diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH18/EX18.37/Ex18_37.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2223/CH18/EX18.37/Ex18_37.sce')
-rwxr-xr-x | 2223/CH18/EX18.37/Ex18_37.sce | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/2223/CH18/EX18.37/Ex18_37.sce b/2223/CH18/EX18.37/Ex18_37.sce new file mode 100755 index 000000000..2a1b25908 --- /dev/null +++ b/2223/CH18/EX18.37/Ex18_37.sce @@ -0,0 +1,52 @@ +// scilab Code Exa 18.37 Calculation for the specific speed
+
+//part(1)specific speed of Axial flow gas turbine
+P1=0.5e3; // Gas Turbine Power Output in kW
+N1=60; // Speed in RPS
+omega1=%pi*2*N1;
+ro1=2;
+delh_1=30; // change of enthalpy in kJ
+NS_1=omega1*sqrt(P1*10e2/ro1)*((delh_1*1e3)^(-5/4));
+disp(NS_1,"1.the specific speed of Axial flow gas turbine is")
+
+//part(2)specific speed of IFR gas turbine
+P2=0.75e3; // Gas Turbine Power Output in kW
+N2=300; // Speed in RPS
+omega2=%pi*2*N2;
+ro2=1;
+delh_2=250; // change of enthalpy in kJ
+NS_2=omega2*sqrt(P2*10e2/ro2)*((delh_2*1e3)^(-5/4));
+disp(NS_2,"2.the specific speed of IFR gas turbine is")
+
+// part(3)the specific speed of an axial compressor
+N_c=120; // Speed in RPS
+omega_c=%pi*2*N_c;
+Q_c=25; // flow rate in m3/s
+delh_3=40; // change of enthalpy in kJ
+NS_c=omega_c*sqrt(Q_c)*((delh_3*1e3)^(-3/4));
+disp(NS_c,"3.the specific speed of an axial compressor is")
+
+// part(4)the specific speed of a centrifugal compressor
+Q=5; // flow rate in m3/s
+delh_4=35; // change of enthalpy in kJ
+NS_4=omega_c*sqrt(Q)*((delh_4*1e3)^(-3/4));
+disp(NS_4,"4.the specific speed of a centrifugal compressor is")
+
+// part(5)the specific speed of an axial fan
+N5=22; // Speed in RPS
+omega_5=2*%pi*N5;
+Q_5=3.5; // flow rate in m3/s
+rho=1.25; // density in kg/m3
+g=9.81; // gravitational acceleration in m/s2
+H1=55/rho; // head in m
+NS_5=omega_5*sqrt(Q_5)*((g*H1)^(-3/4));
+disp(NS_5,"5.the dimensionless specific speed of an axial fan is")
+
+// part(6)the specific speed of a Radial fan
+N6=20; // Speed in RPS
+omega_6=2*%pi*N6;
+Q_6=1.4; // flow rate in m3/s
+
+H2=52/rho; // head in m
+NS_6=omega_6*sqrt(Q_6)*((g*H2)^(-3/4));
+disp(NS_6,"6.the dimensionless specific speed of a Radial fan is")
|