b/2360/CH3/EX3.25/ex3_25.sce
@@ -0,0 +1,21 @@
+// Exa 3.25
+format('v',7);clc;clear;close;
+// Given data
+Vm = 10;// in mV
+Vm = Vm * 10^-3;// in V
+Rm = 1;// in k ohm
+Rm = Rm * 10^3;// in ohm
+Im = Vm/Rm;// in A
+// Part (i) : For the range of 100 mV
+Vrange = 100;// in mV
+Vrange = Vrange * 10^-3;// in V
+Rs = (Vrange/Im) - Rm;// in ohm
+Rs= Rs*10^-3;// in kohm
+disp("Part (i) For the range of 100 mV")
+// Part (ii) : For the range of 1 V
+disp(Rs,"The value of Rs in kΩ is");
+Vrange = 1;// in V
+Rs = (Vrange/Im) - Rm;// in ohm
+Rs= Rs*10^-3;// in kohm
+disp("Part (i) For the range of 1V")
+disp(Rs,"The value of Rs in kΩ is");
diff --git a/2360/CH3/EX3.26/ex3_26.sce b/2360/CH3/EX3.26/ex3_26.sce
new file mode 100755
index 000000000..c3d524802
--- /dev/null
+++ b/2360/CH3/EX3.26/ex3_26.sce
@@ -0,0 +1,21 @@
+// Exa 3.26
+format('v',7);clc;clear;close;
+// Given data
+Vm = 0.1;//full scale deflection voltage in V
+Rm = 20;//meter resistance in ohm
+Im = Vm/Rm;//current in A
+I1= 10;// in A
+I2= 1;// in A
+I3= 100*10^-3;// in A
+// I1*R1 = Im*(R2+R3+Rm) or I1*R1 - Im*R2 - Im*R3 = Im*Rm (i)
+// I2*(R1+R2) = Im*(R3+Rm) or I2*R1 + I2*R2 -Im*R3 = Im*Rm (ii)
+// I3*(R1+R2+R3) = Im*Rm or I3*R1 + I3*R2 + I3*R3 = Im*Rm (iii)
+A= [I1 I2 I3;-Im I2 I3;-Im -Im I3];
+B= [Im*Rm Im*Rm Im*Rm];
+R= B*A^-1;// Solving equation (i), (ii) and (iii) by matrix method
+R1= R(1);// in ohm
+R2= R(2);// in ohm
+R3= R(3);// in ohm
+disp(R1,"The value of R1 in ohm is : ")
+disp(R2,"The value of R2 in ohm is : ")
+disp(R3,"The value of R3 in ohm is : ")
diff --git a/2360/CH3/EX3.27/ex3_27.sce b/2360/CH3/EX3.27/ex3_27.sce
new file mode 100755
index 000000000..bc3ab598b
--- /dev/null
+++ b/2360/CH3/EX3.27/ex3_27.sce
@@ -0,0 +1,14 @@
+// Exa 3.27
+format('v',7);clc;clear;close;
+// Given data
+Im = 10;//current in mA
+Im = Im * 10^-3;// in A
+Rm = 50;//meter resistance in ohm
+I = 5;// in A
+// Value of resistance to be connected in parallel
+Rsh = (Im*Rm)/(I-Im);// in ohm
+disp(Rsh,"The value of resistance to be connected in parallel in Ω is");
+V = 250;// in V
+// The value of resistance to be connected in series
+Rs = (V/Im) - Rm;// in ohm
+disp(Rs,"The value of resistance to be connected in series in Ω is");
diff --git a/2360/CH3/EX3.28/ex3_28.sce b/2360/CH3/EX3.28/ex3_28.sce
new file mode 100755
index 000000000..08d736894
--- /dev/null
+++ b/2360/CH3/EX3.28/ex3_28.sce
@@ -0,0 +1,24 @@
+// Exa 3.28
+format('v',6);clc;clear;close;
+// Given data
+Im = 1;// in mA
+Im = Im * 10^-3;// in A
+Rm = 100;// in ohm
+I = 100;// in mA
+I = I * 10^-3;// in A
+// For 100 mA range, the value of Rsh to be connected in parallel
+Rsh = (Im*Rm)/(I-Im);// in ohm
+disp(Rsh,"For 100 mA range, the value of Rsh to be connected in parallel in Ω is");
+I = 1;// in A
+// For 1 A range, the value of Rsh to be connected in parallel
+Rsh = (Im*Rm)/(I-Im);// in ohm
+disp(Rsh,"For 1A range, the value of Rsh to be connected in parallel in Ω is");
+V = 1;// in V
+// For 1V range, the value of Rs to be connected in series
+Rs = (V/Im)-Rm;// in ohm
+disp(Rs,"For 1V range, the value of Rs to be connected in series in Ω is");
+V = 100;// in V
+// For 100 V range, the value of Rs to be connected in series
+Rs = (V/Im)-Rm;// in ohm
+Rs= Rs*10^-3;// in k ohm
+disp(Rs,"For 100V range, the value of Rs to be connected in series in kΩ is");
diff --git a/2360/CH3/EX3.29/ex3_29.sce b/2360/CH3/EX3.29/ex3_29.sce
new file mode 100755
index 000000000..4b9745fb0
--- /dev/null
+++ b/2360/CH3/EX3.29/ex3_29.sce
@@ -0,0 +1,16 @@
+// Exa 3.29
+format('v',7);clc;clear;close;
+// Given data
+Rm = 100;//meter resistance in ohm
+Im = 2;//current in mA
+Im = Im * 10^-3;// in A
+I = 150;// in mA
+I = I * 10^-3;// in A
+m = I/Im;
+Rsh = Rm/(m-1);//required shunt resistance in ohm
+disp(Rsh,"The value of required shunt resistance in Ω is");
+Pm = ((Im)^2)*Rm;// in W
+Psh = ((I-Im)^2)*Rsh;// in W
+P = Pm+Psh;//power consumption in W
+P = P * 10^3;// in mW
+disp(P,"The power consumption in mW is");
diff --git a/2360/CH3/EX3.3/ex3_3.sce b/2360/CH3/EX3.3/ex3_3.sce
new file mode 100755
index 000000000..efcef29d6
--- /dev/null
+++ b/2360/CH3/EX3.3/ex3_3.sce
@@ -0,0 +1,48 @@
+// Exa 3.3
+format('v',7);clc;clear;close;
+// Given data
+B = 10*10^-3;// in Wb/m^2
+N = 200;// in turns
+l = 16;// in mm
+K = 12*10^-9;// in Nm/rad
+J = 50*10^-9;// in kg-m^2
+D = 5*10^-9;// in Nm/rads^-1
+R = 120;// in ohm
+A = l^2;// in mm^2
+A = A * 10^-6;// in m^2
+G = N*B*A;// in Nm/A
+i = 1;// in µA
+i = i * 10^-6;// in A
+theta_f = (G*i)/K;// in rad
+r = 1;// in m
+r = r * 10^3;// in mm
+// deflection of the galvanometer
+d = 2*theta_f*r;// in mm
+disp(d,"The deflection of the galvanometer in mm is");
+i = i * 10^6;// in µA
+// Current sensitivity
+Si = d/i;// in mm/µA
+disp(Si,"The current sensitivity in mm/µA is");
+// Voltage sensitivity
+Sv = d/(i*R);// in mm/µV
+disp(Sv,"The voltage sensitivity in mm/µV is");
+So = d/(i*10^-6*10^6);//megaohm sensitivity in Mohm/mm
+disp(So,"The megaohm sensitivity in Mohm/mm is");
+omega_d = (sqrt((4*J*K) - ((D)^2)))/(2*J);// in rad/sec
+f_d = omega_d/(2*%pi);//frequency of damped oscillation in Hz
+disp(f_d,"The frequency of damped oscillation in Hz is");
+omega_n = sqrt(K/J);
+// period of free oscillation
+To = (2*%pi)/omega_n;// in sec
+disp(To,"The period of free oscillation in sec is");
+Dc = 2*sqrt( J*K );
+// The relative damping
+Epsilon = D/Dc;
+disp(Epsilon,"The relative damping is");
+// The first maximum deflection
+theta1 = theta_f * ( 1 + (%e^(-%pi*Epsilon)/(sqrt(1 - ((Epsilon)^2)))) );// in rad
+theta1 = theta1*2*r;// in mm
+disp(theta1,"The first maximum deflection in mm is");
+// The logarithmic decrement
+lembda = (%pi*Epsilon)/(sqrt(1 - ((Epsilon)^2)));
+disp(lembda,"The logarithmic decrement is");
diff --git a/2360/CH3/EX3.30/ex3_30.sce b/2360/CH3/EX3.30/ex3_30.sce
new file mode 100755
index 000000000..b0dee6270
--- /dev/null
+++ b/2360/CH3/EX3.30/ex3_30.sce
@@ -0,0 +1,10 @@
+// Exa 3.30
+format('v',7);clc;clear;close;
+// Given data
+std_cell_emf = 1.45;//e.m.f. of standard cell in V
+l = 50;//length in cm
+Vdrop = std_cell_emf /l;//voltage drop per unit length in V/cm
+Vstdresistor = Vdrop*75;//voltage across standard resistor in V
+Stdresistor = 0.1;//standard resistor in ohm
+I = Vstdresistor/Stdresistor;//magnitude of current in A
+disp(I,"The magnitude of current in A is");
diff --git a/2360/CH3/EX3.4/ex3_4.sce b/2360/CH3/EX3.4/ex3_4.sce
new file mode 100755
index 000000000..6d6c57700
--- /dev/null
+++ b/2360/CH3/EX3.4/ex3_4.sce
@@ -0,0 +1,12 @@
+// Exa 3.4
+format('v',7);clc;clear;close;
+// Given data
+Rm = 100;//internal resistance in ohm
+Im = 2;// in mA
+Im = Im * 10^-3;// in A
+I = 150;// in mA
+I = I * 10^-3;// in A
+Rsh = (Im*Rm)/(I-Im);//shunt resistance in ohm
+disp(Rsh,"The value of shunt resistance in ohm is");
+
+// Note: The calculation in the book is wrong.
