summaryrefslogtreecommitdiff
path: root/2192/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /2192/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '2192/CH4')
-rwxr-xr-x2192/CH4/EX4.1/4_1.sce16
-rwxr-xr-x2192/CH4/EX4.10/4_10.sce20
-rwxr-xr-x2192/CH4/EX4.11/4_11.sce17
-rwxr-xr-x2192/CH4/EX4.12/4_12.sce13
-rwxr-xr-x2192/CH4/EX4.13/4_13.sce42
-rwxr-xr-x2192/CH4/EX4.14/4_14.sce21
-rwxr-xr-x2192/CH4/EX4.15/4_15.sce22
-rwxr-xr-x2192/CH4/EX4.16/4_16.sce16
-rwxr-xr-x2192/CH4/EX4.17/4_17.sce33
-rwxr-xr-x2192/CH4/EX4.18/4_18.sce16
-rwxr-xr-x2192/CH4/EX4.19/4_19.sce30
-rwxr-xr-x2192/CH4/EX4.2/4_2.sce21
-rwxr-xr-x2192/CH4/EX4.20/4_20.sce16
-rwxr-xr-x2192/CH4/EX4.21/4_21.sce16
-rwxr-xr-x2192/CH4/EX4.22/4_22.sce18
-rwxr-xr-x2192/CH4/EX4.23/4_23.sce25
-rwxr-xr-x2192/CH4/EX4.3/4_3.sce22
-rwxr-xr-x2192/CH4/EX4.4/4_4.sce16
-rwxr-xr-x2192/CH4/EX4.5/4_5.sce12
-rwxr-xr-x2192/CH4/EX4.6/4_6.sce14
-rwxr-xr-x2192/CH4/EX4.7/4_7.sce24
-rwxr-xr-x2192/CH4/EX4.8/4_8.sce30
-rwxr-xr-x2192/CH4/EX4.9/4_9.sce42
23 files changed, 502 insertions, 0 deletions
diff --git a/2192/CH4/EX4.1/4_1.sce b/2192/CH4/EX4.1/4_1.sce
new file mode 100755
index 000000000..ab70ed9c0
--- /dev/null
+++ b/2192/CH4/EX4.1/4_1.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.1\n\n')
+
+P=1000 //power absorbed in watts
+k_0=8.854*10^-12 //permittivity of free space
+k=3.6 //relative permittivity of wood
+A=0.5 //area of cross section of plate in m^2
+t=0.025 //thickness in m
+f=25*10^6 //frequency in hertz
+
+C=k_0*k*A/t //capacitance of capacitor formed
+phi=acos(0.046) //power factor angle
+delta=%pi/2 - phi
+
+V = sqrt(P/(2*%pi*f*C*delta))
+printf('Voltage employed is %.2f volts',V)
diff --git a/2192/CH4/EX4.10/4_10.sce b/2192/CH4/EX4.10/4_10.sce
new file mode 100755
index 000000000..b9265d5b0
--- /dev/null
+++ b/2192/CH4/EX4.10/4_10.sce
@@ -0,0 +1,20 @@
+clc,clear
+printf('Example 4.10\n\n')
+
+P=20*1000 //power supplied in watts
+V=220 //supply voltage
+e=0.9;k=0.6; //emissivity and radiant efficiency
+rho=100*10^-6//specific resistance
+
+l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i)
+T1=1170+273; T2=500+273; //temperatures of wire and charge
+H=5.72*k*e*(T1^4-T2^4)/1000^4 //heat dissipated from surface
+
+//Surface area = %pi*d*l
+//total heat dissipated = electric power input and squaring the equation
+d2l2= ( P/(H*%pi) )^2 // d^2 * l^2 (ii)
+//using expression (i) and expression (ii)
+l =(d2l2*l_by_d2)^(1/3)
+printf('Length of wire = %.1f metres',l/100)
+d=sqrt( l/l_by_d2 )
+printf('\nSize of wire = %.1f cm',d)
diff --git a/2192/CH4/EX4.11/4_11.sce b/2192/CH4/EX4.11/4_11.sce
new file mode 100755
index 000000000..660dfcef1
--- /dev/null
+++ b/2192/CH4/EX4.11/4_11.sce
@@ -0,0 +1,17 @@
+clc,clear
+printf('Example 4.11\n\n')
+
+mass=500 //quantity of brass to be melted
+T1=920;T2=20; //final and initial temperature
+S=0.094 //specific heat of brass
+H1=mass*S*(T1-T2) //heat to raise temperature
+
+L=39 //latent heat of fusion of brass
+H2=mass*L//heat reqd to heat metal at 920
+
+H=H1+H2 //total heat required
+efficiency=60.2/100 //furnace efficiency
+Energy_required = H *4180/(3600*1000*efficiency) //constants used for unit conversion
