diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2276/CH9 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2276/CH9')
-rwxr-xr-x | 2276/CH9/EX9.1/chapter9_ex1.sce | 16 | ||||
-rwxr-xr-x | 2276/CH9/EX9.10/chapter9_ex10.sce | 27 | ||||
-rwxr-xr-x | 2276/CH9/EX9.11/chapter9_ex11.sce | 27 | ||||
-rwxr-xr-x | 2276/CH9/EX9.12/chapter9_ex12.sce | 33 | ||||
-rwxr-xr-x | 2276/CH9/EX9.13/chapter9_ex13.sce | 23 | ||||
-rwxr-xr-x | 2276/CH9/EX9.2/chapter9_ex2.sce | 18 | ||||
-rwxr-xr-x | 2276/CH9/EX9.3/chapter9_ex3.sce | 17 | ||||
-rwxr-xr-x | 2276/CH9/EX9.4/chapter9_ex4.sce | 16 | ||||
-rwxr-xr-x | 2276/CH9/EX9.5/chapter9_ex5.sce | 20 | ||||
-rwxr-xr-x | 2276/CH9/EX9.6/chapter9_ex6.sce | 19 | ||||
-rwxr-xr-x | 2276/CH9/EX9.7/chapter9_ex7.sce | 18 | ||||
-rwxr-xr-x | 2276/CH9/EX9.8/chapter9_ex8.sce | 21 | ||||
-rwxr-xr-x | 2276/CH9/EX9.9/chapter9_ex9.sce | 22 |
13 files changed, 277 insertions, 0 deletions
diff --git a/2276/CH9/EX9.1/chapter9_ex1.sce b/2276/CH9/EX9.1/chapter9_ex1.sce new file mode 100755 index 000000000..3ff57d622 --- /dev/null +++ b/2276/CH9/EX9.1/chapter9_ex1.sce @@ -0,0 +1,16 @@ +clc
+clear
+
+//input
+t1=96;//number turns on the primary side of an ideal transformer
+v=240;//supply voltage in volts
+f=50;//supply frequency in hertz
+v2=660;//secondary pd in volts
+
+//calculations
+vp=v/t1;//primary volts per turn
+vs=vp;//secondary volts per turn
+t2=v2/vs;//secondary turns
+
+//output
+mprintf('to produce a p.d. of 660V the secondary coil should have %3.0f turns',t2)
diff --git a/2276/CH9/EX9.10/chapter9_ex10.sce b/2276/CH9/EX9.10/chapter9_ex10.sce new file mode 100755 index 000000000..c01ff232d --- /dev/null +++ b/2276/CH9/EX9.10/chapter9_ex10.sce @@ -0,0 +1,27 @@ +clc
+clear
+
+//input
+kva=10;//kVA rating of the transformer
+vp=400;//voltage on primary side in volts
+vs=230;//voltage on secondary side in volts
+//short circuit test
+ppd1=18;//primary p.d. in volts
+ip1=25;//primary current in amperes
+inp1=120;//power input in watts
+//short circuit test
+ppd2=400;//primary p.d. in volts
+ip2=0.5;//primary current in amperes
+inp2=70;//power input in watts
+
+//calculations
+zp=ppd1/ip1;//equivalent primary impedance in ohms
+rp=inp1/(ip1^2);//equivalent resistance in ohms
+xp=((zp^2)-(rp^2))^0.5;//equivalent leakage reactance in ohms
+r0=(vp^2)/(1000*inp2);//resistance of parallel circuit
+phi=sin(acos(inp2/(vp*ip2)));//sine of power factor
+im=ip2*phi;//magnetizing current in amperes
+x0=vp/im;//reactance in ohms
+
+//output
+mprintf('the equivalent circuit parameters are \n Rp=%3.3f ohms \n Xp=%3.3f ohms \n r0=%3.3f kilo ohms \n x0=%3.1f ohms',rp,xp,r0,x0)
diff --git a/2276/CH9/EX9.11/chapter9_ex11.sce b/2276/CH9/EX9.11/chapter9_ex11.sce new file mode 100755 index 000000000..c01ff232d --- /dev/null +++ b/2276/CH9/EX9.11/chapter9_ex11.sce @@ -0,0 +1,27 @@ +clc
+clear
+
+//input
+kva=10;//kVA rating of the transformer
+vp=400;//voltage on primary side in volts
+vs=230;//voltage on secondary side in volts
+//short circuit test
+ppd1=18;//primary p.d. in volts
+ip1=25;//primary current in amperes
+inp1=120;//power input in watts