diff --git a/2360/CH3/EX3.5/ex3_5.sce b/2360/CH3/EX3.5/ex3_5.sce
new file mode 100755
index 000000000..7bb5a1b36
--- /dev/null
+++ b/2360/CH3/EX3.5/ex3_5.sce
@@ -0,0 +1,16 @@
+// Exa 3.5
+format('v',7);clc;clear;close;
+// Given data
+Rsh = 0.01;//shunt resistance in ohm
+Rm = 750;//resistance in ohm
+Vm= 400*10^-3;//voltage in V
+Ish = 50;//current in A
+// Ish*Rsh = voltagedrop;
+Ish = Vm/Rsh;//current through shunt in A
+disp(Ish,"The current through shunt in A is");
+Ish=50;// in A
+Vsh = Ish*Rsh;// in V
+Im = Vm/Rm;// in A
+// Im*R_m = Vsh;
+R_m = Vsh/Im;//resistance of meter in ohm
+disp(R_m,"The resistance of meter in Ω is");
diff --git a/2360/CH3/EX3.6/ex3_6.sce b/2360/CH3/EX3.6/ex3_6.sce
new file mode 100755
index 000000000..32f1cf6f9
--- /dev/null
+++ b/2360/CH3/EX3.6/ex3_6.sce
@@ -0,0 +1,17 @@
+// Exa 3.6
+format('v',7);clc;clear;close;
+// Given data
+// The first range is 0-10 mA
+I1 = 10;//in mA
+Im = 2;// in mA
+Rm = 75;// in ohm
+R1 = (Im*Rm)/(I1-Im);// in ohm
+disp(R1,"The value of R1 in ohm is");
+// Second range is 0-50 mA
+I2 = 50;// in mA
+R2 = (Im*Rm)/(I2-Im);// in ohm
+disp(R2,"The value of R2 in ohm is");
+// The third range is 0-100 mA
+I3 = 100;// in mA
+R3 = (Im*Rm)/(I3-Im);// in ohm
+disp(R3,"The value of R3 in ohm is");
diff --git a/2360/CH3/EX3.7/ex3_7.sce b/2360/CH3/EX3.7/ex3_7.sce
new file mode 100755
index 000000000..b0e3b07cd
--- /dev/null
+++ b/2360/CH3/EX3.7/ex3_7.sce
@@ -0,0 +1,22 @@
+// Exa 3.7
+format('v',7);clc;clear;close;
+// Given data
+I1 = 10;// in A
+Im = 1*10^-3;// in A
+Rm = 50;// in ohm
+I2 = 5;// in A
+I3 = 1;// in A
+// I1*R1= Im*(R2+R3+Rm) or I1*R1 - Im*R2 - Im*R3 = Im*Rm (i)
+// I2*(R1+R2) = Im*(R3+Rm) or I2*R1 + I2*R2 - Im*R3 = Im*Rm (ii)
+// I3*(R1+R2+R3) = Im*Rm or I3*R1 + I3*R2 + I3*R3 = Im*Rm (iii)
+// Solving eq (i),(ii) and (iii) by matrix method :
+A= [I1 I2 I3;-Im I2 I3;-Im -Im I3];
+B= [Im*Rm Im*Rm Im*Rm];
+R= B*A^-1;
+R1= R(1);//value of R1 in ohm
+R2= R(2);//value of R2 in ohm
+R3= R(3);//value of R3 in ohm
+disp(R1,"The value of R1 in ohm is : ")
+disp(R2,"The value of R2 in ohm is : ")
+disp(R3,"The value of R3 in ohm is : ")
+
diff --git a/2360/CH3/EX3.8/ex3_8.sce b/2360/CH3/EX3.8/ex3_8.sce
new file mode 100755
index 000000000..2b7dbc124
--- /dev/null
+++ b/2360/CH3/EX3.8/ex3_8.sce
@@ -0,0 +1,11 @@
+// Exa 3.8
+format('v',7);clc;clear;close;
+// Given data
+Rm = 500;//resistance of meter in ohm
+Im = 40;//current in µA
+Im = Im * 10^-6;// in A
+V = 10;//voltage in V
+// The required multiplier resistance
+Rs = (V/Im)-Rm;// in ohm
+Rs = Rs * 10^-3;// in k ohm
+disp(Rs,"The required multiplier resistance in kΩ is");
diff --git a/2360/CH3/EX3.9/ex3_9.sce b/2360/CH3/EX3.9/ex3_9.sce
new file mode 100755
index 000000000..10faac3c2
--- /dev/null
+++ b/2360/CH3/EX3.9/ex3_9.sce
@@ -0,0 +1,15 @@
+// Exa 3.9
+format('v',7);clc;clear;close;
+// Given data
+Im = 20;//current in mA
+Vm = 200;//voltage in mV
+// Vm = Im*Rm;
+Rm = Vm/Im;//resistance in ohm
+I = 200;// in A
+Im = Im * 10^-3;// in A
+Rsh = (Im*Rm)/(I-Im);//required shunt resistance in ohm
+disp(Rsh,"The required shunt resistance in Ω is");
+V = 500;// in V
+Rs = (V/Im)-Rm;//required multiplier resistance in ohm
+Rs = Rs * 10^-3;// in k ohm
+disp(Rs,"The required multiplier resistance in kΩ is");
diff --git a/2360/CH4/EX4.1/ex4_1.sce b/2360/CH4/EX4.1/ex4_1.sce
new file mode 100755
index 000000000..76db8ef2e
--- /dev/null
+++ b/2360/CH4/EX4.1/ex4_1.sce
@@ -0,0 +1,14 @@
+// Exa 4.1
+format('v',7);clc;clear;close;
+// Given data
+Vi = 5.1;//input voltage in V
+n = 8;// number of bit
+Resolution = 2^n;
+Resolution = Vi/(Resolution-1);// in V/LSB
+Resolution= Resolution*10^3;// in mV/LSB
+disp(Resolution,"The Resolution in mV/LSB is");
+Resolution= Resolution*10^-3;// in V/LSB
+Vi = 1.28;// in V
+D = Vi/Resolution;//digital output in LSBs
+DigitalOutput= dec2bin(round(D));// digital output in binary
+disp(DigitalOutput,"The digital output in binary is :")
diff --git a/2360/CH4/EX4.2/ex4_2.sce b/2360/CH4/EX4.2/ex4_2.sce
new file mode 100755
index 000000000..3b0355d9f
--- /dev/null
+++ b/2360/CH4/EX4.2/ex4_2.sce
@@ -0,0 +1,8 @@
+// Exa 4.2
+format('v',7);clc;clear;close;
+// Given data
+n = 12;//number of bit
+Vi = 4.095;//input voltage in V
+Q_E = Vi/(((2^n)-1)*2);//quantizing error in V
+Q_E = Q_E * 10^3;// in mV
+disp(Q_E,"The quantizing error in mV is");
diff --git a/2360/CH4/EX4.3/ex4_3.sce b/2360/CH4/EX4.3/ex4_3.sce
new file mode 100755
index 000000000..c1b8f70d5
--- /dev/null
+++ b/2360/CH4/EX4.3/ex4_3.sce
@@ -0,0 +1,13 @@
+// Exa 4.3
+format('v',7);clc;clear;close;
+// Given data
+// When Vi=100 mV
+Vi = 100;// in mV
+V_R = 100;// in mV
+t1 = 83.33;// in ms
+t2 = (Vi/V_R)*t1;// in ms
+disp(t2,"When Vi=100 mV, the value of t2 in ms is");
+// When Vi=200 mV
+Vi = 200;// in mV
+t2 = (Vi/V_R)*t1;// in ms
+disp(t2,"When Vi=200 mV, the value of t2 in ms is");
diff --git a/2360/CH4/EX4.4/ex4_4.sce b/2360/CH4/EX4.4/ex4_4.sce
new file mode 100755
index 000000000..b2dcce44e
--- /dev/null
+++ b/2360/CH4/EX4.4/ex4_4.sce
@@ -0,0 +1,10 @@
+// Exa 4.4
+format('v',7);clc;clear;close;
+// Given data
+t1 = 83.33;// in ms
+V_R = 100;// in mV
+Vi = 100;// in mV
+fc = 12;//clock frequency in kHz
+fc = fc* 10^3;// in Hz
+Digitaloutput = round(fc*t1*(Vi/V_R)*10^-3);//digital output in counts
+disp(Digitaloutput,"The Digital output in counts is");
diff --git a/2360/CH4/EX4.5/ex4_5.sce b/2360/CH4/EX4.5/ex4_5.sce
new file mode 100755
index 000000000..260377f0f
--- /dev/null
+++ b/2360/CH4/EX4.5/ex4_5.sce
@@ -0,0 +1,11 @@
+// Exa 4.5
+format('v',7);clc;clear;close;
+// Given data
+f = 1;// in MHz
+f = f * 10^6;// in Hz
+T = 1/f;// in sec
+T = T * 10^6;// in µsec
+n = 8;
+// Conversion time
+T_C = T*(n+1);// in µsec
+disp(T_C,"The conversion time in µsec is");
diff --git a/2360/CH4/EX4.6/ex4_6.sce b/2360/CH4/EX4.6/ex4_6.sce
new file mode 100755
index 000000000..dcf255910
--- /dev/null
+++ b/2360/CH4/EX4.6/ex4_6.sce
@@ -0,0 +1,9 @@
+// Exa 4.6
+format('v',7);clc;clear;close;
+// Given data
+n = 8;// number of bit
+T_C = 9;//conversion time in µs
+T_C = T_C * 10^-6;// in s
+// The maximum frequency
+f_max = 1/(2*%pi*T_C*(2^n));// in Hz
+disp(f_max,"The maximum frequency in Hz is");
diff --git a/2360/CH4/EX4.7/ex4_7.sce b/2360/CH4/EX4.7/ex4_7.sce
new file mode 100755
index 000000000..2fe6a06d4
--- /dev/null
+++ b/2360/CH4/EX4.7/ex4_7.sce
@@ -0,0 +1,13 @@
+// Exa 4.7
+format('v',7);clc;clear;close;
+// Given data
+n = 3;// number of bit
+R = 1/(10^n);
+V = 1;// in V
+// For 1V range,
+Resolution = V*R;// in V
+disp(Resolution,"For 1 V range, the resolution in V is");
+// For 50 V range,
+V = 50;// in V
+Resolution = V*R;// in V
+disp(Resolution,"For 50 V range, the resolution in V is");
diff --git a/2360/CH4/EX4.8/ex4_8.sce b/2360/CH4/EX4.8/ex4_8.sce
new file mode 100755
index 000000000..2e4d92581
--- /dev/null
+++ b/2360/CH4/EX4.8/ex4_8.sce
@@ -0,0 +1,16 @@
+// Exa 4.8
+clc;clear;close;
+// Given data
+format('v',8)
+n = 4;// number of bit
+R = 1/(10^n);
+disp(R,"Part (i) : The resolution is");
+// There are 5 digit places in 4 1/2 digits, so
+disp("Part (ii) : 11.87 would be displayed as 11.870")
+Reading= 0.5573;
+format('v',7)
+disp(Reading,"Part (iii) : On 1 V range, 0.5573 will be displayed as : ")
+format('v',6)
+disp(Reading,"On 10 V range, 0.5573 will be displayed as : ")
+
+
diff --git a/2360/CH5/EX5.1/ex5_1.sce b/2360/CH5/EX5.1/ex5_1.sce
new file mode 100755
index 000000000..001de876d
--- /dev/null
+++ b/2360/CH5/EX5.1/ex5_1.sce
@@ -0,0 +1,16 @@
+// Exa 5.1
+format('v',7);clc;clear;close;
+// Given data
+Rh = 1000;// in ohm
+Rm = 50;// in ohm
+V = 3;// in V
+Ifsd = 1;// in mA
+Ifsd = Ifsd * 10^-3;// in A
+R1 = Rh - ( (Ifsd*Rm*Rh)/V );// in ohm
+disp(R1,"The value of R1 in Ω is");
+R2 = (Ifsd*Rm*Rh)/(V-(Ifsd*Rh));// in ohm
+disp(R2,"The value of R2 in Ω is");
+// Due to 5 % drop in battery voltage, the voltage becomes
+V = V - (0.05*V);// in V
+R2 = (Ifsd*Rm*Rh)/(V-(Ifsd*Rh));// in ohm
+disp(R2,"Maximum value of R2 in Ω is");
diff --git a/2360/CH5/EX5.10/ex5_10.sce b/2360/CH5/EX5.10/ex5_10.sce
new file mode 100755
index 000000000..440e7a2a1
--- /dev/null
+++ b/2360/CH5/EX5.10/ex5_10.sce
@@ -0,0 +1,17 @@
+// Exa 5.10
+format('v',7);clc;clear;close;
+// Given data
+R1 = 120;// in ohm
+R2 = 120;// in ohm
+R3 = 120;// in ohm
+R_V = 121;// in ohm
+E_TH = 10;// in mV
+E_TH = E_TH * 10^-3;// in V
+// E_TH = E * ( (R3/(R3+R1)) - (R_V/(R_V+R2)) );
+E = E_TH/((R3/(R3+R1)) - (R_V/(R_V+R2)));//required supply voltage in V
+disp(E,"The required supply voltage in V is");
+R = 120;// in ohm
+del_r = R_V-R;// in ohm
+// E_TH = (E*del_r)/(4*R);
+E = E_TH*4*R;//The approximation of slightly unbalanced bridge in V
+disp(E,"The approximation of slightly unbalanced bridge in V is");
diff --git a/2360/CH5/EX5.11/ex5_11.sce b/2360/CH5/EX5.11/ex5_11.sce
new file mode 100755
index 000000000..af7aa69b2
--- /dev/null
+++ b/2360/CH5/EX5.11/ex5_11.sce
@@ -0,0 +1,22 @@
+// Exa 5.11
+format('v',7);clc;clear;close;
+// Given data
+R1 = 1000;// in ohm
+R2 = 100;// in ohm
+R3 = 4;// in k ohm
+R3 = R3*10^3;// in ohm
+//At bridge balance, R1*R3 = R2*R4;
+R4 = (R1*R3)/R2;// in ohm
+R4= R4*10^-3;//maximum unknown resistance in k ohm
+disp(R4,"The maximum unknown resistance in kΩ is");
+R4= R4*10^3;// in ohm
+R_TH = ((R1*R2)/(R1+R2)) + ((R3*R4)/(R3+R4));// in ohm
+Si = 70;// in mm/µA
+Si = Si * 10^6;// in mm/A
+theta = 3;// in mm
+E = 10;// in V
+Rg = 80;// in ohm
+// theta = (Si*E*R3*del_R)/((R_TH+Rg)*((R3+R4)^2));
+del_R = (theta*((R_TH+Rg)*((R3+R4)^2)))/(Si*E*R3);// in ohm
+disp(del_R,"The value of del_R in Ω is : ")
+disp("This much unbalance is necessary to cause the deflection of 3 mm")
diff --git a/2360/CH5/EX5.12/ex5_12.sce b/2360/CH5/EX5.12/ex5_12.sce
new file mode 100755
index 000000000..c3e818e55
--- /dev/null
+++ b/2360/CH5/EX5.12/ex5_12.sce
@@ -0,0 +1,10 @@
+// Exa 5.12
+format('v',7);clc;clear;close;
+// Given data
+P = 0.4;//power dissipation in each arm in W
+Rarm = 150;// in ohm
+//P = (I^2)*Rarm;
+I = sqrt(P/Rarm);// in A
+//Apply KVL to the loop ABCEFA, (-I*Rarm) - (I*Rarm) - (2*I) + 25 - (2*I*R) = 0;
+R = ((-I*Rarm) - (I*Rarm) - (2*I) + 25)/(2*I);//required series resistance in ohm
+disp(R,"The required series resistance in Ω is");
diff --git a/2360/CH5/EX5.13/ex5_13.sce b/2360/CH5/EX5.13/ex5_13.sce
new file mode 100755
index 000000000..695fe1129
--- /dev/null
+++ b/2360/CH5/EX5.13/ex5_13.sce
@@ -0,0 +1,14 @@
+// Exa 5.13
+format('v',7);clc;clear;close;
+// Given data
+R1 = 100;// in ohm
+R2 = 1000;// in ohm
+R3 = 0.00377;//standard resistance in ohm
+a = 99.92;// in ohm
+b = 1000.6;// in ohm
+Ry = 0.1;//resistance of link in ohm
+Rx =R1*R3/R2+b*Ry/(Ry+a+b)*(R1/R2-a/b);//unknown resistance in ohm
+Rx = Rx * 10^3;// in mohm
+disp(Rx,"The value of unknown resistance in mΩ is");
+
+// Note: The answer will be in mΩ not MΩ.