+printf('Energy required = %.1f kWh\n',Energy_required)
+time=1/2 //time for melting in hours
+printf('Average power input= %.1f kW',Energy_required/time)
diff --git a/2192/CH4/EX4.12/4_12.sce b/2192/CH4/EX4.12/4_12.sce
new file mode 100755
index 000000000..796c3e4a4
--- /dev/null
+++ b/2192/CH4/EX4.12/4_12.sce
@@ -0,0 +1,13 @@
+clc,clear
+printf('Example 4.12\n\n')
+
+V=250;R=190
+//part(i)
+R1=1/(R^-1+R^-1) //equivalent resistance in parallel
+P1=V^2/R1 //power drawn in parallel
+printf('(i)Power drawn in parallel = %.2f watts',P1)
+
+//part(ii)
+R2=R+R //equivalent resistance in series
+P2=V^2/R2 //power drawn in series
+printf('\n(ii)Power drawn in series= %.2f watts',P2)
diff --git a/2192/CH4/EX4.13/4_13.sce b/2192/CH4/EX4.13/4_13.sce
new file mode 100755
index 000000000..1234b51ff
--- /dev/null
+++ b/2192/CH4/EX4.13/4_13.sce
@@ -0,0 +1,42 @@
+clc,clear
+printf('Example 4.13\n\n')
+
+//PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i)
+V=230;R=100;
+P_each = V^2/R
+
+//part(a)
+P1a=6*P_each //power consumed
+//part(b)
+P1b=V^2/(R+R+R) + V^2/(R+R+R) //power consumed
+
+//PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii)
+V=400/sqrt(3)
+
+//part(a)
+R_eq=R/2 //equivalent resistance of given configuration
+P2a=V^2/R_eq //power consumed
+//part(b)
+R_eq=R+R //equivalent resistance of given configuration
+P2b=V^2/R_eq //power consumed
+
+//PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii)
+V=400
+R_eq=R/2 //equivalent resistance of given configuration
+//part(a)
+P3a=V^2/R_eq //power consumed
+//part(b)
+R_eq=R+R //equivalent resistance of given configuration
+P3b=V^2/R_eq //power consumed
+
+printf('Part(i)\n')
+printf('(a)Power consumed = %.3f kW\n',P1a/1000)
+printf('(b)Power consumed = %.0f watts\n',P1b)
+printf('Part(ii)\n')
+printf('(a)Power consumed = %.3f kW\n',P2a/1000)
+printf('(b)Power consumed = %.3f kW\n',P2b/1000)
+printf('Part(iii)\n')
+printf('(a)Power consumed = %.1f kW\n',P3a/1000)
+printf('(b)Power consumed = %.0f watts\n',P3b)
+
+printf('\nAnswers may mismatch due to calculation error in book')
diff --git a/2192/CH4/EX4.14/4_14.sce b/2192/CH4/EX4.14/4_14.sce
new file mode 100755
index 000000000..fed2e0373
--- /dev/null
+++ b/2192/CH4/EX4.14/4_14.sce
@@ -0,0 +1,21 @@
+clc,clear
+printf('Example 4.14\n\n')
+
+P=15*1000 //power supplied
+V=220 //supply voltage
+k=0.6;e=0.9; //radiating efficiency and emissivity
+rho = 1.016*10^-6 //specific resistance
+
+l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i)
+
+T1=1000+273; T2=600+273; //temperatures of wire and charge
+H=5.72*k*e*(T1^4-T2^4)/100^4 //heat dissipated from surface
+
+//since heat dissipated = electrical power input;
+dl2=( P/(H*%pi) )^2//product of d and l (ii)
+
+//multiplying expression(i) and expression (ii)
+l=(l_by_d2*dl2)^(1/3) //length of wire
+printf('Length of wire = %.2f m\n',l)
+d= sqrt(dl2)/l //diameter of wire
+printf('Diameter of wire = %.2f mm',1000*d)
diff --git a/2192/CH4/EX4.15/4_15.sce b/2192/CH4/EX4.15/4_15.sce
new file mode 100755
index 000000000..b8f4d29a2
--- /dev/null
+++ b/2192/CH4/EX4.15/4_15.sce
@@ -0,0 +1,22 @@
+clc,clear
