diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2333/CH6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2333/CH6')
34 files changed, 333 insertions, 0 deletions
diff --git a/2333/CH6/EX6.1/1.sce b/2333/CH6/EX6.1/1.sce new file mode 100755 index 000000000..7b991dac0 --- /dev/null +++ b/2333/CH6/EX6.1/1.sce @@ -0,0 +1,15 @@ +clc + +// Given that +mu1 = 1.42 // refractive index for core +mu2 = 1.40 // refractive index for cladding +// Sample Problem 1 on page no. 254 +printf("\n # PROBLEM 1 # \n") +NA = sqrt(mu1^2 - mu2^2) +theta_0 = asin(NA) * (180 / %pi) +theta_deg = floor(theta_0) +theta_fract = theta_0 - floor(theta_0) +theta_min = theta_fract*60 +printf("\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n \n Numerical aperture = %f,\n Maximum incidence angle = %d degree %d min.",NA,theta_deg,theta_min) + diff --git a/2333/CH6/EX6.1/1.txt b/2333/CH6/EX6.1/1.txt new file mode 100755 index 000000000..398e283e4 --- /dev/null +++ b/2333/CH6/EX6.1/1.txt @@ -0,0 +1,9 @@ + # PROBLEM 1 #
+
+ Standard formula used
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+
+ Numerical aperture = 0.237487,
+ Maximum incidence angle = 13 degree 44 min.
\ No newline at end of file diff --git a/2333/CH6/EX6.10/10.sce b/2333/CH6/EX6.10/10.sce new file mode 100755 index 000000000..0441c8054 --- /dev/null +++ b/2333/CH6/EX6.10/10.sce @@ -0,0 +1,9 @@ +clc +// Given that +NA = 0.3 // numerical aperture of fiber +d = 200 // core diameter in micro meter +lambda = 0.9 // wavelength of propagating light in micro meter +// Sample Problem 10 on page no. 268 +printf("\n # PROBLEM 10 # \n") +N_max = 2*(d/2)^2*%pi^2*NA^2/lambda^2 +printf("\n Total number of propagating modes are %d.",N_max) diff --git a/2333/CH6/EX6.10/10.txt b/2333/CH6/EX6.10/10.txt new file mode 100755 index 000000000..589405c6f --- /dev/null +++ b/2333/CH6/EX6.10/10.txt @@ -0,0 +1,3 @@ +# PROBLEM 10 #
+
+ Total number of propagating modes are 21932.
\ No newline at end of file diff --git a/2333/CH6/EX6.11/11.sce b/2333/CH6/EX6.11/11.sce new file mode 100755 index 000000000..704cec14e --- /dev/null +++ b/2333/CH6/EX6.11/11.sce @@ -0,0 +1,13 @@ +clc
+// given that
+
+d = 9 // Diameter of ore of wire in mm
+P_b = 180 // Threshold optical power for Brillouin scattering in mW
+P_r = 1.9 // Threshold optical power for Raman scattering W
+nu = 1 // Bandwidth in GHz
+ // Sample Problem 11 on page no. 278
+printf("\n # PROBLEM 11 # \n")
+ratio = P_b*1e-3/P_r // Calculation of ratios of powers
+lambda = ratio*5.9*1e-2*(d*1e-3)^2/(4.4*1e-3*(d*1e-3)^2) // Calcualtion of wavelength
+printf("\n Standard formula used \n P_b = 4.4*1e-3*d^2*lambda^2*alpha.\nP_r = 5.9*1e-3*d^2*lambda^2*alpha \n")
+printf("\n wavelength of laser is %fmicron. ",lambda)
diff --git a/2333/CH6/EX6.11/11.txt b/2333/CH6/EX6.11/11.txt new file mode 100755 index 000000000..00a911723 --- /dev/null +++ b/2333/CH6/EX6.11/11.txt @@ -0,0 +1,7 @@ + # PROBLEM 11 #
+
+ Standard formula used
+ P_b = 4.4*1e-3*d^2*lambda^2*alpha.