diff --git a/2360/CH5/EX5.14/ex5_14.sce b/2360/CH5/EX5.14/ex5_14.sce
new file mode 100755
index 000000000..d652b8e14
--- /dev/null
+++ b/2360/CH5/EX5.14/ex5_14.sce
@@ -0,0 +1,22 @@
+// Exa 5.14
+format('v',7);clc;clear;close;
+// Given data
+P = 10;// in ohm
+Q = 10;// in ohm
+S = 10;// in ohm
+// For first balance
+p = 30000;// in ohm
+q = 25000;// in ohm
+R_AB = (P*p)/(P+p);// in ohm
+R_BC = (Q*q)/(Q+q);// in ohm
+// R_AB*R = R_BC*S;
+R = (R_BC/R_AB)*S;// in ohm
+disp(R,"The value of R for first balance in Ω is");
+// For second balance
+p = 15000;// in ohm
+q = 40000;// in ohm
+R_AB = (P*p)/(P+p);// in ohm
+R_BC = (Q*q)/(Q+q);// in ohm
+// R_AB*S = R_BC*R;
+R = (R_AB/R_BC)*S;// in ohm
+disp(R,"The value of R for second balance in Ω is");
diff --git a/2360/CH5/EX5.15/ex5_15.sce b/2360/CH5/EX5.15/ex5_15.sce
new file mode 100755
index 000000000..da3133eff
--- /dev/null
+++ b/2360/CH5/EX5.15/ex5_15.sce
@@ -0,0 +1,25 @@
+// Exa 5.15
+format('v',7);clc;clear;close;
+// Given data
+P = 1000;// in ohm
+Q = 1000;// in ohm
+p = 1000;// in ohm
+q = 1000;// in ohm
+S = 0.001;// in ohm
+R = (P/Q)*S;// in ohm
+disp(R,"The value of unknown resistance in Ω is");
+Rb = 5;// in ohm
+V = 100;// in V
+I = V/(Rb+R+S);// in A
+disp(I,"The current through the unknown resistance in A is");
+R = R*0.1;// in ohm
+// Vac = ( (R+r+S)/(Rb+R+r+S) )*V;
+Vac = ((R+S)/(Rb+R+S))*V;// in V .. correction
+Vab = (P/(P+Q))*Vac;// in V
+Vab = Vab * 10^3;// in mV
+// Vamd = (R + (Pr/(p+q+r)))/(R+S+(((p+q)*r)/(p+q+r)));
+Vamd = (R/(R+S))*Vab*10^-3;// in V
+Vamd = Vamd * 10^3;// in mV
+Vout = Vab - Vamd;//output voltage in mV
+Vout = Vout*10^-3;// in V
+disp(Vout,"The output voltage in V is");
diff --git a/2360/CH5/EX5.16/ex5_16.sce b/2360/CH5/EX5.16/ex5_16.sce
new file mode 100755
index 000000000..671c8bc0f
--- /dev/null
+++ b/2360/CH5/EX5.16/ex5_16.sce
@@ -0,0 +1,13 @@
+// Exa 5.16
+format('v',7);clc;clear;close;
+// Given data
+R = 1000;// in ohm
+E = 20;// in V
+Ig = 0.1;// in nA
+Ig = Ig * 10^-9;// in A
+Req = R;// in ohm
+//For small change in resistance, Thevenin's voltage, V_TH = (E*del_r)/(4*R);
+// Ig = V_TH/Req;
+del_r = (Ig*4*R*R)/E;//smallest change in resistance in ohm
+del_r= del_r*10^6;// in µΩ
+disp(del_r,"The smallest change in resistance in µΩ is");
diff --git a/2360/CH5/EX5.2/ex5_2.sce b/2360/CH5/EX5.2/ex5_2.sce
new file mode 100755
index 000000000..a2ef5c722
--- /dev/null
+++ b/2360/CH5/EX5.2/ex5_2.sce
@@ -0,0 +1,8 @@
+// Exa 5.2
+format('v',7);clc;clear;close;
+// Given data
+R1 = 10;//resistance in k ohm
+R2 = 2;//resistance in k ohm
+R3 = 5;//resistance in k ohm
+Rx = (R1/R2)*R3;//value of unknown resistance in k ohm
+disp(Rx,"The value of unknown resistance in kΩ is");
diff --git a/2360/CH5/EX5.3/ex5_3.sce b/2360/CH5/EX5.3/ex5_3.sce
new file mode 100755
index 000000000..45477df28
--- /dev/null
+++ b/2360/CH5/EX5.3/ex5_3.sce
@@ -0,0 +1,17 @@
+// Exa 5.3
+format('v',7);clc;clear;close;
+// Given data
+// Values of resistances of the circuit
+R1 = 7;// in k ohm
+R2 = 2;// in k ohm
+R3 = 4;// in k ohm
+R4 = 20;// in k ohm
+Rg = 300;// in ohm
+E = 8;// in V
+//Use Thevenin's equivalent for Ig, V_TH=V_BD=V_AD-V_AB=( ((E/(R3+R4))*R4) - ((E/(R1+R2))*R1) );
+V_TH = ( ((E/(R3+R4))*R4) - ((E/(R1+R2))*R1) );// in V
+Req = ((R1*R2)/(R1+R2)) + ((R3*R4)/(R3+R4));// in k ohm
+// Current through galvanometer
+Ig = V_TH/((Req*10^3)+Rg);// in A
+Ig = Ig * 10^6;// in µA
+disp(Ig,"The current through galvanometer in µA is");
diff --git a/2360/CH5/EX5.4/ex5_4.sce b/2360/CH5/EX5.4/ex5_4.sce
new file mode 100755
index 000000000..eed552e82
--- /dev/null
+++ b/2360/CH5/EX5.4/ex5_4.sce
@@ -0,0 +1,14 @@
+// Exa 5.4
+format('v',7);clc;clear;close;
+// Given data
+R3 = 100.03;//standard resistance in µohm
+R3 = R3 * 10^-6;// in ohm
+R2 = 100.24;//outer ratio arms resistance in ohm
+R1 = 200;//outer ratio arms resistance in ohm
+b = 100.31;// in ohm
+a = 200;// in ohm
+Ry = 700;// in µohm
+Ry = Ry * 10^-6;// in ohm
+Rx = ((R1*R3)/R2) + ( ((b*Ry)/(Ry+a+b)) * ((R1/R2) - (a/b)) );// in ohm
+Rx = Rx * 10^6;//unknown resistance in µohm
+disp(Rx,"The unknown resistance in µΩ is");
diff --git a/2360/CH5/EX5.5/ex5_5.sce b/2360/CH5/EX5.5/ex5_5.sce
new file mode 100755
index 000000000..ca72f9d64
--- /dev/null
+++ b/2360/CH5/EX5.5/ex5_5.sce
@@ -0,0 +1,22 @@
+// Exa 5.5
+format('v',7);clc;clear;close;
+// Given data'
+R1 = 100;// in ohm
+R2 = 1000;// in ohm
+R3 = 200;// in ohm
+R4 = 2000;// in ohm
+Rg = 200;// in ohm
+S = 12;// in mm/µA
+R = 5;// in ohm
+R4 = R4 + R;// in ohm
+E = 10;// in V
+// By Thevenin's equivalent
+V_TH = E*( (R3/(R1+R3)) - (R4/(R2+R4)) );// in V
+Req = ((R1*R3)/(R1+R3)) + ((R2*R4)/(R2+R4));// in ohm
+Ig = abs(V_TH)/(Req+Rg);// in A
+Ig = Ig * 10^6;// in µA
+// S =D/I;
+D = S*Ig;//deflection of the galvanomter in mm
+disp(D,"The deflection of the galvanomter in mm is");
+
+// Note:In the book the calculated value of V_TH is not correct. Correct value of V_TH is -5.546312 mV not -5.213 mV, So there is some difference between coding and the answer of the book.
