diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH14 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2223/CH14')
-rwxr-xr-x | 2223/CH14/EX14.1/Ex14_1.sav | bin | 0 -> 37936 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.1/Ex14_1.sce | 30 | ||||
-rwxr-xr-x | 2223/CH14/EX14.2/Ex14_2.sav | bin | 0 -> 64208 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.2/Ex14_2.sce | 14 | ||||
-rwxr-xr-x | 2223/CH14/EX14.3/Ex14_3.sav | bin | 0 -> 45744 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.3/Ex14_3.sce | 43 | ||||
-rwxr-xr-x | 2223/CH14/EX14.4/Ex14_4.sav | bin | 0 -> 45920 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.4/Ex14_4.sce | 27 | ||||
-rwxr-xr-x | 2223/CH14/EX14.5/Ex14_5.sav | bin | 0 -> 45920 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.5/Ex14_5.sce | 26 | ||||
-rwxr-xr-x | 2223/CH14/EX14.6/Ex14_6.sav | bin | 0 -> 49224 bytes | |||
-rwxr-xr-x | 2223/CH14/EX14.6/Ex14_6.sce | 20 |
12 files changed, 160 insertions, 0 deletions
diff --git a/2223/CH14/EX14.1/Ex14_1.sav b/2223/CH14/EX14.1/Ex14_1.sav Binary files differnew file mode 100755 index 000000000..3db4b7bd1 --- /dev/null +++ b/2223/CH14/EX14.1/Ex14_1.sav diff --git a/2223/CH14/EX14.1/Ex14_1.sce b/2223/CH14/EX14.1/Ex14_1.sce new file mode 100755 index 000000000..f3fd71972 --- /dev/null +++ b/2223/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,30 @@ +// scilab Code Exa 14.1 Axial fan stage 960 rpm
+beta3=10; // rotor blade air angle at exit in degree
+dh=0.3; // hub diameter in m
+dt=0.6; // tip diameter in m
+N=960; // rotor Speed in RPM
+P=1; // Power required in kW
+phi=0.245; // flow coefficient
+T1=316; // in Kelvin
+p1=1.02; //Initial Pressure in bar
+R=287;
+A=%pi*((dt^2)-(dh^2))/4;
+d=0.5*(dt+dh);
+u=%pi*d*N/60;
+cx=phi*u;
+Q=cx*A;
+ro=(p1*1e5)/(R*T1);
+delp0_st=ro*(u^2)*(1-(phi*(tand(beta3))));
+disp("mm W.G.",delp0_st/9.81,"stage pressure rise is")
+IP=Q*delp0_st/1000; // ideal power required to drive the fan in kW
+n_o=IP/P;
+disp("%",n_o*1e2,"the overall Efficiency of the fan is")
+beta2=atand(u/cx);
+disp("degree",beta2,"the blade air angle at the entry beta2=")
+delp_st=0.5*ro*(u^2)*(1-(phi^2*(tand(beta3)^2)));
+DOR=delp_st/delp0_st;
+disp("%",DOR*1e2,"the degree of reaction is")
+omega=2*%pi*N/60;
+gH=delp0_st/ro;
+NS=omega*sqrt(Q)/(gH^(3/4));
+disp(NS,"the dimensionless specific speed is")
diff --git a/2223/CH14/EX14.2/Ex14_2.sav b/2223/CH14/EX14.2/Ex14_2.sav Binary files differnew file mode 100755 index 000000000..667d9fe06 --- /dev/null +++ b/2223/CH14/EX14.2/Ex14_2.sav diff --git a/2223/CH14/EX14.2/Ex14_2.sce b/2223/CH14/EX14.2/Ex14_2.sce new file mode 100755 index 000000000..aa25a1540 --- /dev/null +++ b/2223/CH14/EX14.2/Ex14_2.sce @@ -0,0 +1,14 @@ +// scilab Code Exa 14.2 Downstream guide vanes
+
+beta3=10; // rotor blade air angle at exit in degree