+P_r = 5.9*1e-3*d^2*lambda^2*alpha
+
+ wavelength of laser is 1.270335micron.
\ No newline at end of file diff --git a/2333/CH6/EX6.12/12.sce b/2333/CH6/EX6.12/12.sce new file mode 100755 index 000000000..f7221fe8a --- /dev/null +++ b/2333/CH6/EX6.12/12.sce @@ -0,0 +1,10 @@ +clc +// Given that +P_in = 100 // power of input signal in mW +P_out = 50 // power of output signal in mW +// Sample Problem 12 on page no. 280 +printf("\n # PROBLEM 12 # \n") +alpha = (10 * log10(P_in / P_out))//calculation for absorption coefficient +printf("\n Standard formula used \n alpha=10/L*log(Pi/Po).\n") +printf("\n Attenuation loss is %f dB. ",alpha) + diff --git a/2333/CH6/EX6.12/12.txt b/2333/CH6/EX6.12/12.txt new file mode 100755 index 000000000..e3b901c80 --- /dev/null +++ b/2333/CH6/EX6.12/12.txt @@ -0,0 +1,6 @@ +# PROBLEM 12 #
+
+ Standard formula used
+ alpha=10/L*log(Pi/Po).
+
+ Attenuation loss is 3.010300 dB.
\ No newline at end of file diff --git a/2333/CH6/EX6.13/13.sce b/2333/CH6/EX6.13/13.sce new file mode 100755 index 000000000..c71f376c7 --- /dev/null +++ b/2333/CH6/EX6.13/13.sce @@ -0,0 +1,10 @@ +clc +// Given that +l = 150 // length of fiber in meter +P_in = 10 // power of input signal in micro Watt +P_out = 8 // power of output signal in micro Watt +// Sample Problem 13 on page no. 280 +printf("\n # PROBLEM 13 # \n") +alpha = (10 * log10(P_in / P_out))/l //calculation for absorption coefficient +printf("\n Standard formula used \n alpha=10/L*log(Pi/Po).\n") +printf("\n Attenuation loss is %f dB/m. ",alpha) diff --git a/2333/CH6/EX6.13/13.txt b/2333/CH6/EX6.13/13.txt new file mode 100755 index 000000000..6460c2d1e --- /dev/null +++ b/2333/CH6/EX6.13/13.txt @@ -0,0 +1,6 @@ +# PROBLEM 13 #
+
+ Standard formula used
+ alpha=10/L*log(Pi/Po).
+
+ Attenuation loss is 0.006461 dB/m.
\ No newline at end of file diff --git a/2333/CH6/EX6.14/14.sce b/2333/CH6/EX6.14/14.sce new file mode 100755 index 000000000..8929a6d1e --- /dev/null +++ b/2333/CH6/EX6.14/14.sce @@ -0,0 +1,11 @@ +clc + +// Given that +l = 1.5 // length of fiber in kilo meter +P_in = 1 // let power of input signal is unity +P_out = 1/4 // power of output signal in micro Watt +// Sample Problem 14 on page no. 281 +printf("\n # PROBLEM 14 # \n") +alpha = (10 * log10(P_in / P_out))/l //calculation for absorption coefficient +printf("\n Standard formula used \n alpha=10/L*log(Pi/Po).\n") +printf("\n Attenuation loss is %d dB/km. ",alpha) diff --git a/2333/CH6/EX6.14/14.txt b/2333/CH6/EX6.14/14.txt new file mode 100755 index 000000000..10c08bcef --- /dev/null +++ b/2333/CH6/EX6.14/14.txt @@ -0,0 +1,6 @@ +# PROBLEM 14 #
+
+ Standard formula used
+ alpha=10/L*log(Pi/Po).
+
+ Attenuation loss is 4 dB/km.