diff --git a/2360/CH5/EX5.6/ex5_6.sce b/2360/CH5/EX5.6/ex5_6.sce
new file mode 100755
index 000000000..4a0bfd79b
--- /dev/null
+++ b/2360/CH5/EX5.6/ex5_6.sce
@@ -0,0 +1,18 @@
+// Exa 5.6
+format('v',7);clc;clear;close;
+// Given data
+R1 = 1000;// in ohm
+R2 = 1000;// in ohm
+R3 = 121;// in ohm
+R4 = 119;// in ohm
+Rg = 200;// in ohm
+E = 5;// in V
+S = 1;// in mm/µA
+// Calculation of Thevenin's equivalent due to change in R3 and R4
+V_TH = E*( (R3/(R3+R1)) - (R4/(R4+R2)) );// in V
+Req = ((R1*R3)/(R1+R3)) + ((R2*R4)/(R2+R4));// in ohm
+Ig = V_TH/(Req+Rg);// in A
+Ig = Ig * 10^6;// in µA
+// S = D/I;
+D = S*Ig;//deflection of the galvanometer in mm
+disp(D,"The deflection of the galvanometer in mm is");
diff --git a/2360/CH5/EX5.7/ex5_7.sce b/2360/CH5/EX5.7/ex5_7.sce
new file mode 100755
index 000000000..675410c07
--- /dev/null
+++ b/2360/CH5/EX5.7/ex5_7.sce
@@ -0,0 +1,13 @@
+// Exa 5.7
+format('v',7);clc;clear;close;
+// Given data
+R = 500;// in ohm
+del_r = 20;// in ohm
+E = 10;// in V
+Rg = 125;// in ohm
+V_TH = (E*del_r)/(4*R);// in V
+Req = R;// in ohm
+// The current through the galvanometer
+Ig = V_TH/(Req+Rg);// in A
+Ig = Ig * 10^6;// in µA
+disp(Ig,"The current through the galvanometer in µA is");
diff --git a/2360/CH5/EX5.8/ex5_8.sce b/2360/CH5/EX5.8/ex5_8.sce
new file mode 100755
index 000000000..e1ec83da9
--- /dev/null
+++ b/2360/CH5/EX5.8/ex5_8.sce
@@ -0,0 +1,9 @@
+// Exa 5.8
+format('v',7);clc;clear;close;
+// Given data
+// Rx/R2 = Rb/Ra = 1/1200;
+R1 = 10;// in ohm
+// Rx/R2= Rb/Ra= 1/1200
+R2 = R1/0.5;// in ohm
+Rx = R2/1200;//unknown resistance in ohm
+disp(Rx,"The value of unknown resistance in Ω is");
diff --git a/2360/CH5/EX5.9/ex5_9.sce b/2360/CH5/EX5.9/ex5_9.sce
new file mode 100755
index 000000000..0d2e4a77a
--- /dev/null
+++ b/2360/CH5/EX5.9/ex5_9.sce
@@ -0,0 +1,20 @@
+// Exa 5.9
+format('v',7);clc;clear;close;
+// Given data
+//format()
+R1 = 10;// in k ohm
+R2 = 10;// in k ohm
+R3 = 10;// in k ohm
+E = 10;// in V
+// R2/R_V = R1/R3;
+R_V = (R2*R3)/R1;// in k ohm
+T=80;// in °C
+Rv=9;// in kΩ
+// Evaluation of error voltage by Thevenin's equivalent voltage
+e = E*( (R3/(R1+R3)) - (Rv/(R2+Rv)) );// in V
+// Evaluation of error voltage by approximation of slightly unbalanced bridge
+del_r = R_V-Rv;// in k ohm
+errorVoltage = (E*del_r)/(4*R1);// in V
+disp(T,"The temperature at which the bridge is balanced in °C is : ");
+disp(e,"The error voltage at 60 °C by Thevenin''s voltage in volts is : ")
+disp(errorVoltage,"The error voltage at 60 °C by approximation of slightly unbalanced bridge in Volts is ");
diff --git a/2360/CH6/EX6.1/ex6_1.sce b/2360/CH6/EX6.1/ex6_1.sce
new file mode 100755
index 000000000..9cb60aa46
--- /dev/null
+++ b/2360/CH6/EX6.1/ex6_1.sce
@@ -0,0 +1,16 @@
+// Exa 6.1
+format('v',7);clc;clear;close;
+// Given data
+Z1 = 50;// in ohm
+Z2 = 250;// in ohm
+Z3 = 200;// in ohm
+theta1 = 80;// in degree
+theta2 = 0;// in degree
+theta3 = 30;// in degree
+//bridge balance equation, Z1*Z4 = Z2*Z3;
+Z4 = (Z2*Z3)/Z1;// in ohm
+//phase angle condition, theta1+theta4 = theta2+theta3;
+theta4 = theta2+theta3-theta1;// in degree
+Z4=Z4*expm(%i*theta4*%pi/180);
+disp("The resistance part of Z4 is "+string(real(Z4))+" Ω while ")
+disp(" it is in series with capacitive reactance of "+string(abs(imag(Z4)))+" Ω")
diff --git a/2360/CH6/EX6.10/ex6_10.sce b/2360/CH6/EX6.10/ex6_10.sce
new file mode 100755
index 000000000..e2e249e20
--- /dev/null
+++ b/2360/CH6/EX6.10/ex6_10.sce
@@ -0,0 +1,15 @@
+// Exa 6.10
+format('v',7);clc;clear;close;
+// Given data
+C1 = 550;// in pF
+C2 = 110;// in pF
+Cd = (C1-(4*C2))/3;// distributed capacitance in pF
+disp(Cd,"The distributed capacitance in pF is");
+Cd = Cd * 10^-12;// in F
+C1 = C1 * 10^-12;// in F
+f1 = 1.5;// in MHz
+f1 = f1 * 10^6;// in Hz
+// f1 = 1/(2*%pi*(sqrt( L*(C1+Cd))));
+L = ((1/(2*%pi*f1))^2) * (1/(C1+Cd));// distributed inductance in H
+L = L * 10^6;// in µH
+disp(L,"The distributed inductance in µH is");
diff --git a/2360/CH6/EX6.11/ex6_11.sce b/2360/CH6/EX6.11/ex6_11.sce
new file mode 100755
index 000000000..cacd2476a
--- /dev/null
+++ b/2360/CH6/EX6.11/ex6_11.sce
@@ -0,0 +1,14 @@
+// Exa 6.11
+format('v',7);clc;clear;close;
+// Given data
+f = 1.5;//frequency in MHz
+f = f * 10^6;// in Hz
+C = 60;// in pF
+C = C * 10^-12;// in F
+R = 8;// in ohm
+R_SH = 0.02;// in ohm
+omega = 2*%pi*f;
+Qactual = 1/(omega*C*R);// true value of Q
+Qobserved = 1/(omega*C*(R+R_SH));// observed value of Q
+PerError = ((Qactual-Qobserved)/Qactual) * 100;// Percentage error in %
+disp(PerError,"The Percentage error in % is");
diff --git a/2360/CH6/EX6.12/ex6_12.sce b/2360/CH6/EX6.12/ex6_12.sce
new file mode 100755
index 000000000..88cf6ffc4
--- /dev/null
+++ b/2360/CH6/EX6.12/ex6_12.sce
@@ -0,0 +1,13 @@
+// Exa 6.12
+format('v',7);clc;clear;close;
+// Given data
+f1 = 2;//frequency in MHz
+f1 = f1 * 10^6;// in Hz
+C1 = 500;// in pF
+C2 = 60;// in pF
+// f1 = 1/(2*%pi*sqrrt(L*(C1+Cd))) (i)
+// f2 = 1/(2*%pi*sqrrt(L*(C2+Cd))) (ii)
+// and f2 = 2.5*f1 (iii)
+//From eq(i),(ii) and (iii)
+Cd = (C1 - (6.25*C2))/5.25;// value of self capacitance in pF
+disp(Cd,"The value of self capacitance in pF is");
diff --git a/2360/CH6/EX6.13/ex6_13.sce b/2360/CH6/EX6.13/ex6_13.sce
new file mode 100755
index 000000000..979671e2f
--- /dev/null
+++ b/2360/CH6/EX6.13/ex6_13.sce
@@ -0,0 +1,15 @@
+// Exa 6.13
+format('v',7);clc;clear;close;
+// Given data
+f = 1;// in MHz
+f = f * 10^6;// in Hz
+omega = 2*%pi*f;// in rad/sec
+C = 65;// in pF
+C = C * 10^-12;// in F
+R = 10;// in ohm
+R_SH = 0.02;// in ohm
+// Q = X_L/R = X_C/R = 1/(omega*C*R);
+Qactual = 1/(omega*C*R);// True value of Q
+Qmeasured = 1/(omega*C*(R+R_SH));// measured value of Q
+PerError = ((Qactual-Qmeasured)/Qactual)*100;//percentage error in %
+disp(PerError ,"The Percentage error in % is");
diff --git a/2360/CH6/EX6.14/ex6_14.sce b/2360/CH6/EX6.14/ex6_14.sce
new file mode 100755
index 000000000..bd9f777c9
--- /dev/null
+++ b/2360/CH6/EX6.14/ex6_14.sce
@@ -0,0 +1,14 @@
+// Exa 6.14
+format('v',7);clc;clear;close;
+// Given data
+C1 = 450;//capacitance in pF
+C1 = C1 * 10^-12;// in F
+C2 = 60;//capacitance in pF
+C2 = C2 * 10^-12;// in F
+// f1 = 1/(2*%pi*(sqrt(L*(C1+Cd)))) (i)
+// f2 = 1/(2*%pi*(sqrt(L*(C2+Cd)))) (ii)
+// and f2 = 2.5*f1 (iii)
+// from eq(i),(ii) and (iii)
+Cd = (C1 - (6.25*C2))/5.25;// value of self capacitance in F
+Cd = Cd * 10^12;// in pF
+disp(Cd,"The value of self capacitance in pF is");
diff --git a/2360/CH6/EX6.15/ex6_15.sce b/2360/CH6/EX6.15/ex6_15.sce
new file mode 100755
index 000000000..4f69acfed
--- /dev/null
+++ b/2360/CH6/EX6.15/ex6_15.sce
@@ -0,0 +1,22 @@
+// Exa 6.15
+format('v',7);clc;clear;close;
+// Given data
+f1 = 8;//frequency in MHz
+f1= f1*10^6;// in Hz
+f2 = 12;//frequency in MHz
+f2= f2*10^6;// in Hz
+C1 = 120;//capacitance in pF
+C1 = C1 * 10^-12;// in F
+C2 = 40;//capacitance in pF
+C2 = C2 * 10^-12;// in F
+// f1 = 1/(2*%pi*(sqrt(L*(C1+Cd)))) (i)
+// f2 = 1/(2*%pi*(sqrt(L*(C2+Cd)))) (ii)
+// From eq(i) and (ii)
+Cd= (f2^2*C2-f1^2*C1)/(f1^2-f2^2);// in F
+// From eq(i)
+C=C1+Cd;
+L=1/((C1+Cd)*(2*%pi*f1)^2);// inductance in H
+L= L*10^6;// in µH
+Cd= Cd*10^12;// self capacitance in pF
+disp(Cd,"The self capacitance in pF is");
+disp(L,"The inductance in µH is : ")
diff --git a/2360/CH6/EX6.16/ex6_16.sce b/2360/CH6/EX6.16/ex6_16.sce
new file mode 100755
index 000000000..0ba212f5e
--- /dev/null
+++ b/2360/CH6/EX6.16/ex6_16.sce
@@ -0,0 +1,22 @@
+// Exa 6.16
+format('v',7);clc;clear;close;
+// Given data
+f1 = 1;//frequency in MHz
+f1= f1*10^6;// in Hz
+f2 = 2;//frequency in MHz
+f2= f2*10^6;// in Hz
+C1 = 500;//capacitance in pF
+C1 = C1 * 10^-12;// in F
+C2 = 110;//capacitance in pF
+C2 = C2 * 10^-12;// in F
+// f1 = 1/(2*%pi*(sqrt(L*(C1+Cd)))) (i)
+// f2 = 1/(2*%pi*(sqrt(L*(C2+Cd)))) (ii)
+// From eq(i) and (ii)
+Cd= (f2^2*C2-f1^2*C1)/(f1^2-f2^2);// in F
+// From eq(i)
+C=C1+Cd;
+L=1/((C1+Cd)*(2*%pi*f1)^2);// in H
+L= L*10^6;//inductance in µH
+Cd= Cd*10^12;// self capacitance in pF