+printf('Example 4.15\n\n')
+
+P=30*1000/3 //power per phase
+V_ph=400/sqrt(3) //phase voltage
+R=(V_ph)^2/P //resistance of strip
+t=0.025*10^-2 //thickness of strip
+S=1.03*10^-6 //specific resistance of nichrome alloy
+l_by_w = R*t/S //because R=specific_resistance*l/(w*t) (i)
+
+k=0.6;e=0.9; //radiating efficiency and emissivity
+T1=1100+273; T2=700+273; //temperatures of wire and charge
+H=5.72*k*e*(T1^4-T2^4)/100^4 //heat dissipated from surface
+
+//surface_area = 2*w*l
+//Since, heat dissipated = Power input ; surface_area = P/H
+surface_area = P / H
+wl=surface_area /2 //product of w and l (ii)
+
+//dividing expression(ii) by expression(i)
+w=sqrt(wl/l_by_w)
+printf('Width of strip = %.2f mm',w*1000)
diff --git a/2192/CH4/EX4.16/4_16.sce b/2192/CH4/EX4.16/4_16.sce
new file mode 100755
index 000000000..d06ed5ce5
--- /dev/null
+++ b/2192/CH4/EX4.16/4_16.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.16\n\n')
+
+P=1000 //power absorbed in watts
+k_0=8.854*10^-12 //permittivity of free space
+k=3.6 //relative permittivity of wood
+A=0.5 //area of cross section of plate in m^2
+t=0.025 //thickness in m
+f=25*10^6 //frequency in hertz
+
+C=k_0*k*A/t //capacitance of capacitor formed
+phi=acos(0.046) //power factor angle
+delta=%pi/2 - phi
+
+V = sqrt(P/(2*%pi*f*C*delta))
+printf('Voltage employed is %.2f volts',V)
diff --git a/2192/CH4/EX4.17/4_17.sce b/2192/CH4/EX4.17/4_17.sce
new file mode 100755
index 000000000..6a442b438
--- /dev/null
+++ b/2192/CH4/EX4.17/4_17.sce
@@ -0,0 +1,33 @@
+clc,clear
+printf('Example 4.17\n\n')
+
+m=10*1000 //10 tonnes of steel
+S=444//specific heat of steel
+L=37.25*1000 //latent heat of fusion of steel
+T2=1370;T1=20//final and initial temperatures
+
+Energy=(m*S*(T2-T1) + m*L) / 3600 //energy required to melt 10 tonne steel in Wh
+efficiency= 50/100
+time_taken = 2 //time taken in melting of heat in hours
+average_output = Energy/time_taken
+average_input= average_output/ efficiency
+printf('Average input to furnace = %.1f kW\n',average_input/1000)
+
+current_input=9000
+resistance= 0.003 //resistance of furnace leads including transformer
+reactance= 0.005 //reactance of furnace leads including transformer
+V1= current_input*resistance //voltage drop due to resistance
+V2= current_input*reactance //voltage drop due to reactance
+
+//Solving for V_A (arc voltage)
+//V_opencircuit= sqrt((V_A=V1)^2+ V2^2)
+//cos_phi= V_A+27 / sqrt((V_A-V1)^2+ V2^2)
+//Input power = 3*current_input* V_opencircuit *cos_phi
+
+V_A= average_input/ (3*current_input) -27
+printf('Arc voltage = %.1f V\n',V_A)
+V_opencircuit= sqrt((V_A-V1)^2+ V2^2)
+total_VA=3*current_input* V_opencircuit
+printf('Total kVA taken from supply = %.0f kVA',total_VA/1000)
+
+printf('\n\nAnswers mimatch because 27 volts was left unconsidered in last 2 steps')
diff --git a/2192/CH4/EX4.18/4_18.sce b/2192/CH4/EX4.18/4_18.sce
new file mode 100755
index 000000000..cf449e3a0
--- /dev/null
+++ b/2192/CH4/EX4.18/4_18.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.18\n\n')
+
+m=1.8 //mass of aluminium to be melt
+t1=15 //initial temperature
+t2=660 //melting temperature
+