\ No newline at end of file diff --git a/2333/CH6/EX6.15/15.sce b/2333/CH6/EX6.15/15.sce new file mode 100755 index 000000000..cf0a3d7c4 --- /dev/null +++ b/2333/CH6/EX6.15/15.sce @@ -0,0 +1,11 @@ +clc +// Given that +l = 10 // length of fiber in kilo meter +P_in = 900 // Power of input signal in micro watt +alpha = 2.3 // attenuation loss in dB +// Sample Problem 15 on page no. 281 +printf("\n # PROBLEM 15 # \n") +P_out = P_in*10^(-alpha) // Power at output in microwatt +printf("\n Standard formula used \n alpha=10/L*log(Pi/Po).\n") +printf("\n Power at output end is %f micro Watt.",P_out) +// Answer given in book is 1.79 micro Watt diff --git a/2333/CH6/EX6.15/15.txt b/2333/CH6/EX6.15/15.txt new file mode 100755 index 000000000..7113907cd --- /dev/null +++ b/2333/CH6/EX6.15/15.txt @@ -0,0 +1,7 @@ +
+ # PROBLEM 15 #
+
+ Standard formula used
+ alpha=10/L*log(Pi/Po).
+
+ Power at output end is 4.510685 micro Watt.
\ No newline at end of file diff --git a/2333/CH6/EX6.16/16.sce b/2333/CH6/EX6.16/16.sce new file mode 100755 index 000000000..3f8746baf --- /dev/null +++ b/2333/CH6/EX6.16/16.sce @@ -0,0 +1,11 @@ +clc +// Given that +l = 6 // length of fiber in kilo meter +mu1 = 1.48 // refractive index for core +NA = 0.28 // Numerical aperture +c = 3e8 // speed of light in m/sec +// Sample Problem 16 on page no. 284 +printf("\n # PROBLEM 16 # \n") +t = l*1e3*(NA)^2/(2*c*mu1) +printf("\n Time taken by light pulse is %f nsec.",t*1e9) + diff --git a/2333/CH6/EX6.16/16.txt b/2333/CH6/EX6.16/16.txt new file mode 100755 index 000000000..10fec21c4 --- /dev/null +++ b/2333/CH6/EX6.16/16.txt @@ -0,0 +1,3 @@ +# PROBLEM 16 #
+
+ Time taken by light pulse is 529.729730 nsec.
\ No newline at end of file diff --git a/2333/CH6/EX6.17/17.sce b/2333/CH6/EX6.17/17.sce new file mode 100755 index 000000000..e5f978afd --- /dev/null +++ b/2333/CH6/EX6.17/17.sce @@ -0,0 +1,15 @@ +clc +// Given that +l = 8 // length of fiber in kilo meter +mu1 = 1.50 // refractive index for core +delta = 2/100 // relative refractive index +c = 3e8 // speed of light in m/sec +// Sample Problem 17 on page no. 285 +printf("\n # PROBLEM 17 # \n") +t = l*1e3*mu1*delta/c * 1e9 +sigma = t/(2*sqrt(3)) +BT_max = 1/(2*t) // +Length = BT_max*1e3*l + +printf("\n Time taken by light pulse is %f nsec. \n RPM pulse is %f nsec",t,sigma) +printf("\n Maximum bit rate is %f M bit/sec \n Bandwidth length product is %dMHz km", BT_max*1e3,Length) diff --git a/2333/CH6/EX6.17/17.txt b/2333/CH6/EX6.17/17.txt new file mode 100755 index 000000000..2b29bdaa6 --- /dev/null +++ b/2333/CH6/EX6.17/17.txt @@ -0,0 +1,6 @@ +# PROBLEM 17 #
+
+ Time taken by light pulse is 800.000000 nsec.