+disp(Cd,"The self capacitance in pF is");
+disp(L,"The inductance in µH is : ")
diff --git a/2360/CH6/EX6.17/ex6_17.sce b/2360/CH6/EX6.17/ex6_17.sce
new file mode 100755
index 000000000..007a3d465
--- /dev/null
+++ b/2360/CH6/EX6.17/ex6_17.sce
@@ -0,0 +1,25 @@
+// Exa 6.17
+format('v',7);clc;clear;close;
+// Given data
+f = 1;//frequency in kHz
+f = f * 10^3;// in Hz
+R1 = 400;//resistance in ohm
+R2 = 150;//resistance in ohm
+C2 = 0.2;//capacitance in µF
+C2 = C2 * 10^-6;// in F
+XC2= 1/(2*%pi*f*C2);
+R3 = 100;//resistance in ohm
+L3 = 10;//inductance in mH
+L3 = L3 * 10^-3;// in H
+XL3= 2*%pi*f*L3;
+Z1= R1+%i*0;// in Ω
+Z2= R2-%i*XC2;// in Ω
+Z3= R3+%i*XL3;// in Ω
+Z4= Z2*Z3/Z1;// in Ω
+R4= real(Z4);//resistance in Ω
+XC4= abs(imag(Z4));// in Ω
+C4= 1/(2*%pi*f*XC4);// in F
+C4= C4*10^6;// in µF
+disp("The components of branch CD : ")
+disp("R4= "+string(R4)+" Ω")
+disp("C4= "+string(C4)+" µF")
diff --git a/2360/CH6/EX6.18/ex6_18.sce b/2360/CH6/EX6.18/ex6_18.sce
new file mode 100755
index 000000000..35928bb95
--- /dev/null
+++ b/2360/CH6/EX6.18/ex6_18.sce
@@ -0,0 +1,17 @@
+// Exa 6.18
+format('v',7);clc;clear;close;
+// Given data
+C3 = 10;//capacitance in µF
+C3 = C3 * 10^-6;// in F
+R1 = 1.2;//resistance in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 100;//resistance in k ohm
+R2 = R2 * 10^3;// in ohm
+R3 = 120;//resistance in k ohm
+R3 = R3 * 10^3;// in ohm
+Rx = (R2*R3)/R1;//resistance of unknown impedance in ohm
+Rx = Rx * 10^-6;// in M ohm
+disp(Rx,"The resistance of unknown impedance in MΩ is");
+Cx = (R1*C3)/R2;//capacitance of unknown impedance in F
+Cx = Cx * 10^6;// in µF
+disp(Cx,"The capacitance of unknown impedance in µF is");
diff --git a/2360/CH6/EX6.19/ex6_19.sce b/2360/CH6/EX6.19/ex6_19.sce
new file mode 100755
index 000000000..81965c5fa
--- /dev/null
+++ b/2360/CH6/EX6.19/ex6_19.sce
@@ -0,0 +1,27 @@
+// Exa 6.19
+format('v',7);clc;clear;close;
+// Given data
+f = 1000;//frequency in Hz
+C1 = 0.2;//capacitance in µF
+C1 = C1 * 10^-6;// in F
+XC1= 1/(2*%pi*f*C1);
+R2= 500;// in Ω
+R3= 300;// in Ω
+C3= 0.1*10^-6;// in F
+XC3= 1/(2*%pi*f*C3);
+omega = 2*%pi*f;// in rad/sec
+Z1= 0-%i*XC1;// in Ω
+Z2= R2;// in Ω
+Y3= 1/R3+%i*1/XC3;// in Ω
+Z3= R3*XC3/(R3+XC3);// in Ω
+Z4= Z2/(Z1*Y3);// in Ω
+R4= real(Z4);// in Ω
+XL4= abs(imag(Z4));// in Ω
+L4= XL4/(2*%pi*f);// in F
+L4= L4*10^3;// in mH
+disp("The components of branch CD : ")
+disp("Rx= "+string(R4)+" Ω")
+disp("Lx= "+string(L4)+" mH")
+
+
+
diff --git a/2360/CH6/EX6.2/ex6_2.sce b/2360/CH6/EX6.2/ex6_2.sce
new file mode 100755
index 000000000..64acb7270
--- /dev/null
+++ b/2360/CH6/EX6.2/ex6_2.sce
@@ -0,0 +1,34 @@
+// Exa 6.2
+format('v',7);clc;clear;close;
+// Given data
+Z1 = 50;// in ohm
+Z2 = 100;// in ohm
+Z3 = 15;// in ohm
+Z4 = 30;// in ohm
+theta1 = 40;// in degree
+theta2 = -90;// in degree
+theta3 = 45;// in degree
+theta4 = 30;// in degree
+if abs(Z1*Z4)== abs(Z3*Z2) then
+ flag1=1;
+ disp("The condition of balance for magnitude is satisfied")
+else
+ flag1=0
+ disp("The condition of balance for magnitude is not satisfied")
+end
+if theta1+theta4==theta2+theta3 then
+ flag2=1
+ disp("The condition of balance for phase is also satisfied")
+else
+ flag2=0
+ disp("But the condition of balance for phase is not satisfied")
+end
+if flag1==1 then
+ if flag2==1 then
+ disp("Hence the bridge is under balanced condition")
+ else
+ disp("Hence the bridge is not under balanced condition")
+ end
+else
+ disp("Hence the bridge is not under balanced condition")
+end
diff --git a/2360/CH6/EX6.20/ex6_20.sce b/2360/CH6/EX6.20/ex6_20.sce
new file mode 100755
index 000000000..8cb142cc3
--- /dev/null
+++ b/2360/CH6/EX6.20/ex6_20.sce
@@ -0,0 +1,24 @@
+// Exa 6.20
+format('v',7);clc;clear;close;
+// Given data
+f = 2;// in kHz
+f = f * 10^3;// in Hz
+omega = 2*%pi*f;// in rad/sec
+Z1 = 10;// in k ohm
+Z2 = 50;// in k ohm
+R3 = 100;// in k ohm
+C3 = 100;// in µF
+C3 = C3 * 10^-6;// in F
+XC3= 1/(2*%pi*f*C3);
+Z3= R3-%i*XC3;// in Ω
+// From balance equation, Z1*Z4= Z2*Z3
+Z4= Z2*Z3/Z1;// in Ω
+R4= real(Z4);// in kΩ
+XC4= abs(imag(Z4));// in kΩ
+C4= 1/(2*%pi*f*XC4);// in F
+C4= C4*10^6;// in µF
+disp("The components of branch DC : ")
+disp("Rx= "+string(R4)+" kΩ")
+disp("Cx= "+string(C4)+" µF")
+
+
diff --git a/2360/CH6/EX6.21/ex6_21.sce b/2360/CH6/EX6.21/ex6_21.sce
new file mode 100755
index 000000000..147d75093
--- /dev/null
+++ b/2360/CH6/EX6.21/ex6_21.sce
@@ -0,0 +1,28 @@
+// Exa 6.21
+format('v',7);clc;clear;close;
+// Given data
+f = 1;// in kHz
+f = f * 10^3;// in Hz
+omega = 2*%pi*f;// in rad/sec
+Z1 = 200;// in ohm
+R2 = 200;// in ohm
+C2 = 5;// in µF
+C2 = C2 * 10^-6;// in F
+XC2= 1/(2*%pi*f*C2);
+Z2= R2-%i*XC2;// in Ω
+R3 = 500;// in ohm
+C3 = 0.2;// in µF
+C3 = C3 * 10^-6;// in F
+XC3= 1/(2*%pi*f*C3);
+Z3= R3-%i*XC3;// in Ω
+// From balance equation, Z1*Z4= Z2*Z3
+Z4= Z2*Z3/Z1;// in Ω
+R4= real(Z4);// in Ω
+XC4= abs(imag(Z4));// in Ω
+C4= 1/(2*%pi*f*XC4);// in F
+C4= C4*10^6;// in µF
+disp("The components of Zx : ")
+disp("Rx= "+string(R4)+" Ω")
+disp("Cx= "+string(C4)+" nF")
+
+
diff --git a/2360/CH6/EX6.22/ex6_22.sce b/2360/CH6/EX6.22/ex6_22.sce
new file mode 100755
index 000000000..36a45ce74
--- /dev/null
+++ b/2360/CH6/EX6.22/ex6_22.sce
@@ -0,0 +1,24 @@
+// Exa 6.22
+format('v',7);clc;clear;close;
+// Given data
+f = 1;// in kHz
+f = f * 10^3;// in Hz
+omega = 2*%pi*f;// in rad/sec
+Z1 = 1.65;// in k ohm
+Z2 = 15.3;// in k ohm
+R3 = 2.5;// in k ohm
+C3 = 10;// in µF
+C3 = C3 * 10^-6;// in F
+XC3= 1/(2*%pi*f*C3);
+Z3= R3-%i*XC3;// in Ω
+// From balance equation, Z1*Z4= Z2*Z3
+Z4= Z2*Z3/Z1;// in Ω
+R4= real(Z4);// in kΩ
+XC4= abs(imag(Z4));// in kΩ
+C4= 1/(2*%pi*f*XC4);// in F
+C4= C4*10^6;// in µF
+disp("The components of branch DC : ")
+disp("Rx= "+string(R4)+" kΩ")
+disp("Cx= "+string(C4)+" µF")
+
+
diff --git a/2360/CH6/EX6.23/ex6_23.sce b/2360/CH6/EX6.23/ex6_23.sce
new file mode 100755
index 000000000..771f3266a
--- /dev/null
+++ b/2360/CH6/EX6.23/ex6_23.sce
@@ -0,0 +1,28 @@
+// Exa 6.23
+format('v',7);clc;clear;close;
+// Given data
+f = 1;// in kHz
+f = f * 10^3;// in Hz
+R1 = 600;// in ohm
+C1 = 1;// in µF
+C1 = C1 * 10^-6;// in F
+XC1= 1/(2*%pi*f*C1);
+R2 = 100;// in ohm
+R3 = 1;// in k ohm
+R3 = R3 * 10^3;// in ohm
+omega = 2*%pi*f;// in rad/sec
+Y1= 1/R1+%i*1/XC1;// in Ω
+Z2=R2;// in Ω
+Z3= R3;// in Ω
+// From balance equation, Z1*Z4= Z2*Z3
+Z4= Z2*(Z3*Y1);// in Ω
+R4= real(Z4);// in Ω
+XL4= abs(imag(Z4));// in Ω
+L4= XL4/(2*%pi*f);// in F
+disp("Rx= "+string(R4)+" Ω")
+disp("Lx= "+string(L4)+" H")
+
+
+
+
+
diff --git a/2360/CH6/EX6.24/ex6_24.sce b/2360/CH6/EX6.24/ex6_24.sce
new file mode 100755
index 000000000..56c6a79ab
--- /dev/null
+++ b/2360/CH6/EX6.24/ex6_24.sce
@@ -0,0 +1,25 @@
+// Exa 6.24
+format('v',7);clc;clear;close;
+// Given data
+R2 = 842;//resistance in ohm
+C2 = 0.135;//capacitance in µF
+C2 = C2 * 10^-6;// in F
+f=1000;//frequency in Hz
+XC2= 1/(2*%pi*f*C2);
+R3= 10;//resistance in ohm
+C4= 1*10^-6;//capacitance in F
+XC4= 1/(2*%pi*f*C4);
+Z2= R2-%i*XC2;//impedance in ohm
+Z3= R3;//impedance in ohm
+Z4= -%i*XC4;//impedance in ohm
+// From balance equation
+Z1= Z2*Z3/Z4;// in Ω
+R1= real(Z1);// in Ω
+XL1= abs(imag(Z1));// in Ω
+L1= XL1/(2*%pi*f);// in F
+L1= L1*10^3;// in mH
+disp(R1,"The value of R1 in Ω is : ")
+disp(L1,"The value of L1 in mH is : ")
+
+
+
diff --git a/2360/CH6/EX6.25/ex6_25.sce b/2360/CH6/EX6.25/ex6_25.sce
new file mode 100755
index 000000000..3945cbd22
--- /dev/null
+++ b/2360/CH6/EX6.25/ex6_25.sce
@@ -0,0 +1,15 @@
+// Exa 6.25
+format('v',7);clc;clear;close;
+// Given data
+L2 = 47.8;//inductance in mH
+R2 = 1.36;//resistance in ohm
+r1 = 32.7;//resistance in ohm
+R1 = 1.36;//resistance in ohm
+//At balance, 100*(r1+J*oemga*L1) = 100*((R2+r2)+(J*omega*L2));
+ L1 = L2;// in mH (equating imaginary terms)
+disp(L1,"The inductance of coil in mH is");
+// R2+r2 = r1 (equating real terms)
+r2 = r1-R1;//resistance of coil in ohm
+disp(r2,"The resistance of coil in ohm is");
+
+// Note: In the book the value of L1 is wrong.
