summaryrefslogtreecommitdiff
path: root/23/CH15/EX15.1/Example_15_1.sce
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /23/CH15/EX15.1/Example_15_1.sce
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '23/CH15/EX15.1/Example_15_1.sce')
-rwxr-xr-x23/CH15/EX15.1/Example_15_1.sce163
1 files changed, 163 insertions, 0 deletions
diff --git a/23/CH15/EX15.1/Example_15_1.sce b/23/CH15/EX15.1/Example_15_1.sce
new file mode 100755
index 000000000..547d6a913
--- /dev/null
+++ b/23/CH15/EX15.1/Example_15_1.sce
@@ -0,0 +1,163 @@
+clear;
+clc;
+
+//To find Approx Value
+function[A]=approx(V,n)
+ A=round(V*10^n)/10^n;//V-Value n-To what place
+ funcprot(0)
+endfunction
+
+function[Q]=MCPS(T0,T,A,B,C,D)
+ t=T/T0;
+ Q=(A)+(((B*T0)+(((C*T0*T0)+(D/(t*t*T0*T0)))*(t+1)/2))*((t-1)/log(t)))
+ funcprot(0);
+endfunction
+
+function[Q]=MCPH(T0,T,A,B,C,D)
+ t=T/T0;
+ Q=(A+((B/2)*T0*(t+1))+((C/3)*T0*T0*((t^2)+t+1))+(D/(t*T0*T0)))
+ funcprot(0);
+endfunction
+
+//Example 15.1
+//Caption : Program to do a Thermodynamic Analysis of Steam Power Plant
+
+State=['Supercooled Liquid','Superheated Vapor','Wet Vapor,x=0.9378','Saturated Liqiud'];
+T=[318.98 773.15 318.98 318.98];
+P=[8600 8600 10 10];
+H=[203.4 3391.6 2436 191.8];
+S=[0.6580 6.6858 7.6846 0.6493];
+T0=298.15;
+T1=460;//[K]
+R=8.314;
+T_sigma=T0;
+//CH4 + 2O2 --> CO2 + 2H2O
+dH_CO2=-393509;
+dH_H2O=-241818;
+dH_CH4=-74520;
+
+dG_CO2=-394359;
+dG_H2O=-228572;
+dG_CH4=-50460;
+
+dH_298=dH_CO2+(2*dH_H2O)-dH_CH4
+dG_298=dG_CO2+(2*dG_H2O)-dG_CH4
+
+dS_298=approx((dH_298-dG_298)/T0,3);
+
+//Moles Entering
+ni_O2=2*1.25;
+ni_N2=approx(ni_O2*(79/21),3);
+ni=ni_O2+ni_N2;
+
+//Moles After Combustion
+n_CO2=1;
+n_H2O=2;
+n_O2=0.5;
+n_N2=ni_N2;
+n=n_CO2+n_H2O+n_O2+n_N2;
+m=[n_CO2 n_H2O n_N2 n_O2];
+
+y_CO2=approx(n_CO2/n,4);
+y_H2O=approx(n_H2O/n,4);
+y_O2=approx(n_O2/n,4);
+y_N2=approx(n_N2/n,4);
+
+y=[y_CO2 y_H2O y_O2 y_N2];
+yT=sum(y);
+
+//Step(a)
+dH_a=0
+dS_a=approx(ni*R*((0.21*log(0.21))+(0.79*log(0.79))),3)//[J/K]
+
+//Step(b)
+dH_b=dH_298
+dS_b=dS_298//[J/K]
+
+//Step(c)
+dH_c=0
+dS_c=approx(-n*R*sum(y.*log(y)),3)//[J/K]
+
+//Step(d)
+//For CO2
+CpH_CO2=approx(R*MCPH(T0,T1,5.457,1.045*(10^-3),0,-1.157*(10^5)),3);