+ RPM pulse is 230.940108 nsec
+ Maximum bit rate is 0.625000 M bit/sec
+ Bandwidth length product is 5MHz km
\ No newline at end of file diff --git a/2333/CH6/EX6.2/2.sce b/2333/CH6/EX6.2/2.sce new file mode 100755 index 000000000..45ec4e2e6 --- /dev/null +++ b/2333/CH6/EX6.2/2.sce @@ -0,0 +1,12 @@ +clc +// Given that +mu1 = 1.36 // refractive index for core +del_mu = 0.025 // relative refractive index + +// Sample Problem on page no. 255 +printf("\n # PROBLEM 2 # \n") +mu2 = mu1*(1-del_mu) // refractive index of cladding +NA = mu1*sqrt(2*del_mu) +theta_0 = asin(NA) * (180 / %pi) +printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n Refractive index of cladding is %f. \n Numerical aperture is %f.\n Acceptance angle is %f degree.",mu2,NA,theta_0) diff --git a/2333/CH6/EX6.2/2.txt b/2333/CH6/EX6.2/2.txt new file mode 100755 index 000000000..49155fd29 --- /dev/null +++ b/2333/CH6/EX6.2/2.txt @@ -0,0 +1,10 @@ +# PROBLEM 2 #
+
+ Standard formula used
+ theta_c = asin(mu2 / mu1) * (180 / pi).
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+ Refractive index of cladding is 1.326000.
+ Numerical aperture is 0.304105.
+ Acceptance angle is 17.704341 degree.
\ No newline at end of file diff --git a/2333/CH6/EX6.3/3.sce b/2333/CH6/EX6.3/3.sce new file mode 100755 index 000000000..702125cdf --- /dev/null +++ b/2333/CH6/EX6.3/3.sce @@ -0,0 +1,15 @@ +clc +// Given that +mu2 = 1.59 // refractive index for cladding +NA = 0.2 // Numerical aperture +mu_water = 1.33 // refractive index of water +del_mu = 0.025 // relative refractive index + +// Sample Problem 3 on page no. 256 +printf("\n # PROBLEM 3 # \n") +mu1 = sqrt(NA^2+mu2^2) // refractive index of cladding +NA_w = sqrt(mu1^2 - mu2^2)/mu_water // Numerical aperture for water +theta_0 = asin(NA_w) * (180 / %pi) // Acceptance angle of fiber in water +printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n Acceptance angle of fiber in water is %f degree.",theta_0) + diff --git a/2333/CH6/EX6.3/3.txt b/2333/CH6/EX6.3/3.txt new file mode 100755 index 000000000..25a6efd87 --- /dev/null +++ b/2333/CH6/EX6.3/3.txt @@ -0,0 +1,8 @@ +# PROBLEM 3 #
+
+ Standard formula used
+ theta_c = asin(mu2 / mu1) * (180 / pi).
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+ Acceptance angle of fiber in water is 8.648713 degree.
\ No newline at end of file diff --git a/2333/CH6/EX6.4/4.sce b/2333/CH6/EX6.4/4.sce new file mode 100755 index 000000000..4802e7e73 --- /dev/null +++ b/2333/CH6/EX6.4/4.sce @@ -0,0 +1,16 @@ +clc +// Given that +mu1 = 1.55 // refractive index for core +mu2 = 1.50 // refractive index for cladding +d = 50 // core diameter in micro meter +// Sample Problem 4 on page no. 256 +printf("\n # PROBLEM 4 # \n") + +NA = sqrt(mu1^2 - mu2^2) // numerical aperture +theta_c = asin(mu2 / mu1) * (180 / %pi) // critical angle in degree +theta_0 = asin(NA) * (180 / %pi) // Acceptance angle in degree +x= d*1e-6*tan(theta_c*%pi/180) // distance travelled between two successive collisions + +N = 1/x // No. of reflections per meter +printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n Numerical aperture = %f,\n Acceptance angle is %f degree.\n No. of reflections per meter is %d",NA,theta_0,N) diff --git a/2333/CH6/EX6.4/4.txt b/2333/CH6/EX6.4/4.txt new file mode 100755 index 000000000..9d97484f1 --- /dev/null +++ b/2333/CH6/EX6.4/4.txt @@ -0,0 +1,10 @@ +# PROBLEM 4 #
+
+ Standard formula used
+ theta_c = asin(mu2 / mu1) * (180 / pi).