diff --git a/2360/CH6/EX6.26/ex6_26.sce b/2360/CH6/EX6.26/ex6_26.sce
new file mode 100755
index 000000000..080549e12
--- /dev/null
+++ b/2360/CH6/EX6.26/ex6_26.sce
@@ -0,0 +1,21 @@
+// Exa 6.26
+format('v',7);clc;clear;close;
+// Given data
+R=1.36;//resistance in ohm
+r2= 32.7;//resistance in ohm
+L2= 47.8;//inductance in mH
+L2= L2*10^-3;// in H
+f=1000;//frequency in Hz
+XL2=2*%pi*f*L2;// in Ω
+Z3 = 100;// in ohm
+Z4 = 100;// in ohm
+Z2= r2+%i*XL2;// in ohm
+// Under balance condition
+Z1= Z2*Z3/Z4;// in ohm
+R1= real(Z1);
+r1= R1-R;//resistance of the coil in ohm
+XL1= imag(Z1);// in ohm
+L1= XL1/(2*%pi*f);//inductance of the coil in F
+L1= L1*10^3;// in mH
+disp(r1,"The resistance of the coil in Ω is : ")
+disp(L1,"The inductance of the coil in mH is : ")
diff --git a/2360/CH6/EX6.27/ex6_27.sce b/2360/CH6/EX6.27/ex6_27.sce
new file mode 100755
index 000000000..5e4a7bd50
--- /dev/null
+++ b/2360/CH6/EX6.27/ex6_27.sce
@@ -0,0 +1,34 @@
+// Exa 6.27
+format('v',7);clc;clear;close;
+// Given data
+Z1 = 400;// in ohm
+Z2 = 200;// in ohm
+Z3 = 800;// in ohm
+Z4 = 400;// in ohm
+theta1 = 50;// in degree
+theta2 = 40;// in degree
+theta3 = -50;// in degree
+theta4 = 20;// in degree
+if abs(Z1*Z4)== abs(Z3*Z2) then // Applying the condition of balance for magnitude
+ flag1=1;
+ disp("The condition of balance for magnitude is satisfied")
+else
+ flag1=0
+ disp("The condition of balance for magnitude is not satisfied")
+end
+if theta1+theta4==theta2+theta3 then // Applying the condition of balance for phases
+ flag2=1
+ disp("The condition of balance for phase is also satisfied")
+else
+ flag2=0
+ disp("But the condition of balance for phase is not satisfied")
+end
+if flag1==1 then
+ if flag2==1 then
+ disp("Hence the bridge is under balanced condition")
+ else
+ disp("Hence the bridge is not under balanced condition")
+ end
+else
+ disp("Hence the bridge is not under balanced condition")
+end
diff --git a/2360/CH6/EX6.28/ex6_28.sce b/2360/CH6/EX6.28/ex6_28.sce
new file mode 100755
index 000000000..2010a3f4b
--- /dev/null
+++ b/2360/CH6/EX6.28/ex6_28.sce
@@ -0,0 +1,34 @@
+// Exa 6.28
+format('v',7);clc;clear;close;
+// Given data
+Z1 = 200;// in ohm
+Z2 = 400;// in ohm
+Z3 = 300;// in ohm
+Z4 = 600;// in ohm
+theta1 = 60;// in degree
+theta2 = -60;// in degree
+theta3 = 0;// in degree
+theta4 = 30;// in degree
+if abs(Z1*Z4)== abs(Z3*Z2) then // Applying the condition of balance for magnitude
+ flag1=1;
+ disp("The condition of balance for magnitude is satisfied")
+else
+ flag1=0
+ disp("The condition of balance for magnitude is not satisfied")
+end
+if theta1+theta4==theta2+theta3 then // Applying the condition of balance for phases
+ flag2=1
+ disp("The condition of balance for phase is also satisfied")
+else
+ flag2=0
+ disp("But the condition of balance for phase is not satisfied")
+end
+if flag1==1 then
+ if flag2==1 then
+ disp("Hence the bridge is under balanced condition")
+ else
+ disp("Hence the bridge is not under balanced condition")
+ end
+else
+ disp("Hence the bridge is not under balanced condition")
+end
diff --git a/2360/CH6/EX6.29/ex6_29.sce b/2360/CH6/EX6.29/ex6_29.sce
new file mode 100755
index 000000000..d7e60e866
--- /dev/null
+++ b/2360/CH6/EX6.29/ex6_29.sce
@@ -0,0 +1,25 @@
+// Exa 6.29
+format('v',7);clc;clear;close;
+// Given data
+f = 1;//frequency in kHz
+f = f * 10^3;// in Hz
+C1 = 0.2;// in µF
+C1 = C1 * 10^-6;// in F
+XC1= 1/(2*%pi*f*C1);// in Ω
+C2 = 0.1;// in µF
+C2 = C2 * 10^-6;// in F
+XC2= 1/(2*%pi*f*C2);// in Ω
+R2= 300;// in Ω
+R3= 500;// in Ω
+Z1= 0-%i*XC1;// in Ω
+Z2= R2*-%i*XC2/(R2-%i*XC2);// in Ω
+Z3=R3;// in Ω
+// For balanced condition
+Z4= Z2*Z3/Z1;// in Ω
+R4= real(Z4);// in Ω
+XL4= imag(Z4);// in Ω
+L4= XL4/(2*%pi*f);// in H
+L4= L4*10^3;// in mH
+disp("Components of arm CD : ")
+disp("L4= "+string(L4)+" mH")
+disp("R4= "+string(R4)+" Ω")
diff --git a/2360/CH6/EX6.3/ex6_3.sce b/2360/CH6/EX6.3/ex6_3.sce
new file mode 100755
index 000000000..0d54720b0
--- /dev/null
+++ b/2360/CH6/EX6.3/ex6_3.sce
@@ -0,0 +1,17 @@
+// Exa 6.3
+format('v',7);clc;clear;close;
+// Given data
+C3 = 10;// in µF
+C3 = C3*10^-6;// in F
+R1 = 1.2;// in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 100;// in k ohm
+R2 = R2 * 10^3;// in ohm
+R3 = 120;// in k ohm
+R3 = R3 * 10^3;// in ohm
+Rx = (R2*R3)/R1;//unknown resistance in ohm
+Rx = Rx * 10^-6;// in M ohm
+disp(Rx,"The value of Rx in MΩ is");
+Cx = (R1*C3)/R2;// in F
+Cx = Cx * 10^6;//unknown capacitance in µF
+disp(Cx,"The value of Cx in µF is");
diff --git a/2360/CH6/EX6.30/ex6_30.sce b/2360/CH6/EX6.30/ex6_30.sce
new file mode 100755
index 000000000..c414912a8
--- /dev/null
+++ b/2360/CH6/EX6.30/ex6_30.sce
@@ -0,0 +1,17 @@
+// Exa 6.30
+format('v',7);clc;clear;close;
+// Given data
+R3 = 100;// in ohm
+R4 = 200;// in ohm
+R2 = 250;// in ohm
+C = 1;// in µF
+C = C * 10^-6;// in F
+r = 229.7;// in ohm
+r1 = 43.1;// in ohm
+// Value of unknown resistance for Anderson's bridge
+R1 = ((R2*R3)/R4) - r1;//resistance in ohm
+disp(R1,"The resistance in ohm is");
+L1 = ((C*R3)/R4) * ( ((R2+R4)*r) + (R2*R4) );//inductance in H
+L1 = L1 * 10^3;// in mH
+disp(L1,"The inductance in mH is");
+
diff --git a/2360/CH6/EX6.31/ex6_31.sce b/2360/CH6/EX6.31/ex6_31.sce
new file mode 100755
index 000000000..0e21fe7e7
--- /dev/null
+++ b/2360/CH6/EX6.31/ex6_31.sce
@@ -0,0 +1,27 @@
+// Exa 6.31
+format('v',7);clc;clear;close;
+// Given data
+f = 450;//frequency in Hz
+omega = 2*%pi*f;// in rad/sec
+R2 = 4.8;// in ohm
+R3 = 200;// in ohm
+R4 = 2850;// in ohm
+C2 = 0.5;// in µF
+C2 = C2*10^-6;// in F
+XC2= 1/(2*%pi*f*C2);// in Ω
+r2 = 0.4;// in ohm
+Z2= (R2+r2)-%i*XC2;// in Ω
+Z3= R3;// in Ω
+Z4= R4;// in Ω
+// For balanced condition
+Z1= Z2*Z3/Z4;// in Ω
+r1= real(Z1);// in Ω
+XC1= abs(imag(Z1));// in Ω
+C1= 1/(2*%pi*f*XC1);// in F
+Df= 2*%pi*f*C1*r1;// dissipating factor
+C1= C1*10^6;// in µF
+disp(r1,"The value of r1 in Ω is : ")
+disp(C1,"The value of C1 in µF is : ")
+disp(Df,"The dissipating factor is : ")
+
+
diff --git a/2360/CH6/EX6.32/ex6_32.sce b/2360/CH6/EX6.32/ex6_32.sce
new file mode 100755
index 000000000..ac29019b7
--- /dev/null
+++ b/2360/CH6/EX6.32/ex6_32.sce
@@ -0,0 +1,23 @@
+// Exa 6.32
+format('v',7);clc;clear;close;
+// Given data
+f = 2;//frequency in kHz
+f = f * 10^3;// in Hz
+omega = 2*%pi*f;// in rad/sec
+R2 = 834;//resistance in ohm
+C2 = 0.124;//capacitance in µF
+C2 = C2 * 10^-6;// in F
+XC2= 1/(2*%pi*f*C2);// in Ω
+R3= 100;//resistane in Ω
+C4= 0.1*10^-6;//capacitance in F
+XC4= 1/(2*%pi*f*C4);// in Ω
+Z2= R2-%i*XC2;// in Ω
+Z3=R3;// in Ω
+Z4= 0-%i*XC4;// in Ω
+// For balanced condition, effective impedance
+Z1= Z2*Z3/Z4;//in Ω
+disp(Z1,"The effective impedance in Ω is : ")
+
+
+
+
diff --git a/2360/CH6/EX6.33/ex6_33.sce b/2360/CH6/EX6.33/ex6_33.sce
new file mode 100755
index 000000000..c8141b113
--- /dev/null
+++ b/2360/CH6/EX6.33/ex6_33.sce
@@ -0,0 +1,22 @@
+// Exa 6.33
+format('v',7);clc;clear;close;
+// Given data
+R1= 20*10^3;//resistance in ohm
+R2= 50*10^3;//resistance in ohm
+C2= 0.003*10^-6;//capacitance in F
+R4= 10*10^3;//resistance in ohm
+C1= 150*10^-12;//capacitance in F
+omega= 10^6;// in rad/sec
+Z1= R1/(1+%i*omega*C1*R1);// in ohm
+Z2= (1+%i*omega*C2*R2)/(%i*omega*C2);// in ohm
+// At balance condition : Z1*R4 = Z2*(Rx+%i*omega*Lx) or
+// R4= omega^2*R1*C2*(R1*R4*C1-Lx) (i)
+// R4= R1*(Rx*C2-R4*C1)/(R2*C2) (ii)
+Rx= R4*(R1*C1+R2*C2)/(R1*C2);// in Ω from eq(ii)
+Lx= R4*(R2*C1-1/(omega^2*R1*C2));// in H from eq (i)
+Rx= Rx*10^-3;// in k ohm
+Lx= Lx*10^3;// in mH
+disp(Rx,"The value of Rx in kΩ is : ")
+disp(Lx,"The value of Lx in mH is : ")
+
+// Note: The calculated value of Rx will be as in kΩ not in only Ω, so the answer in the book is wrong.
diff --git a/2360/CH6/EX6.34/ex6_34.sce b/2360/CH6/EX6.34/ex6_34.sce
new file mode 100755
index 000000000..06b7d8ad5
--- /dev/null
+++ b/2360/CH6/EX6.34/ex6_34.sce
@@ -0,0 +1,20 @@
+// Exa 6.34
+format('v',7);clc;clear;close;
+// Given data
+R2 = 1000;//resistance in Ω
+R3 = 1000;//resistance in Ω
+R4 = 1000;//resistance in Ω
+C4 = 0.5;//capacitance in µF
+C4 = C4 * 10^-6;// in F
+//At balance, (R1+(%i*omega*L1))*(R4/( 1+(%i*omega*C4*R4) )) = R2*R3;
+// R1*R4 + (%i*omega*L1*R4) = (R2*R3) + (%i*omega*R2*R4*C4);
+R1 = (R2*R3)/R4;// in Ω (equating real terms)
+L1 = R2*R3*C4;// in H (equating imaginary terms)
+disp(R1,"The value of R1 in ohm is");
+disp(L1,"The value of L1 in H is");
+
+
+
+
+
+
diff --git a/2360/CH6/EX6.35/ex6_35.sce b/2360/CH6/EX6.35/ex6_35.sce
new file mode 100755
index 000000000..52467d0cf
--- /dev/null
+++ b/2360/CH6/EX6.35/ex6_35.sce
@@ -0,0 +1,29 @@
+// Exa 6.35
+format('v',7);clc;clear;close;
+// Given data
+R3 = 260;//resistance in ohm
+C4 = 0.5;// in µF
+C4 = C4 * 10^-6;// in F
+C2 = 106;// in pF
+C2 = C2 * 10^-12;// in F
+R4 = 1000/%pi;//resistance in ohm
+r1 = (C4/C2)*R3;//resistance in ohm
+C1 = (R4/R3)*C2;// in F
+Epsilon_o = 8.854*10^-12;
+d = 4.5// in mm
+d = d * 10^-3;// in m
+D= 0.12;// in m
+A= %pi*D^2/4;// in m^2
+disp(r1,"The resistance in Ω is :")
+C1= C1*10^12;// in pF
+disp(C1,"The capacitance in pF is");
+C1= C1*10^-12;// in F
+f = 50;// in Hz
+omega = 2*%pi*f;// in rad/sec
+Pf= omega*C1*r1;// power factor
+disp(Pf,"The power factor is");
+// C1 = Epsilon_r*Epsilon_o*(A/d);
+Epsilon_r = (C1*d)/(Epsilon_o*A);// the relative permittivity
+disp(Epsilon_r,"The relative permittivity is");
+
+// Note: The calculation of evaluating the value of C1 is wrong, so the answer of C1 in the book is wrong. But they putted the correct value of C1 to find the value of relative permittivity
diff --git a/2360/CH6/EX6.36/ex6_36.sce b/2360/CH6/EX6.36/ex6_36.sce
new file mode 100755
index 000000000..bc64dd8f7
--- /dev/null
+++ b/2360/CH6/EX6.36/ex6_36.sce
@@ -0,0 +1,18 @@
+// Exa 6.36
+format('v',7);clc;clear;close;
+// Given data
+C2 = 500;// capacitance in nF
+C2 = C2 * 10^-9;// in F
+f = 50;//frequency in Hz
+omega = 2*%pi*f;// in rad/sec
+C4 = 0.148;//capacitance in µF
+C4 = C4 * 10^-6;// in F
+R4 = 72.6;//resistance in ohm
+R3 = 300;//resistance in ohm
+C1 = C2*(R4/R3);// capacitance in F
+C1 = C1 * 10^6;// in µF
+disp(C1,"The capacitance in µF is");
+delta = atand(omega*C4*R4);//dielectric loss angle of capacitance in degree
+disp(delta,"The dielectric loss angle of capacitance in degree is");
+
+// Note: The calculation in the book is wrong, so the answer in the book is wrong.