+//short circuit test
+ppd2=400;//primary p.d. in volts
+ip2=0.5;//primary current in amperes
+inp2=70;//power input in watts
+
+//calculations
+zp=ppd1/ip1;//equivalent primary impedance in ohms
+rp=inp1/(ip1^2);//equivalent resistance in ohms
+xp=((zp^2)-(rp^2))^0.5;//equivalent leakage reactance in ohms
+r0=(vp^2)/(1000*inp2);//resistance of parallel circuit
+phi=sin(acos(inp2/(vp*ip2)));//sine of power factor
+im=ip2*phi;//magnetizing current in amperes
+x0=vp/im;//reactance in ohms
+
+//output
+mprintf('the equivalent circuit parameters are \n Rp=%3.3f ohms \n Xp=%3.3f ohms \n r0=%3.3f kilo ohms \n x0=%3.1f ohms',rp,xp,r0,x0)
diff --git a/2276/CH9/EX9.12/chapter9_ex12.sce b/2276/CH9/EX9.12/chapter9_ex12.sce new file mode 100755 index 000000000..7b67fc2d8 --- /dev/null +++ b/2276/CH9/EX9.12/chapter9_ex12.sce @@ -0,0 +1,33 @@ +clc
+clear
+
+//input
+kva=5;//kVA rating of the transformer
+pf=0.8;//power factor
+vp=250;//voltage on primary side in volts
+vs=500;//voltage on secondary side in volts
+//from equivalent circuit
+r0=750;//resistance in ohms
+x0=325;//reactance in ohms
+Rp=0.4;//equivalent resistance refered to primary side in ohms
+Xp=0.75;//equivalent reactance refered to primary side in ohms
+
+//calculations
+is=(kva*1000)/vs;//full load secondary current in amperes
+ip1=is*(vs/vp);//current in amperes
+ep=vp-((ip1*pf)+(Xp*sin(acos(pf))));//in volts
+Vs=ep*(vs/vp);// in volts
+i1=vp/(vs+vp);//component of Io in phase with Vs in amperes
+i2=i1*pf;//component of Ie in phase with Ip
+i3=i1*sin(acos(pf));//component of Ie in quadrature with Ip
+im=vp/x0;//magnetizing current in amperes
+i4=im*sin(acos(pf));//component of Im in phase with Ip
+i5=im*pf;//component of Im in quadrature with Ip
+Ip=(((ip1+i2+i4)^2)+((i5-i3)^2))^0.5;//total primary current in amperes
+P=vp*Ip*pf;//power input in watts
+pc=ip1*ip1*i4;//copper loss in watts
+pi=vp*i1;//iron loss in watts
+n=1-((pc+pi)/P);//efficiency in per units
+
+//output
+mprintf('the primary input current is %3.2f A : the secondary terminal voltage is %3.0f V and the efficiency of the transformer is %3.2f p.u.',Ip,Vs,n)
diff --git a/2276/CH9/EX9.13/chapter9_ex13.sce b/2276/CH9/EX9.13/chapter9_ex13.sce new file mode 100755 index 000000000..92ae15c7f --- /dev/null +++ b/2276/CH9/EX9.13/chapter9_ex13.sce @@ -0,0 +1,23 @@ +clc
+clear
+
+//input
+//all values refered to primary and from given equivalent circuit
+v=240;//supply voltage in volts
+r0=0.25;//resistance in ohms
+x0=0.4;//reactance in ohms
+rl=7.75;//load resistance in ohms
+xl=5.6;//load reactance in ohms
+n=5;//turns ratio of the transformer
+
+//calculations
+rt=r0+rl;//total resistance of the circuit in ohms
+xt=x0+xl;//total reactance of the circuit in ohms
+zt=((rt^2)+(xt^2))^0.5;//total impedance of transformer and the load in ohms
+Ip=v/zt;//current in amperes
+zl=((rl^2)+(xl^2))^0.5;//impedance of load in ohms
+d=Ip*zl;//voltage drop across referred load impedance in volts
+vs=n*d;//secondary terminal voltage in volts
+
+//output
+mprintf('the secondary terminal voltage is %3.0f V',vs)