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+ Numerical aperture = 0.390512,
+ Acceptance angle is 22.986391 degree.
+ No. of reflections per meter is 5206
\ No newline at end of file diff --git a/2333/CH6/EX6.5/5.sce b/2333/CH6/EX6.5/5.sce new file mode 100755 index 000000000..93056de81 --- /dev/null +++ b/2333/CH6/EX6.5/5.sce @@ -0,0 +1,11 @@ +clc +// Given that +mu1 = 1.45 // refractive index for core +mu2 = 1.40 // refractive index for cladding +mu = 1 // refractive index for air +// Sample Problem 5 on page no. 256 +printf("\n # PROBLEM 5 # \n") +theta_c = asin(mu2 / mu1) * (180 / %pi) // critical angle in degree +theta_c_ = asin(mu/mu2) * (180 / %pi) // Acceptance angle in degree +printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n Critical angle at the core - cladding boundary is %f degree \n Critical angle at cladding - air boundary is %f degree",theta_c,theta_c_) diff --git a/2333/CH6/EX6.5/5.txt b/2333/CH6/EX6.5/5.txt new file mode 100755 index 000000000..2ed94214a --- /dev/null +++ b/2333/CH6/EX6.5/5.txt @@ -0,0 +1,9 @@ +# PROBLEM 5 #
+
+ Standard formula used
+ theta_c = asin(mu2 / mu1) * (180 / pi).
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+ Critical angle at the core - cladding boundary is 74.909815 degree
+ Critical angle at cladding - air boundary is 45.584691 degree
\ No newline at end of file diff --git a/2333/CH6/EX6.6/6.sce b/2333/CH6/EX6.6/6.sce new file mode 100755 index 000000000..057aee8c1 --- /dev/null +++ b/2333/CH6/EX6.6/6.sce @@ -0,0 +1,17 @@ +clc +// Given that +mu1 = 1.50 // refractive index for core +mu2 = 1.48 // refractive index for cladding +a = 25 // core radius in micro meter +lambda = 830 // wavelength of propagating light in nano meter +al = 2 // for parabolic profile +// Sample Problem 6 on page no. 263 +printf("\n # PROBLEM 6 # \n") +del = (mu1-mu2)/mu1 +N_graded = (al/(al+2))*(2*%pi*a*1e-6/(lambda*1e-9))^2 * mu1^2 * del // Number of modes for graded +N_step = (2*%pi*a*1e-6/(lambda*1e-9))^2 * (mu1^2 - mu2^2)/2 // number of modes for step graded +ratio = (N_step / N_graded) +printf("\n Number of modes in graded index fiber is %d.",N_graded) +printf("\n Number of modes in Step graded fiber is %d.",N_step) +printf("\n Approximate ratio of number of modes in different grade is %d.",ceil(ratio)) + diff --git a/2333/CH6/EX6.6/6.txt b/2333/CH6/EX6.6/6.txt new file mode 100755 index 000000000..5855fbf74 --- /dev/null +++ b/2333/CH6/EX6.6/6.txt @@ -0,0 +1,6 @@ +
+ # PROBLEM 6 #
+
+ Number of modes in graded index fiber is 537.
+ Number of modes in Step graded fiber is 1067.
+ Approximate ratio of number of modes in different grade is 2.
\ No newline at end of file diff --git a/2333/CH6/EX6.7/7.sce b/2333/CH6/EX6.7/7.sce new file mode 100755 index 000000000..3eb8f6521 --- /dev/null +++ b/2333/CH6/EX6.7/7.sce @@ -0,0 +1,13 @@ +clc +// Given that +mu1 = 1.566 // refractive index for core +mu2 = 1.56 // refractive index for cladding +d = 50 // core diameter in micro meter +lambda = 0.84 // wavelength of propagating light in micro meter +// Sample Problem 7 on page no. 265 +printf("\n # PROBLEM 7 # \n") +v = %pi*d*sqrt(mu1^2 - mu2^2)/lambda // cut off number +N_max = v^2/2 // maximum number of modes +printf("\n Cut off parameter of fiber is %f. \n Maximum number of modes is %d.",v,N_max) + + diff --git a/2333/CH6/EX6.7/7.txt b/2333/CH6/EX6.7/7.txt new file mode 100755 index 000000000..abd9ad69c --- /dev/null +++ b/2333/CH6/EX6.7/7.txt @@ -0,0 +1,4 @@ +# PROBLEM 7 #
+
+ Cut off parameter of fiber is 25.610066.