+//For H2O
+CpH_H2O=approx(R*MCPH(T0,T1,3.470,1.450*(10^-3),0,0.121*(10^5)),3);
+//For O2
+CpH_O2=approx(R*MCPH(T0,T1,3.639,0.506*(10^-3),0,-0.227*(10^5)),3);
+//For N2
+CpH_N2=approx(R*MCPH(T0,T1,3.280,0.593*(10^-3),0,0.040*(10^5)),3);
+
+//For CO2
+CpS_CO2=approx(R*MCPS(T0,T1,5.457,1.045*(10^-3),0,-1.157*(10^5)),3);
+//For H2O
+CpS_H2O=approx(R*MCPS(T0,T1,3.470,1.450*(10^-3),0,0.121*(10^5)),3);
+//For O2
+CpS_O2=approx(R*MCPS(T0,T1,3.639,0.506*(10^-3),0,-0.227*(10^5)),3);
+//For N2
+CpS_N2=approx(R*MCPS(T0,T1,3.280,0.593*(10^-3),0,0.040*(10^5)),3);
+
+CpH=[CpH_CO2 CpH_H2O CpH_N2 CpH_O2];
+CpS=[CpS_CO2 CpS_H2O CpS_N2 CpS_O2];
+
+Comp=['CO2' 'H2O' 'N2' 'O2'];
+
+Ans=[CpH',CpS'];
+disp(Ans,' CpH CpS',Comp')
+
+CpHt=approx(sum(m.*CpH),3)//[J/K]
+CpSt=approx(sum(m.*CpS),3)//[J/K]
+
+dH_d=approx(CpHt*(T1-T0),0)//[J]
+dS_d=approx((CpSt*log(T1/T0)),3)//[J/K]
+
+dH=dH_a+dH_b+dH_c+dH_d//[J]
+dS=dS_a+dS_b+dS_c+dS_d//[J/K]
+
+rm=84.75;//[kg/s]
+
+rn_CH4=approx((rm*(H(1)-H(2))*1000)/dH,2)//[mol/s]
+
+rW_ideal=approx(rn_CH4*((dH/1000)-(T0*dS/1000))/1000,2)*1000//[KW]
+
+//(a) Furnace/Boiler
+rS_a=approx((rn_CH4*dS/1000)+(rm*(S(2)-S(1))),2)//[kJ/s/K]
+
+rW_a=approx(T_sigma*rS_a/1000,2)*1000//[kW]
+
+//(b) Turbine
+rS_b=approx(rm*(S(3)-S(2)),2)//[kW/K]
+
+rW_b=approx(T_sigma*rS_b/1000,2)*1000//[kW]
+
+//(c) Condenser
+Q_c=H(4)-H(3);//[kJ/kg]
+rQ_c=approx(rm*Q_c/1000,1)*1000//[kJ/s]
+rS_c=approx((rm*(S(4)-S(3)))-(rQ_c/T_sigma),2)//[kW/K]
+rW_c=approx(T_sigma*rS_c/1000,2)*1000//[kW]
+
+//(d) Pump
+rS_d=approx(rm*(S(1)-S(4)),2)//[kW/K]
+rW_d=approx(T_sigma*rS_d/1000,2)*1000//[kW]
+
+rS=[rS_a rS_b rS_c rS_d];
+pS=approx(rS/sum(rS)*100,1);
+T=[sum(rS) sum(pS)];
+Process=['Furnace/boiler' 'Turbine' 'Condenser' 'Pump'];
+Ans=[rS',pS'];
+disp(Ans,' S(kW/K) %',Process')
+disp(T)
+rW_ideal=80000;
+rW=[rW_ideal rW_a rW_b rW_c rW_d]/1000;
+pW=approx(rW/sum(rW)*100,1);
+T=[sum(rW) sum(pW)];
+Process=['Ideal' 'Furnace/boiler' 'Turbine' 'Condenser' 'Pump'];
+Ans=[rW',pW'];
+disp(Ans,' W(kW/K)*10^-3 %',Process')
+disp(T)
+
+eta=pW(1);
+
+disp('%',eta,'Efficiency of the power plant is')
+
+//End \ No newline at end of file