diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2223/CH11/EX11.2/Ex11_2.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2223/CH11/EX11.2/Ex11_2.sce')
-rwxr-xr-x | 2223/CH11/EX11.2/Ex11_2.sce | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/2223/CH11/EX11.2/Ex11_2.sce b/2223/CH11/EX11.2/Ex11_2.sce new file mode 100755 index 000000000..86526cbb2 --- /dev/null +++ b/2223/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,50 @@ +// scilab Code Exa 11.2 Calculation on an axial compressor stage
+
+T1=314; // in Kelvin
+p1=768; // Initial Pressure in mm Hg
+N=18e3; // rotor Speed in RPM
+d=50/100; // Mean Blade ring diameter in m
+u=100; // peripheral speed in m/s
+h=6/100; // blade height at entry in m
+beta1=51;
+beta2=9;
+alpha_1=7; // air angle at rotor and stator exit
+wdf=0.95; // work-done factor
+m=25; // in kg/s
+n_st=0.88; // Stage Efficiency
+n_m=0.92; // Mechanical Efficiency
+cp=1005; // Specific Heat at Constant Pressure in J/(kgK)
+R=287;
+gamma=1.4;
+n=(gamma-1)/gamma;
+
+// part(a) air angle at stator entry
+cx=u/(tand(alpha_1)+tand(beta1));
+disp(cx,"cx=")
+alpha2=atand(tand(alpha_1)+tand(beta1)-tand(beta2))
+disp("degree",alpha2,"air angle at stator entry is alpha2= ")
+
+// part(b) blade height at entry and hub-tip diameter ratio
+ro1=(p1/750*1e5)/(R*T1);
+h1=m/(ro1*cx*%pi*d);
+disp("cm",h1*1e2,"(b)blade height at entry is")
+dh=d-h1;
+disp(dh,"dh=")
+dt=d+h1;
+disp(dt,"dt=")
+disp(dh/dt,"and hub-tip diameter ratio is")
+
+// part(c) stage Loading coefficient
+w=wdf*u*cx*(tand(beta1)-tand(beta2));
+shi=w/(u^2);
+disp (shi,"(d)Loading coefficient is")
+
+// part(d) stage pressure ratio
+delTa=w/cp;
+delTs=n_st*delTa;
+pr=((1+(delTs/T1))^(1/n));
+disp(pr,"(e)pressure ratio developed by the stage is")
+
+// part(e) Determining power required to drive the compressor
+P=m*w/n_m;
+disp ("kW" ,P/1000,"(e)Power required to drive the compressor is")
|