+dh=0.3; // hub diameter in m
+dt=0.6; // tip diameter in m
+N=960; // rotor Speed in RPM
+phi=0.245; // flow coefficient
+d=0.5*(dt+dh);
+u=%pi*d*N/60;
+cx=phi*u;
+cy3=u-(cx*tand(beta3));
+alpha3=atand(cy3/cx);
+disp("the rotor blade air angles, overall efficiency, flow rate, power required and degree of reaction are the same as calculated in Ex14_1")
+disp("degree",alpha3,"the guide vane air angle at the entry alpha3=")
diff --git a/2223/CH14/EX14.3/Ex14_3.sav b/2223/CH14/EX14.3/Ex14_3.sav Binary files differnew file mode 100755 index 000000000..84929a688 --- /dev/null +++ b/2223/CH14/EX14.3/Ex14_3.sav diff --git a/2223/CH14/EX14.3/Ex14_3.sce b/2223/CH14/EX14.3/Ex14_3.sce new file mode 100755 index 000000000..1be6349e4 --- /dev/null +++ b/2223/CH14/EX14.3/Ex14_3.sce @@ -0,0 +1,43 @@ +// scilab Code Exa 14.3 upstream guide vanes
+beta2=86; // rotor blade air angle at inlet in degree
+dh=0.3; // hub diameter in m
+dt=0.6; // tip diameter in m
+N=960; // rotor Speed in RPM
+phi=0.245; // flow coefficient
+T1=316; // in Kelvin
+p1=1.02; //Initial Pressure in bar
+R=287;
+n_o=0.647; // overall Efficiency of the drive
+A=%pi*((dt^2)-(dh^2))/4;
+d=0.5*(dt+dh);
+u=%pi*d*N/60;
+cx=phi*u;
+Q=cx*A;
+ro=(p1*1e5)/(R*T1);
+
+// part(i) static pressure rise in the rotor and stage
+delh0_st=(u^2)*((phi*(tand(beta2)))-1);
+delp0_st=ro*delh0_st;
+disp("mm W.G.",delp0_st/9.81,"(i)static pressure rise in the stage is")
+beta3=atand(u/cx);
+w2=cx/(cosd(beta2));
+w3=cx/(cosd(beta3));
+delp_r=0.5*ro*((w2^2)-(w3^2));
+disp("mm W.G.",delp_r/9.81,"and the static pressure rise in the rotor is")
+
+// part(ii) the stage pressure coefficient and degree of reaction
+shi=2*((phi*(tand(beta2)))-1);
+disp(shi,"(ii)stage pressure coefficient is")
+DOR=0.5*((phi*(tand(beta2)))+1);
+disp("%",DOR*1e2,"and the degree of reaction is")
+
+// part(iii) the blade air angle at the rotor exit and the air angle at the UGV exit
+disp("degree",beta3,"(iii)the blade air angle at the rotor exit beta3=")
+cy2=(cx*tand(beta2))-u;
+alpha2=atand(cy2/cx);
+disp("degree",alpha2,"and the air angle at the UGV exit alpha2=")
+
+// part(iv) Power required to drive the fan
+m=ro*Q;
+P=m*delh0_st/n_o;
+disp("kW",P/1000,"(iv)Power required to drive the fan is")
diff --git a/2223/CH14/EX14.4/Ex14_4.sav b/2223/CH14/EX14.4/Ex14_4.sav Binary files differnew file mode 100755 index 000000000..0175d013b --- /dev/null +++ b/2223/CH14/EX14.4/Ex14_4.sav diff --git a/2223/CH14/EX14.4/Ex14_4.sce b/2223/CH14/EX14.4/Ex14_4.sce new file mode 100755 index 000000000..579dfc88c --- /dev/null +++ b/2223/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,27 @@ +// scilab Code Exa 14.4 rotor and upstream guide blades
+beta2=30; // rotor blade air angle at inlet in degree
+beta3=10; // rotor blade air angle at exit in degree