+S=880 //specific heat of aluminium
+L=32000 //latent heat of aluminium
+
+heat_required= m*S*(t2-t1) + m*L
+heat_required= heat_required*2.78*10^-7 //converting Joules to kWh
+T=10//time taken for melting in minutes
+energy_input=5*(T/60) //In kWh
+efficiency_of_furnace = 100* heat_required / energy_input
+printf('Efficiency of furnace = %.0f percent',efficiency_of_furnace )
diff --git a/2192/CH4/EX4.19/4_19.sce b/2192/CH4/EX4.19/4_19.sce
new file mode 100755
index 000000000..a4999ad10
--- /dev/null
+++ b/2192/CH4/EX4.19/4_19.sce
@@ -0,0 +1,30 @@
+clc,clear
+printf('Example 4.19\n\n')
+
+arc_voltage=50
+I=5000 //current drawn
+resistance= 0.002 //resistance of furnace leads including transformer
+reactance= 0.004 //reactance of furnace leads including transformer
+V1= I*resistance //voltage drop due to resistance of transformer
+V2= I*reactance //voltage drop due to reactance of transformer
+V_OC= sqrt( (arc_voltage+V1)^2 + V2^2 ) //open circuit phase voltage of transformer secondary
+
+//part(i)
+pf=(arc_voltage+V1)/V_OC
+power_drawn= I*V_OC*pf //power drawn from supply per phase
+total_power_drawn =power_drawn*3
+printf('Power factor of supply = %.4f\n',pf)
+printf('kW drawn from supply= %.0f kW\n',total_power_drawn/1000)
+
+//part(ii)
+m=2*10^3 //mass of steel to melt
+S=120//specific heat of steel
+L=8890//latent heating of fusion
+T2=1370;T1=20; //melting point and initial temperature
+efficiency=65/100//efficiency of furnace
+energy_required= ( m*S*(T2-T1) + m*L) /869 //energy reqd to melt steel in watts
+power_utilised= total_power_drawn * efficiency
+time= energy_required /power_utilised //time required for melting
+printf('Time required for melting = %d minutes %d seconds\n\n',60*time,60*(60*time- floor(60*time) ))
+
+printf('Answers might slightly vary due to lack of accuracy in energy required calculation')
diff --git a/2192/CH4/EX4.2/4_2.sce b/2192/CH4/EX4.2/4_2.sce
new file mode 100755
index 000000000..57aa9be25
--- /dev/null
+++ b/2192/CH4/EX4.2/4_2.sce
@@ -0,0 +1,21 @@
+clc,clear
+printf('Example 4.2\n\n')
+
+P=16*1000 //power supplied in watts
+V=220 //supply voltage
+e=0.9;k=0.57; //emissivity and radiant efficiency
+rho=1.09*10^-12//resistivity in ohm-metre
+
+l_by_d2 = %pi*V^2/(4*rho*P) //ratio of l and d^2 (i)
+T1=1170+273; T2=500+273; //temperatures of wire and charge
+H=5.72*k*e*(T1^4-T2^4)/100^4 //heat dissipated from surface
+
+//Surface area = %pi*d*l
+//total heat dissipated = electric power input and squaring the equation
+d2l2= ( P/(H*%pi) )^2 //d^2*l^2 (ii)
+//multiplying expression (i) and expression (ii)
+l =(1/100)*(d2l2*l_by_d2)^(1/3)
+printf('Length of wire = %.0f metre',l)
+d=1000*sqrt(d2l2)/l
+//d=sqrt( l/l_by_d2 )
+printf('\nDiameter of wire = %.2f mm',d)
diff --git a/2192/CH4/EX4.20/4_20.sce b/2192/CH4/EX4.20/4_20.sce
new file mode 100755
index 000000000..7a422f62b
--- /dev/null
+++ b/2192/CH4/EX4.20/4_20.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.20\n\n')
+
+V=10 //secondary voltage
+P=400*10^3 //power drawn in watts
+phi=acos(0.6) //power factor angle
+I= P/(V*cos(phi)) //secondary current
+Z=V/I //impedance of secondary circuit