diff --git a/2360/CH6/EX6.37/ex6_37.sce b/2360/CH6/EX6.37/ex6_37.sce
new file mode 100755
index 000000000..a69c450e3
--- /dev/null
+++ b/2360/CH6/EX6.37/ex6_37.sce
@@ -0,0 +1,17 @@
+// Exa 6.37
+format('v',7);clc;clear;close;
+// Given data
+f1 = 3;//frequency in MHz
+f1 = f1 * 10^6;// in Hz
+C1 = 251;//capacitance in pF
+C1 = C1 * 10^-12;// in F
+f2 = 6;//frequency in MHz
+f2 = f2 * 10^6;// in Hz
+C2 = 50;//capacitance in pF
+C2 = C2 * 10^-12;// in F
+// f1 = 1/(2*%pi*(sqrt(L*(C1+Cd))) ) (i)
+// f2 = 1/(2*%pi*(sqrt(L*(C2+Cd))) ) (ii)
+// From eq(i) and (ii)
+Cd = (C1 - (4*C2))/3;// self capacitance of the coil in F
+Cd = Cd * 10^12;// in pF
+disp(Cd,"The self capacitance of the coil in pF is");
diff --git a/2360/CH6/EX6.38/ex6_38.sce b/2360/CH6/EX6.38/ex6_38.sce
new file mode 100755
index 000000000..586fdfd38
--- /dev/null
+++ b/2360/CH6/EX6.38/ex6_38.sce
@@ -0,0 +1,21 @@
+// Exa 6.38
+format('v',7);clc;clear;close;
+// Given data
+f=500;//frequency in Hz
+R2 = 2410;//resistance in ohm
+R3 = 750;//resistance in ohm
+R4 = 64.5;//resistance in ohm
+R_C4 = 0.4;//resistance in ohm
+C4 = 0.35;//capacitance in µF
+C4 = C4 * 10^-6;// in F
+XC4= 1/(2*%pi*f*C4);// in Ω
+Z4= R4+R_C4-%i*XC4;// in Ω
+Z2= R2;// in Ω
+Z3= R3;// in Ω
+Z1= Z2*Z3/Z4;// in Ω
+R1= real(Z1);//resistance of choke coil in Ω
+XL1= imag(Z1);// in Ω
+L1= XL1/(2*%pi*f);//inductance of choke coil in H
+disp(R1,"The resistance of choke coil in Ω is : ")
+disp(L1,"The inductance of choke coil in H is : ")
+
diff --git a/2360/CH6/EX6.39/ex6_39.sce b/2360/CH6/EX6.39/ex6_39.sce
new file mode 100755
index 000000000..aa325335c
--- /dev/null
+++ b/2360/CH6/EX6.39/ex6_39.sce
@@ -0,0 +1,22 @@
+// Exa 6.39
+format('v',7);clc;clear;close;
+// Given data
+f = 50;// in Hz
+omega = 2*%pi*f;// in rad/sec
+R1 = 50;// in ohm
+L1 = 0.1;// in H
+XL1= 2*%pi*f*L1;// in Ω
+R2= 100;// in Ω
+R3= 1000;// in Ω
+Z1= R1+%i*XL1;// in Ω
+Z2= R2;// in Ω
+Z3= R3;// in Ω
+// The bridge balance condition
+Zx= Z2*Z3/Z1;// in Ω
+// Comparing real part
+Rx= real(Zx);// in Ω
+// Comparing imaginary part
+XCx= abs(imag(Zx));// in Ω
+Cx= 1/(2*%pi*f*XCx);// in F
+disp(Rx,"The value of Rx in Ω is : ")
+disp(Cx*10^6,"The value of Cx in µF is : ")
diff --git a/2360/CH6/EX6.4/ex6_4.sce b/2360/CH6/EX6.4/ex6_4.sce
new file mode 100755
index 000000000..9799785c5
--- /dev/null
+++ b/2360/CH6/EX6.4/ex6_4.sce
@@ -0,0 +1,17 @@
+// Exa 6.4
+format('v',7);clc;clear;close;
+// Given data
+L3 = 8;// in mH
+L3 = L3 * 10^-3;// in H
+R1 = 1;// in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 25;// in k ohm
+R2 = R2 * 10^3;// in ohm
+R3 = 50;// in k ohm
+R3 = R3 * 10^3;// in ohm
+Rx = (R2*R3)/R1;//unknown resistance in ohm
+Rx = Rx * 10^-6;// in M ohm
+disp(Rx,"The value of Rx in MΩ is");
+Lx = (R2*L3)/R1;//unknown inductance in H
+Lx = Lx * 10^3;// in mH
+disp(Lx,"The value of Lx in mH is");
diff --git a/2360/CH6/EX6.40/ex6_40.sce b/2360/CH6/EX6.40/ex6_40.sce
new file mode 100755
index 000000000..c061cd5f5
--- /dev/null
+++ b/2360/CH6/EX6.40/ex6_40.sce
@@ -0,0 +1,23 @@
+// Exa 6.40
+format('v',7);clc;clear;close;
+// Given data
+f = 2;// in kHz
+f = f * 10^3;// in Hz
+R2= 834;// in Ω
+C2= 0.124*10^-6;// in F
+XC2= 1/(2*%pi*f*C2);// in Ω
+R3= 100;// in Ω
+C4 = 0.1;// in µF
+C4 = C4*10^-6;// in F
+XC4= 1/(2*%pi*f*C4);// in Ω
+Z2= R2+%i*XC2;// in Ω
+Z3= R3;// in Ω
+Z4= -%i*XC4;// in Ω
+// The bridge balance condition
+Z1= Z2*Z3/Z4;// in Ω
+mag= abs(Z1);// magnitude of effective impedence in Ω
+theta= atand(imag(Z1),real(Z1));// phase angle of effective impedence in °
+disp(mag,"The magnitude of effective impedence in Ω is : ")
+disp(theta,"The phase angle of effective impedence in ° is")
+
+
diff --git a/2360/CH6/EX6.41/ex6_41.sce b/2360/CH6/EX6.41/ex6_41.sce
new file mode 100755
index 000000000..a2d894ac4
--- /dev/null
+++ b/2360/CH6/EX6.41/ex6_41.sce
@@ -0,0 +1,11 @@
+// Exa 6.41
+format('v',7);clc;clear;close;
+// Given data
+L1 = 52.6;//inductance in mH
+R2 = 1.68;//resistance in ohm
+// 80*(r1+(J*omega*L1)) = 80*( (R2+r2) + (J*omega*L2) );
+L2 = L1;//inductance of the coil in mH
+disp(L2,"The inductance of the coil in mH is");
+r1 = 28.5;// in ohm
+r2 = r1-R2;//resistance of the coil in ohm
+disp(r2,"The resistance of the coil in ohm is");
diff --git a/2360/CH6/EX6.42/ex6_42.sce b/2360/CH6/EX6.42/ex6_42.sce
new file mode 100755
index 000000000..318cae2ee
--- /dev/null
+++ b/2360/CH6/EX6.42/ex6_42.sce
@@ -0,0 +1,16 @@
+// Exa 6.42
+format('v',7);clc;clear;close;
+// Given data
+Q = 1;// in k ohm
+Q = Q * 10^3;// in ohm
+S = Q;// in ohm
+P = 500;// in ohm
+r = 100;// in ohm
+C = 0.5;// in µF
+C = C * 10^-6;// in F
+//Using standard condition, Rx = (R2*R3)/R4;
+Rx = (P*Q)/S;// in ohm
+disp(Rx,"The value of Rx in Ω is");
+//Lx = ((C*R2)/R4) * ( (R3*r) + (R4*r) + (R3*R4) );
+Lx = ((C*P)/S) * ( (Q*r) + (S*r) + (Q*S) );// in H
+disp(Lx,"The value of Lx in H is");
diff --git a/2360/CH6/EX6.5/ex6_5.sce b/2360/CH6/EX6.5/ex6_5.sce
new file mode 100755
index 000000000..c544fe90b
--- /dev/null
+++ b/2360/CH6/EX6.5/ex6_5.sce
@@ -0,0 +1,15 @@
+// Exa 6.5
+format('v',7);clc;clear;close;
+// Given data
+C1 = 0.5;// in µF
+C1 = C1 * 10^-6;// in µF
+R1 = 1200;// in ohm
+R2 = 700;// in ohm
+R3 = 300;// in ohm
+// From bridge balance equation
+Rx = (R2*R3)/R1;// in ohm
+disp("Component of the brach BC :")
+disp("Rx = "+string(Rx)+" Ω");
+Lx = R2*R3*C1;// in H
+Lx = Lx * 10^3;// in mH
+disp("Lx = "+string(Lx)+" mH");
diff --git a/2360/CH6/EX6.6/ex6_6.sce b/2360/CH6/EX6.6/ex6_6.sce
new file mode 100755
index 000000000..4b4ddc3a6
--- /dev/null
+++ b/2360/CH6/EX6.6/ex6_6.sce
@@ -0,0 +1,13 @@
+// Exa 6.6
+format('v',7);clc;clear;close;
+// Given data
+R2 = 1000;//resistance in ohm
+R3 = 500;// resistance in ohm
+R4 = 1000;// resistance in ohm
+C = 3;//capacitance in µF
+C = C * 10^-6;// in F
+r = 100;// in ohm
+Rx = (R2*R3)/R4;//value of Rx in ohm
+disp(Rx,"The value of Rx in Ω is");
+Lx = ((C*R2)/R4)*( (R3*r) + (R4*r) + (R3*R4) );//value of Lx in H
+disp(Lx,"The value of Lx in H is");
diff --git a/2360/CH6/EX6.7/ex6_7.sce b/2360/CH6/EX6.7/ex6_7.sce
new file mode 100755
index 000000000..712585805
--- /dev/null
+++ b/2360/CH6/EX6.7/ex6_7.sce
@@ -0,0 +1,17 @@
+// Exa 6.7
+format('v',7);clc;clear;close;
+// Given data
+R1 = 5.1;// in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 7.9;// in k ohm
+R2 = R2 * 10^3;// in ohm
+R3 = 790;// in ohm
+C1 = 2;// in µF
+C1 = C1 * 10^-6;// in F
+omega = 1000;// in rad/sec
+Rx = (((omega)^2)*R1*((C1)^2)*R2*R3)/( 1+(((omega)^2) * ((R1)^2)* ((C1)^2)) );// unknown resistance in ohm
+Rx = Rx * 10^-3;// in k ohm
+disp(Rx,"The value of unknown resistance in kΩ is");
+Lx = (R2*R3*C1)/( 1+(((omega)^2) * ((R1)^2)* ((C1)^2)) );// unknown inductance in H
+Lx = Lx * 10^3;// in mH
+disp(Lx,"The value of unknown inductance in mH is");
diff --git a/2360/CH6/EX6.8/ex6_8.sce b/2360/CH6/EX6.8/ex6_8.sce
new file mode 100755
index 000000000..3fedd980b
--- /dev/null
+++ b/2360/CH6/EX6.8/ex6_8.sce
@@ -0,0 +1,22 @@
+// Exa 6.8
+format('v',7);clc;clear;close;
+// Given data
+R1 = 1.2;// in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 4.7;// in k ohm
+R2 = R2 * 10^3;// in ohm
+C1 = 1;// in µF
+C1 = C1 * 10^-6;// in F
+C3 = 1;// in µF
+C3 = C3 * 10^-6;// in F
+Rx = (R2*C1)/C3;// unknown resistance in ohm
+Rx = Rx * 10^-3;// in k ohm
+Cx = (R1*C3)/R2;// unknown capacitance in F
+Cx = Cx * 10^6;// in µF
+disp(Rx,"The unknown resistance in kΩ is ")
+disp(Cx,"The unknown capacitance in µF is");
+f = 0.5;// in kHz
+f = f * 10^3;// in Hz
+// omega = 2*%pi*f;
+D = 2*%pi*f*Cx*10^-6*Rx*10^3;// dissipation factor
+disp(D,"The dissipation factor is");
diff --git a/2360/CH6/EX6.9/ex6_9.sce b/2360/CH6/EX6.9/ex6_9.sce
new file mode 100755
index 000000000..abf870dfc
--- /dev/null
+++ b/2360/CH6/EX6.9/ex6_9.sce
@@ -0,0 +1,24 @@
+// Exa 6.9
+format('v',7);clc;clear;close;
+// Given data
+R1 = 2.7;// in k ohm