diff --git a/2276/CH9/EX9.2/chapter9_ex2.sce b/2276/CH9/EX9.2/chapter9_ex2.sce new file mode 100755 index 000000000..659cdd0e0 --- /dev/null +++ b/2276/CH9/EX9.2/chapter9_ex2.sce @@ -0,0 +1,18 @@ +clc
+clear
+
+//input
+vp=660;//primary voltage in volts
+vs=1100;//secondary voltage in volts
+f=50;//supply frequency in hertz
+kva=10;//kVA rating of the transformer
+t1=550;//number of primary turns
+
+//calculations
+pv=vp/t1;//primary volts per turn
+t2=vs/pv;//number of secondary turns
+inpi=(kva*1000)/vp;//input current in amperes
+is=(kva*1000)/vs;//secondary current in amperes
+
+//output
+mprintf('the number of secondary turns is %3.0f and the respective primary and secondary currents are %3.1fA and %3.1fA',t2,inpi,is)
diff --git a/2276/CH9/EX9.3/chapter9_ex3.sce b/2276/CH9/EX9.3/chapter9_ex3.sce new file mode 100755 index 000000000..250cf1ba5 --- /dev/null +++ b/2276/CH9/EX9.3/chapter9_ex3.sce @@ -0,0 +1,17 @@ +clc
+clear
+
+//input
+t1=120;//primary turns of an ideal transformer
+ls1=0.24;//self inductance of primary in henry
+v=240;//supply voltage in volts
+t2=300;//secondary turns of the ideal transformer
+
+//calculations
+d=v/ls1;//rate of change of current in A/s
+v2=v*(t2/t1);//secondary voltage in volts
+M=v2/d;//mutual impedance in henry
+ls2=ls1*((t2*t2)/(t1*t1));//self inuctance of the secondary in henry
+
+//output
+mprintf('the mutual impedance between the coils is %3.1fH and the self inductance of the secondary winding is %3.1fH',M,ls2)
diff --git a/2276/CH9/EX9.4/chapter9_ex4.sce b/2276/CH9/EX9.4/chapter9_ex4.sce new file mode 100755 index 000000000..e7df06010 --- /dev/null +++ b/2276/CH9/EX9.4/chapter9_ex4.sce @@ -0,0 +1,16 @@ +clc
+clear
+
+//input
+i=0.4;//no load current in amperes
+pf=0.25;//lagging power factor
+v=250;//supply voltage in volts
+f=50;//supply frequency in hertz
+
+//calculations
+ie=i*pf;//loss component of no load current in amperes
+im=((i^2)-(ie^2))^0.5;//magnetizing component in amperes
+p=v*ie;//no load power loss in watts
+
+//output
+mprintf('the magnetising current is %3.3fA and the no load loss is %3.0f W',im,p)
diff --git a/2276/CH9/EX9.5/chapter9_ex5.sce b/2276/CH9/EX9.5/chapter9_ex5.sce new file mode 100755 index 000000000..fc62142a7 --- /dev/null +++ b/2276/CH9/EX9.5/chapter9_ex5.sce @@ -0,0 +1,20 @@ +clc
+clear
+
+//input
+v=240;//supply voltage in volts
+f=50;//supply frequency in hertz
+t1=500;//number of primary turns
+i0=0.35;//no load current in amperes
+p=44;//power loss in watts
+l=0.4;//magnetic length of the core in meters
+ur=2000;//relative permeability of core
+u0=1.257*(10^-6);//absolute permeability
+
+//calculations
+cosp=p/(v*i0);//no load power factor
+im=i0*sin(acos(cosp));//magnetizing current in amperes
+b=(u0*ur*im*t1)/l;//flux density in tesla
+
+//output
+mprintf('the flux density produced in the core will be %3.3f T',b)
diff --git a/2276/CH9/EX9.6/chapter9_ex6.sce b/2276/CH9/EX9.6/chapter9_ex6.sce new file mode 100755 index 000000000..a62fe5be9 --- /dev/null +++ b/2276/CH9/EX9.6/chapter9_ex6.sce @@ -0,0 +1,19 @@ +clc
+clear
+
+//input
+vp=440;//primary voltage in volts
+vs=240;//secondary voltage in volts
