diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2168/CH3/EX3.30/Chapter3_example30.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2168/CH3/EX3.30/Chapter3_example30.sce')
-rwxr-xr-x | 2168/CH3/EX3.30/Chapter3_example30.sce | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/2168/CH3/EX3.30/Chapter3_example30.sce b/2168/CH3/EX3.30/Chapter3_example30.sce new file mode 100755 index 000000000..148a75df5 --- /dev/null +++ b/2168/CH3/EX3.30/Chapter3_example30.sce @@ -0,0 +1,43 @@ +clc
+clear
+//Input data
+N=210//Speed in r.p.m
+d=0.3//Diameter of the piston in m
+L=0.4//Stroke in m
+v=2.5//Clearance volume is 2.5% of the swept volume. But in textbook it is given wrong as 25%
+CO=19.7//Percentage of CO gas
+H2=28.8//Percentage of H2 gas
+CO2=14.4//Percentage of CO2 gas
+N2=37.1//Percentage of N2 gas
+x=0.875//Total mixture at N.T.P admitted per suction stroke is 0.875 of the total volume behind the piston at the end of the stroke
+tn=35//Thermal efficiency in percent
+CVH2=13200//Calorific value of H2 per kg in kcal
+CVC=2540//Calorific value of carbon burning from CO to CO2 in kcal/kg
+de=1.293//Density of air in kg/m^3
+mC=12//Molecular weight of carbon
+mO2=32//Molecular weight of O2
+mH2=2//Molecular weight of H2
+mCO=28//Molecular weight of CO
+
+//Calculations
+a=((100/21)*((CO2/100)+((CO/2)/100)))//Air per cu.m of gas in cu.m
+Vm=(a+1)//Volume of mixture per cu.m of gas in cu.m
+Vs=((3.14/4)*d^2*L)//Swept volume in cu.m
+Vc=(Vs*v)/100//Clearance volume in cu.m
+V=Vc+Vs//Total volume in cu.m
+VC=V*x//Volume of charge admitted per stroke in cu.m
+VM=VC*(N/2)//Charge volume per minute in cu.m
+VG=(VM/Vm)//cu.m of gas per minute
+vH2=(VG*(H2/100))//Volume of H2 per minute in cu.m
+vCO=(VG*(CO/100))//Volume of CO per minute in cu.m
+CVH2cum=(mH2*CVH2)/(vH2*1000)//Calorific value of H2 per cu.m in kcal
+CVCO=(CVC*(2*mC)/(2*mCO))//Calorific value of CO per kg in kcal
+CVCOcum=(mCO*CVCO)/(vH2*1000)//Calorific value of CO per cu.m in kcal
+qH2=(16.09*CVH2cum)//Heat in charge due to H2 in kcal
+qCO=(11*CVCOcum)//Heat in charge due to CO in kcal
+qt=(qH2+qCO)//Heat supplied per minute in kcal
+qu=(qt*(tn/100))//Heat utilised in kcal
+hp=(qu*427)/4500//H.P developed
+
+//Output
+printf('Maximum horse power that can be developed is %3.1f H.P',hp)
|