+R1 = R1 * 10^3;// in ohm
+R2 = 22;// in k ohm
+R2 = R2 * 10^3;// in ohm
+R4 = 100;// in k ohm
+R4 = R4 * 10^3;// in ohm
+C1 = 5;// in µF
+C1 = C1 * 10^-6;// in F
+f = 2.2;// in kHz
+f = f * 10^3;// in Hz
+//From omega^2 = 1/(R1*C1*R3*C3);
+// C3 = 1/(R1*C1*R3*(omega^2)); (i)
+// R2/R4 = R1/R3 + C3/C1 (ii)
+// From eq(i) and (ii)
+R3 = (R4/R2) * (R1 + 1/( ((2*%pi*f)^2)*R1*(C1^2) ));// equivalent parallel resistance in ohm
+R3= R3*10^-3;// in k ohm
+disp(R3,"The equivalent parallel resistance in kΩ is");
+R3= R3*10^3;// in ohm
+C3 = 1/(R1*C1*R3*((2*%pi*f)^2));// equivalent parallel capacitance in F
+C3 = C3 * 10^12;// in pF
+disp(C3,"The equivalent parallel capacitance in pF is");
diff --git a/2360/CH7/EX7.1/ex7_1.sce b/2360/CH7/EX7.1/ex7_1.sce
new file mode 100755
index 000000000..0cc67d1ab
--- /dev/null
+++ b/2360/CH7/EX7.1/ex7_1.sce
@@ -0,0 +1,12 @@
+// Exa 7.1
+format('v',7);clc;clear;close;
+// Given data
+BW = 25;//bandwidth in MHz
+Trd = 20;//rise time in ns
+Trd = Trd * 10^-9;// in s
+// BW = 0.35/Tro;
+Tro = 0.35/(BW*10^6);// in s
+// Trd = sqrt( (Trs^2) + (Tro^2) );
+Trs = sqrt( (Trd^2)-(Tro^2) );// rise time of signal in sec
+Trs = Trs * 10^9;// in ns
+disp(Trs,"The rise time of signal in ns is");
diff --git a/2360/CH7/EX7.10/ex7_10.sce b/2360/CH7/EX7.10/ex7_10.sce
new file mode 100755
index 000000000..b458e45e9
--- /dev/null
+++ b/2360/CH7/EX7.10/ex7_10.sce
@@ -0,0 +1,13 @@
+// Exa 7.10
+format('v',7);clc;clear;close;
+// Given data
+Vd = 4;// vertical division
+Va = 0.5;//Vertical attenuation in V/Div
+App = Vd*Va;//peak to peak amplitude in V
+disp(App ,"The peak to peak amplitude of the signal in V is");
+TimebyDiv = 2;//time per division in µs/Div
+Hd = 4;// horizontal division
+Time = Hd*TimebyDiv;// in µs
+f = 1/(Time*10^-6);// frequency of signal in Hz
+f = f * 10^-3;// in kHz
+disp(f,"The frequency of signal in kHz is");
diff --git a/2360/CH7/EX7.11/ex7_11.sce b/2360/CH7/EX7.11/ex7_11.sce
new file mode 100755
index 000000000..a6e1a2d52
--- /dev/null
+++ b/2360/CH7/EX7.11/ex7_11.sce
@@ -0,0 +1,16 @@
+// exa 7.11
+format('v',5);clc;clear;close;
+// Given data
+Rin = 2;//resistance in Mohm
+Cin = 50;//capacitance in pF
+Cin = Cin * 10^-12;// in F
+// (R1+Rin)/Rin = 10;
+R1 = 9*Rin;//resistance in Mohm
+disp(R1,"The value of R1 in MΩ is");
+R1 = R1*10^6;// in ohm
+Rin = Rin * 10^6;// in ohm
+// While balance equation with compensating capacitor
+// R1*C1 = Rin*(C2+Cin)
+C1 = (Rin*Cin)/R1;// in F(neglecting C2)
+C1 = C1 * 10^12;// in pF
+disp(C1,"The value of C1 in pF is");
diff --git a/2360/CH7/EX7.2/ex7_2.sce b/2360/CH7/EX7.2/ex7_2.sce
new file mode 100755
index 000000000..5e7430c97
--- /dev/null
+++ b/2360/CH7/EX7.2/ex7_2.sce
@@ -0,0 +1,12 @@
+// Exa 7.2
+format('v',7);clc;clear;close;
+// Given data
+Trs = 17;//rise time in µs
+Trs = Trs * 10^-6;// in s
+Trd = 21;// in µs
+Trd = Trd * 10^-6;// in s
+// Trd = sqrt( (Trs^2) + (Tro^2) );
+Tro = sqrt( (Trd^2)- (Trs^2) );// in sec
+BW = 0.35/Tro;//band width in Hz
+BW = BW * 10^-3;// in kHz
+disp(BW,"The band width in kHz is");
diff --git a/2360/CH7/EX7.3/ex7_3.sce b/2360/CH7/EX7.3/ex7_3.sce
new file mode 100755
index 000000000..9472e376d
--- /dev/null
+++ b/2360/CH7/EX7.3/ex7_3.sce
@@ -0,0 +1,14 @@
+// Exa 7.3
+format('v',7);clc;clear;close;
+// Given data
+subdivision = 1/5;//sub division in units
+positivepeak = 2.6;//positive peak in units
+Vpp = positivepeak + positivepeak;//peak to peak in divisions
+verticalattenuation = 2;//vertical attenuation in mV/div
+verticalattenuation = verticalattenuation * 10^-3;// in V/div
+Vpp = Vpp * verticalattenuation;// in V
+Vpp = Vpp * 10^3;// in mV
+Vm = Vpp/2;;//amplitude of the sinusoidal voltage in mV
+disp(Vm,"The amplitude of the sinusoidal voltage in mV is");
+V_RMS = Vm/sqrt(2);//r.m.s. value of the sinusoidal voltage in mV
+disp(V_RMS,"The r.m.s. value of the sinusoidal voltage in mV is");
diff --git a/2360/CH7/EX7.4/ex7_4.sce b/2360/CH7/EX7.4/ex7_4.sce
new file mode 100755
index 000000000..bfbb8c830
--- /dev/null
+++ b/2360/CH7/EX7.4/ex7_4.sce
@@ -0,0 +1,16 @@
+// Exa 7.4
+format('v',7);clc;clear;close;
+// Given data
+voltsBYdiv = 2;//volts per division in V/div
+Timebase = 2;//base time in ms/div
+Verticaloccupancy = 3;//Vertical occupancy in cm
+Vpp = voltsBYdiv*Verticaloccupancy;//peak to peak voltage in V
+Vm = Vpp/2;// in V
+V_RMS = Vm/sqrt(2);//r.m.s. value of the voltage in V
+disp(V_RMS,"The r.m.s. value of the voltage in V is");
+Horizontaloccupancy = 2;//Horizontal occupancy in cm
+timeBYdiv = 2;//time per division in mV
+timeBYdiv = timeBYdiv*10^-3;// in V
+T = timeBYdiv*Horizontaloccupancy;// in sec
+f = 1/T;// in Hz
+disp(f,"The frequency in Hz is");
diff --git a/2360/CH7/EX7.5/ex7_5.sce b/2360/CH7/EX7.5/ex7_5.sce
new file mode 100755
index 000000000..b1f962648
--- /dev/null
+++ b/2360/CH7/EX7.5/ex7_5.sce
@@ -0,0 +1,7 @@
+// Exa 7.5
+format('v',7);clc;clear;close;
+// Given data
+y1 = 8;// in units
+y2 = 10;// in units
+phi = asind(y1/y2);// phase difference in degree
+disp(phi,"The phase difference in degree is");
diff --git a/2360/CH7/EX7.6/ex7_6.sce b/2360/CH7/EX7.6/ex7_6.sce
new file mode 100755
index 000000000..444a5507e
--- /dev/null
+++ b/2360/CH7/EX7.6/ex7_6.sce
@@ -0,0 +1,9 @@
+// Exa 7.6
+format('v',7);clc;clear;close;
+// Given data
+verticaltangencies = 2;// vertical tangencies
+horizontaltangencies = 5;// horizontal tangencies
+f_H = 1;// frequency in kHz
+// f_V/f_H = horizontaltangencies/verticaltangencies;
+f_V = (horizontaltangencies/verticaltangencies)*f_H;//unknown frequency of vertical signal in kHz
+disp(f_V,"The unknown frequency of vertical signal in kHz is");
diff --git a/2360/CH7/EX7.7/ex7_7.sce b/2360/CH7/EX7.7/ex7_7.sce
new file mode 100755
index 000000000..d803ba808
--- /dev/null
+++ b/2360/CH7/EX7.7/ex7_7.sce
@@ -0,0 +1,10 @@
+// Exa 7.7
+format('v',6);clc;clear;close;
+// Given data
+Cin = 35;// in pF
+// (R1+Rin)/Rin = 10;
+RinBYR1= 1/9;
+//while balance equation with compensating capacitor
+// R1*C1 = Rin*(C2+Cin);
+C1= Cin*RinBYR1;//compansating capacitor in pF
+disp(C1,"The compansating capacitor in pF is");
diff --git a/2360/CH7/EX7.8/ex7_8.sce b/2360/CH7/EX7.8/ex7_8.sce
new file mode 100755
index 000000000..73b05fef5
--- /dev/null
+++ b/2360/CH7/EX7.8/ex7_8.sce
@@ -0,0 +1,14 @@
+// Exa 7.8
+format('v',7);clc;clear;close;
+// Given data
+n = 10;// number of cycle
+fs = 1;//signal frequency in kHz
+fs = fs * 10^3;// in Hz
+Timeperiod = n/fs;//time period in sec
+Samplingfrequency = 1/Timeperiod;//Sampling frequency in samples/sec
+disp(Samplingfrequency,"The sampling rate for 1 kHz in samples/sec is");
+fs = 10;// in kHz
+fs = fs * 10^3;// in Hz
+Samplingperiod = n/fs;//Sampling period in sec
+Samplingfrequency = 1/Samplingperiod;//sampling rate for 10 kHz in samples/sec
+disp(Samplingfrequency,"The sampling rate for 10 kHz in samples/sec is");
diff --git a/2360/CH7/EX7.9/ex7_9.sce b/2360/CH7/EX7.9/ex7_9.sce
new file mode 100755
index 000000000..468f6a3b0
--- /dev/null
+++ b/2360/CH7/EX7.9/ex7_9.sce
@@ -0,0 +1,8 @@
+// Exa 7.9
+format('v',7);clc;clear;close;
+// Given data
+Samplingrate = 200;//Sampling rate in MS/s
+Samplingrate = Samplingrate * 10^6;// in S/s
+t_r = 1/Samplingrate;//minimum rise time of pulse in s
+t_r = t_r * 10^9;// in ns
+disp(t_r,"The minimum rise time of pulse in ns is");
diff --git a/2360/CH8/EX8.1/ex7_1.sce b/2360/CH8/EX8.1/ex7_1.sce
new file mode 100755
index 000000000..0cc67d1ab
--- /dev/null
+++ b/2360/CH8/EX8.1/ex7_1.sce
@@ -0,0 +1,12 @@
+// Exa 7.1
+format('v',7);clc;clear;close;
+// Given data
+BW = 25;//bandwidth in MHz
+Trd = 20;//rise time in ns
+Trd = Trd * 10^-9;// in s
+// BW = 0.35/Tro;
+Tro = 0.35/(BW*10^6);// in s
+// Trd = sqrt( (Trs^2) + (Tro^2) );
+Trs = sqrt( (Trd^2)-(Tro^2) );// rise time of signal in sec
+Trs = Trs * 10^9;// in ns
+disp(Trs,"The rise time of signal in ns is");