+R=Z*cos(phi) //resistance of secondary circuit when hearth is full
+X=Z*sin(phi) //reactance of secondary circuit
+
+//x is ratio of height of charge to full hearth
+//Heat produced will be maximum when resistance of secondary circuit equals reactance ; i.e. when R/x= X
+
+x=R/X
+printf('Height of charge should be %.2f times height of hearth to obtain maximum heat',x)
diff --git a/2192/CH4/EX4.21/4_21.sce b/2192/CH4/EX4.21/4_21.sce
new file mode 100755
index 000000000..d56513246
--- /dev/null
+++ b/2192/CH4/EX4.21/4_21.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.21\n\n')
+
+V= 0.5*0.25*0.02//volume of plywood to be heated
+D=600 //density of plywood in kg/m^3
+W=V*D
+
+specific_heat = 1500
+T1=25;T2=125; //initial and final temperature
+heat= specific_heat * W * (T2-T1)/(60*60) //in W-Hr
+T=10 //duration of heating in minutes
+power_required = heat/(T/60)
+efficiency= 50/100 //efficiency of process
+power_input= power_required/ efficiency
+
+printf('Power required for heating = %.0f watts',power_input)
diff --git a/2192/CH4/EX4.22/4_22.sce b/2192/CH4/EX4.22/4_22.sce
new file mode 100755
index 000000000..353b3166c
--- /dev/null
+++ b/2192/CH4/EX4.22/4_22.sce
@@ -0,0 +1,18 @@
+clc,clear
+printf('Example 4.22\n\n')
+
+P=200//power absorbed in watts
+phi=acos(0.05) //power factor angle
+f=3*10^6 //supply frequency in hertz
+k_0=8.854*10^-12 //permittivity of free space
+k=5 //relative permittivity of material
+A=1500*10^-6 //Area of slab
+t=20*10^-3 //thickness of insulating material
+
+C=k_0*k*A/t //capacitance of capacitor formed
+V=sqrt(P/(2*%pi*f*C*cos(phi))) //voltage required
+printf('Voltage required for heating = %.0f V',V)
+I=P/(V*cos(phi)) //current flowing through material
+printf('\nCurrent flowing through material = %.1f A',I)
+
+printf('\n\nWARNING :Answers may not match due to rounding off')
diff --git a/2192/CH4/EX4.23/4_23.sce b/2192/CH4/EX4.23/4_23.sce
new file mode 100755
index 000000000..254b07bc6
--- /dev/null
+++ b/2192/CH4/EX4.23/4_23.sce
@@ -0,0 +1,25 @@
+clc,clear
+printf('Example 4.23\n\n')
+
+A1= (25-5)*2*10^-4 //area of air envelope
+A2=5*2*10^-4 //Area of plywood in m^2
+t=2/100 //distance between electrodes
+t1=1/100 //thickness of plywood in m
+t2=(2-1)/100 //thickness of air envelope
+eps_0 = 8.854*10^-12 //permittivity of free space
+eps_r1 =5 //relative permittivity of plywood
+eps_r2 =1 //relative permittivity of air
+
+//capacitance of capacitor
+C= eps_0 * ( (A1*eps_r2/t) + (A2/((t1/eps_r1)+(t2/eps_r2))) )
+
+P=1000 //power consumed
+f=10*10^6 //frequency of electric current
+phi=acos(0.04) //power factor angle
+
+//part(i)
+V = sqrt(P/(2*%pi*f*C*cos(phi))) //voltage across the electrode
+printf('(i)Voltage across the electrode = %.0f V',V)
+//part(ii)
+I=P/(V*cos(phi)) //current through plywood
+printf('\n(ii)Current through plywood = %.3f A',I)
diff --git a/2192/CH4/EX4.3/4_3.sce b/2192/CH4/EX4.3/4_3.sce
new file mode 100755
index 000000000..96761746a
--- /dev/null
+++ b/2192/CH4/EX4.3/4_3.sce
@@ -0,0 +1,22 @@
+clc,clear
+printf('Example 4.3\n\n')
+
+P=30*10^3/3 //power per phase
+V_ph=400/sqrt(3) //phase voltage
+R=(V_ph)^2/P
+