+dh=0.3; // hub diameter in m
+dt=0.6; // tip diameter in m
+N=960; // rotor Speed in RPM
+phi=0.245; // flow coefficient
+T1=316; // in Kelvin
+p1=1.02; //Initial Pressure in bar
+R=287;
+n_d=0.88; // Efficiency of the drive
+n_f=0.8; // Efficiency of the fan
+A=%pi*((dt^2)-(dh^2))/4;
+d=0.5*(dt+dh);
+u=%pi*d*N/60;
+cx=phi*u;
+Q=cx*A;
+ro=(p1*1e5)/(R*T1);
+delh0_st=(u^2)*phi*(tand(beta2)-tand(beta3));
+n_o=n_f*n_d;
+delp0_st=n_f*ro*delh0_st;
+disp("mm W.G.",delp0_st/9.81,"static pressure rise in the stage is")
+shi=2*phi*(tand(beta2)-tand(beta3));
+disp(shi,"stage pressure coefficient is")
+m=ro*Q;
+P=m*delh0_st/n_d;
+disp("kW",P/1000,"Power required to drive the fan is")
diff --git a/2223/CH14/EX14.5/Ex14_5.sav b/2223/CH14/EX14.5/Ex14_5.sav Binary files differnew file mode 100755 index 000000000..98d440119 --- /dev/null +++ b/2223/CH14/EX14.5/Ex14_5.sav diff --git a/2223/CH14/EX14.5/Ex14_5.sce b/2223/CH14/EX14.5/Ex14_5.sce new file mode 100755 index 000000000..730b5ff97 --- /dev/null +++ b/2223/CH14/EX14.5/Ex14_5.sce @@ -0,0 +1,26 @@ +// scilab Code Exa 14.5 DGVs and upstream guide vanes
+beta2=86; // rotor blade air angle at inlet in degree
+beta3=10; // rotor blade air angle at exit in degree
+dh=0.3; // hub diameter in m
+dt=0.6; // tip diameter in m
+N=960; // rotor Speed in RPM
+phi=0.245; // flow coefficient
+T1=316; // in Kelvin
+p1=1.02; //Initial Pressure in bar
+R=287;
+n_d=0.8; // Efficiency of the drive
+n_f=0.85; // Efficiency of the fan
+A=%pi*((dt^2)-(dh^2))/4;
+d=0.5*(dt+dh);
+u=%pi*d*N/60;
+cx=phi*u;
+Q=cx*A;
+ro=(p1*1e5)/(R*T1);
+delh0_st=2*(u^2)*((phi*(tand(beta2)))-1);
+delp0_st=n_f*ro*delh0_st;
+disp("mm W.G.",delp0_st/9.81,"static pressure rise in the stage is")
+shi=4*((phi*(tand(beta2)))-1);
+disp(shi,"stage pressure coefficient is")
+m=ro*Q;
+P=m*delh0_st/n_d;
+disp("kW",P/1000,"Power of the electric motor is")
diff --git a/2223/CH14/EX14.6/Ex14_6.sav b/2223/CH14/EX14.6/Ex14_6.sav Binary files differnew file mode 100755 index 000000000..4456c90a5 --- /dev/null +++ b/2223/CH14/EX14.6/Ex14_6.sav diff --git a/2223/CH14/EX14.6/Ex14_6.sce b/2223/CH14/EX14.6/Ex14_6.sce new file mode 100755 index 000000000..447427006 --- /dev/null +++ b/2223/CH14/EX14.6/Ex14_6.sce @@ -0,0 +1,20 @@ +// scilab Code Exa 14.6 open propeller fan
+c_u=5; // upstream velocity in m/s
+c_s=25; // downstream velocity in m/s
+t=37; // in degree C
+T=t+273; // in Kelvin
+d=0.5;
+p=1.02; // Initial Pressure in bar
+R=287;
+n_o=0.4; // overall Efficiency of the fan
+A=%pi*(d^2)/4;
+c=0.5*(c_u+c_s);
+Q=c*A;
+ro=(p*1e5)/(R*T);
+m=ro*c*A;
+disp("kg/s",m,"(a) flow rate through the fan is")
+delh_0=0.5*((c_s^2)-(c_u^2));
+delp_0=ro*delh_0;
+disp("mm W.G.",delp_0/9.81,"(b)static pressure rise in the stage is")
+P=m*delh_0/n_o;
+disp("kW",P/1000,"(c)Power required to drive the fan is")
|