summaryrefslogtreecommitdiff
path: root/2223/CH18/EX18.9
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH18/EX18.9
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2223/CH18/EX18.9')
-rwxr-xr-x2223/CH18/EX18.9/Ex18_9.savbin0 -> 33160 bytes
-rwxr-xr-x2223/CH18/EX18.9/Ex18_9.sce50
2 files changed, 50 insertions, 0 deletions
diff --git a/2223/CH18/EX18.9/Ex18_9.sav b/2223/CH18/EX18.9/Ex18_9.sav
new file mode 100755
index 000000000..ed8a93741
--- /dev/null
+++ b/2223/CH18/EX18.9/Ex18_9.sav
Binary files differ
diff --git a/2223/CH18/EX18.9/Ex18_9.sce b/2223/CH18/EX18.9/Ex18_9.sce
new file mode 100755
index 000000000..4e07f3e37
--- /dev/null
+++ b/2223/CH18/EX18.9/Ex18_9.sce
@@ -0,0 +1,50 @@
+// scilab Code Exa 18.9 Constant Pressure Gas Turbine Plant
+
+T1=298; // Minimum Temperature in Kelvin
+beeta=4.5; // Maximum to Minimum Temperature ratio(T_max/T_min)
+m=115; // mass flow rate through the turbine and compressor in kg/s
+n_C=0.79; // Compressor Efficiency
+n_T=0.83; // Turbine Efficiency
+gamma_g=1.33;
+R=0.287;
+cp=(gamma_g/(gamma_g-1))*R; // Specific Heat at Constant Pressure in kJ/(kgK)
+alpha=beeta*n_C*n_T;
+t_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor
+
+// part(a) Determining optimum pressure ratio of the plant
+r=t_opt^(gamma_g/(gamma_g-1));
+disp(r,"(a)optimum pressure ratio of the plant is")
+
+// part(b)Carnot's efficiency
+n_Carnot=1-(1/beeta);
+disp("%",n_Carnot*100,"(b)Carnot efficiency of the plant is")
+
+// part(c) Determining Joule's cycle efficiency
+n_Joule=1-(1/t_opt);
+disp("%",n_Joule*100,"(c)efficiency of the Joule cycle is")
+
+// part(d) Determining thermal efficiency of the plant for maximum power output
+n_th=(t_opt-1)^2/((beeta-1)*n_C-(t_opt-1));
+disp("%",n_th*100,"(d)thermal efficiency of the plant for maximum power output is")
+
+// part(e) Determining power output
+wp_max=cp*T1*((t_opt-1)^2)/n_C; // maximum work output
+P_max=m*wp_max;
+disp ("MW",P_max/1e3,"(e)Power output is")
+
+// part(f) Determining power generated by the turbine required to drive the compressor
+T3=beeta*T1; // Maximum Temperature in degree K
+T4s=T3*(r^(-((gamma_g-1)/gamma_g)));
+T4=T3-((T3-T4s)*n_T);
+P_T=m*cp*(T3-T4);
+disp ("MW",P_T/1e3,"(f)Power generated by the turbine is")
+
+// part(g) Determining power absorbed by the compressor
+T2s=T1*(r^((gamma_g-1)/gamma_g));
+T2=T1+((T2s-T1)/n_C);
+P_C=m*cp*(T2-T1);
+disp ("MW",P_C/1e3,"(g)Power absorbed by the compressor is")
+
+//part(h)heat supplied in the combustion chamber
+Qs=m*cp*(T3-T2);
+disp("MW",Qs/1e3,"(h)heat supplied in the combustion chamber is")