+//l and w are length and width respectively
+rho= 101.6*10^-8 //resistivity
+t=0.254*10^-3 //thickness of nickel-chrome strip
+l_by_w = R*t/rho //ratio of l and w (i)
+
+k=0.5;e=0.9; //radiating efficiency and emissivity
+T1=1100+273; T2=700+273; //temperatures of wire and charge
+H=5.72*k*e*(T1^4-T2^4)/100^4 //heat dissipated from surface
+
+//surface are for heat dissipation = 2*w*l
+//heat dissipated = power input
+wl= P/(2*H) // (ii)
+//dividing expression (ii) by expression (i)
+w= sqrt(wl/l_by_w)
+printf('Width of strip = %.1f mm',w*1000)
diff --git a/2192/CH4/EX4.4/4_4.sce b/2192/CH4/EX4.4/4_4.sce
new file mode 100755
index 000000000..7612dd32c
--- /dev/null
+++ b/2192/CH4/EX4.4/4_4.sce
@@ -0,0 +1,16 @@
+clc,clear
+printf('Example 4.4\n\n')
+
+surface_area= 6 //surface area of tank
+l=sqrt(surface_area/6) //length of one side of tank
+volume=l^3
+m=6*90/100 * 1000 //mass of water to be heated daily in kilogram
+S=4200//specific heat of water
+t2=65;t1=20;//final and initial temperature
+heat=m*S*(t2-t1)*10^-6 /3.6 // heat required for raising the temperature in kWh
+losses =6.3*surface_area*(t2-t1)*24/1000 //losses from surface of tank 24 hours in kWh
+energy_supplied= heat+losses
+loading= energy_supplied/24 //in kW
+printf('Loading = %.1f kW\n',loading)
+efficiecny=100*heat/energy_supplied
+printf('Efficiency of tank = %.1f percent',efficiecny)
diff --git a/2192/CH4/EX4.5/4_5.sce b/2192/CH4/EX4.5/4_5.sce
new file mode 100755
index 000000000..08c988f67
--- /dev/null
+++ b/2192/CH4/EX4.5/4_5.sce
@@ -0,0 +1,12 @@
+clc,clear
+printf('Example 4.5\n\n')
+
+m=2.5 //quantity of aluminium to be melted
+t1=15;t2=658;//melting point and initial temperature
+S=0.212 *1000*4.18 //specific bheat of aluminium
+L=320000//latent heat of aluminium
+W=( m*S*(t2-t1) + m*L ) *10^-6/ 3.6 // heat required for melting in kWh
+energy_input = 5*15/60 //converting to kWh
+efficiency = 100*W/energy_input //efficiency of furnace
+
+printf('Efficiency of furnace = %.1f percent',efficiency)
diff --git a/2192/CH4/EX4.6/4_6.sce b/2192/CH4/EX4.6/4_6.sce
new file mode 100755
index 000000000..7a7049aca
--- /dev/null
+++ b/2192/CH4/EX4.6/4_6.sce
@@ -0,0 +1,14 @@
+clc,clear
+printf('Example 4.6\n\n')
+
+P=400 //power absorbed in watts
+phi=acos(0.05) //power factor angle
+f=30*10^6 //frequency in hertz
+k_0=8.854*10^-12 //permittivity of free space
+k=5 //relative permittivity of wood
+A=150*10^-4 //area of cross section of plate in m^2
+t=0.01 //thickness in m
+
+C=k_0*k*A/t //capacitance of capacitor formed
+V = sqrt(P/(2*%pi*f*C*cos(phi)))
+printf('Necessary voltage is %.2f volts',V)
diff --git a/2192/CH4/EX4.7/4_7.sce b/2192/CH4/EX4.7/4_7.sce
new file mode 100755
index 000000000..b8ace9951
--- /dev/null
+++ b/2192/CH4/EX4.7/4_7.sce
@@ -0,0 +1,24 @@
+clc,clear
+printf('Example 4.7\n\n')
+
+P=400 //power absorbed in watts
+phi=acos(0.05) //power factor angle
+f=40*10^6 //frequency in hertz
+k_0=8.854*10^-12 //permittivity of free space
+k=5 //relative permittivity of wood
+A=200*10^-4 //area of cross section of plate in m^2
+t=0.02 //thickness in m
+
+C=k_0*k*A/t //capacitance of capacitor formed
+
+V = sqrt(P/(2*%pi*f*C*cos(phi)))