+ Maximum number of modes is 327.
\ No newline at end of file diff --git a/2333/CH6/EX6.8/8.sce b/2333/CH6/EX6.8/8.sce new file mode 100755 index 000000000..43dd5098a --- /dev/null +++ b/2333/CH6/EX6.8/8.sce @@ -0,0 +1,13 @@ +clc +// Given that +mu1 = 1.55 // refractive index for core +v_max = 2.405 // Maximum cut off number +d = 10 // core diameter in micro meter +lambda = 1.8 // wavelength of propagating light in micro meter +// Sample Problem 8 on page no. 266 +printf("\n # PROBLEM 8 # \n") +NA = v_max*lambda/(%pi*d) +delta = 0.5*(NA/mu1)^2 // Normalized index difference +mu2 = mu1*(1- delta) // refractive index of cladding +theta_max = asin(NA)*180/%pi // maximum acceptance angle in degree +printf("\n Required maximum value of normalized difference is %f. \n Refractive index of cladding is %f. \n Maximum acceptance angle is %f degree.",delta,mu2,theta_max) diff --git a/2333/CH6/EX6.8/8.txt b/2333/CH6/EX6.8/8.txt new file mode 100755 index 000000000..1ef0d40ad --- /dev/null +++ b/2333/CH6/EX6.8/8.txt @@ -0,0 +1,6 @@ +
+ # PROBLEM 8 #
+
+ Required maximum value of normalized difference is 0.003952.
+ Refractive index of cladding is 1.543875.
+ Maximum acceptance angle is 7.920351 degree.
\ No newline at end of file diff --git a/2333/CH6/EX6.9/9.sce b/2333/CH6/EX6.9/9.sce new file mode 100755 index 000000000..92c0e028c --- /dev/null +++ b/2333/CH6/EX6.9/9.sce @@ -0,0 +1,14 @@ +clc +// Given that +mu1 = 1.466 // refractive index for core +mu2 = 1.46 // refractive index for cladding +lambda = 1200 // wavelength of light in nano meter +V = 2.405 // cut off parameter +// Sample Problem 9 on page no. 267 +printf("\n # PROBLEM 9 # \n") +t = V*lambda*1e-9/(2*%pi*sqrt(mu1^2-mu2^2)) // maximum radius of fiber +theta_c = asin(mu2 / mu1) * (180 / %pi) +NA = sqrt(mu1^2 - mu2^2) +theta_0 = asin(NA) * (180 / %pi) +printf("\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n") +printf("\n Maximum radius allowed for fiber is %f micro meter \nCritical angle = %f degree. \n Numerical aperture = %f,\n Maximum incidence angle = %f degree.",t*1e6,theta_c,NA,theta_0) diff --git a/2333/CH6/EX6.9/9.txt b/2333/CH6/EX6.9/9.txt new file mode 100755 index 000000000..5065b9fb2 --- /dev/null +++ b/2333/CH6/EX6.9/9.txt @@ -0,0 +1,11 @@ +# PROBLEM 9 #
+
+ Standard formula used
+ theta_c = asin(mu2 / mu1) * (180 / pi).
+ NA = sqrt(mu1^2 - mu2^2).
+ theta_0 = asin(NA) * (180 / pi).
+
+ Maximum radius allowed for fiber is 3.466600 micro meter
+Critical angle = 84.814454 degree.
+ Numerical aperture = 0.132499,
+ Maximum incidence angle = 7.614027 degree.
\ No newline at end of file |