+f=50;//supply voltage in hertz
+i0=0.5;//no load current in amperes
+pf=0.3;//lagging power factor
+
+//calculations
+ii=i0*pf;//in phase component in amperes
+r0=vp/(ii*1000);//resistance in ohms
+iq=((i0^2)-(ii^2))^0.5;//quadrature component in amperes
+x0=vp/iq;//reactance in ohms
+l0=x0/(2*%pi*f);//inductance in henry
+
+//output
+mprintf('the transformer on load may be represented by %3.2fkOhms resistance in parallel with a pure inductance of %3.2fH',r0,l0)
diff --git a/2276/CH9/EX9.7/chapter9_ex7.sce b/2276/CH9/EX9.7/chapter9_ex7.sce new file mode 100755 index 000000000..35db513a0 --- /dev/null +++ b/2276/CH9/EX9.7/chapter9_ex7.sce @@ -0,0 +1,18 @@ +clc
+clear
+
+//input
+vp=1100;//voltage on the primary in volts
+vs=240;//secondary voltage in volts
+f=50;//supply frequency in hertz
+b=1.4;//flux density in tesla
+s=0.2;//side of the square core in meter
+
+//calculations
+ag=s*s;//gross area of core in square meters
+am=0.9*ag;//magnetic area of core in square meters
+np=vp/(4.44*b*am*f);//number of turns in primary
+ns=np*(vs/vp);//number of turns in secondary
+
+//output
+mprintf('the number of turns in the primary and secondary winding would be %3.0f and %3.0f respectively',np,ns)
diff --git a/2276/CH9/EX9.8/chapter9_ex8.sce b/2276/CH9/EX9.8/chapter9_ex8.sce new file mode 100755 index 000000000..016092a26 --- /dev/null +++ b/2276/CH9/EX9.8/chapter9_ex8.sce @@ -0,0 +1,21 @@ +clc
+clear
+
+//input
+np=350;//number of turn in the primary
+lm=0.8;//mean length of core in meters
+am=0.006;//magnetic area in square meter
+i0=0.8;//no load current in amperes
+v=500;//supply voltage in volts
+f=50;//frequency of supply in hertz
+ur=2000;//relative permeability of the core
+u0=1.257*(10^-6);//absolute permeability
+
+//calculations
+bm=v/(4.44*am*np*f);//maximum flux density in tesla
+im=(bm*i0)/(u0*ur*np*(2^0.5));//magnetizing current in amperes
+sinp=im/i0;//sine of no load phase angle
+p=v*lm*cos(asin(im/i0));//power loss of core in watts
+
+//output
+mprintf('the maximum flux density in the core will be %3.3fT with a magnetizing current of %3.3fA and a core loss of %3.0fW',bm,im,p)
diff --git a/2276/CH9/EX9.9/chapter9_ex9.sce b/2276/CH9/EX9.9/chapter9_ex9.sce new file mode 100755 index 000000000..6aa510cf3 --- /dev/null +++ b/2276/CH9/EX9.9/chapter9_ex9.sce @@ -0,0 +1,22 @@ +clc
+clear
+
+//input
+kva=20000;//kVA rating of the transformer in VA
+vp=1100;//primary voltage in volts
+vs=240;//secondary voltage in volts
+pi=500;//iron losses in watts
+pc=600;//full load copper losses in watts
+pf=0.8;//lagging power factor
+
+//calculations
+out=kva*pf;//full load output in watts
+fll=pi+pc;//full load losses in watts
+n=out/(out+fll);//efficiency in perunits
+hfl=kva/2;//unity power factor
+cp=pc*(1/(2*2));//copper loss in watts
+n1=(hfl/1000)/((hfl/1000)+0.5+(cp/1000));//efficiency in per units
+kvat=(kva*((pi/pc)^0.5))/1000;// total kVA
+
+//output
+mprintf('the efficiencies on full load,at 0.8 lag and 0.5*full load,at unity power factor are %3.3f p.u. and %3.2f p.u. respectively.\n the loading for maximum efficiency is %3.2f kVA',n,n1,kvat)
|