+printf('Necessary voltage is %.0f volts',V)
+
+I=P/(V*cos(phi))
+printf('\nCurrent flowing through material is %.3f Amp',I)
+
+//heat produced=f*V^2 ;
+V_2=700 //new limited voltage
+f2 = f*(V/V_2)^2
+printf('\nRequired frequency is %.1f*10^6 Hz',f2/10^6)
+
diff --git a/2192/CH4/EX4.8/4_8.sce b/2192/CH4/EX4.8/4_8.sce
new file mode 100755
index 000000000..c8d7626e6
--- /dev/null
+++ b/2192/CH4/EX4.8/4_8.sce
@@ -0,0 +1,30 @@
+clc,clear
+printf('Example 4.8\n\n')
+
+arc_voltage=50
+I=5000 //current drawn
+resistance= 0.002 //resistance of furnace leads including transformer
+reactance= 0.004 //reactance of furnace leads including transformer
+V1= I*resistance //voltage drop due to resistance of transformer
+V2= I*reactance //voltage drop due to reactance of transformer
+V_OC= sqrt( (arc_voltage+V1)^2 + V2^2 ) //open circuit phase voltage of transformer secondary
+
+//part(i)
+pf=(arc_voltage+V1)/V_OC
+power_drawn= I*V_OC*pf //power drawn from supply per phase
+total_power_drawn =power_drawn*3
+printf('Power factor of supply = %.4f\n',pf)
+printf('kW drawn from supply= %.0f kW\n',total_power_drawn/1000)
+
+//part(ii)
+m=2*10^3 //mass of steel to melt
+S=120//specific heat of steel
+L=8890//latent heating of fusion
+T2=1370;T1=20; //melting point and initial temperature
+efficiency=65/100//efficiency of furnace
+energy_required= ( m*S*(T2-T1) + m*L) /869 //energy reqd to melt steel in watts
+power_utilised= total_power_drawn * efficiency
+time= energy_required /power_utilised //time required for melting
+printf('Time required for melting = %d minutes %d seconds\n\n',60*time,60*(60*time- floor(60*time) ))
+
+printf('Answers might slightly vary due to lack of accuracy in energy required calculation')
diff --git a/2192/CH4/EX4.9/4_9.sce b/2192/CH4/EX4.9/4_9.sce
new file mode 100755
index 000000000..833539e2f
--- /dev/null
+++ b/2192/CH4/EX4.9/4_9.sce
@@ -0,0 +1,42 @@
+clc,clear
+printf('Example 4.9\n\n')
+
+//PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i) PART(i)
+V=230;R=100;
+P_each = V^2/R
+
+//part(a)
+P1a=6*P_each //power consumed
+//part(b)
+P1b=V^2/(R+R+R) + V^2/(R+R+R) //power consumed
+
+//PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii) PART(ii)
+V=400/sqrt(3)
+
+//part(a)
+R_eq=R/2 //equivalent resistance of given configuration
+P2a=V^2/R_eq //power consumed
+//part(b)
+R_eq=R+R //equivalent resistance of given configuration
+P2b=V^2/R_eq //power consumed
+
+//PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii) PART(iii)
+V=400
+R_eq=R/2 //equivalent resistance of given configuration
+//part(a)
+P3a=V^2/R_eq //power consumed
+//part(b)
+R_eq=R+R //equivalent resistance of given configuration
+P3b=V^2/R_eq //power consumed
+
+printf('Part(i)\n')
+printf('(a)Power consumed = %.3f kW\n',P1a/1000)
+printf('(b)Power consumed = %.0f watts\n',P1b)
+printf('Part(ii)\n')
+printf('(a)Power consumed = %.3f kW\n',P2a/1000)
+printf('(b)Power consumed = %.3f kW\n',P2b/1000)
+printf('Part(iii)\n')
+printf('(a)Power consumed = %.1f kW\n',P3a/1000)
+printf('(b)Power consumed = %.0f watts\n',P3b)
+
+printf('\nAnswers may mismatch due to calculation error in book')