diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /215/CH11 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '215/CH11')
-rwxr-xr-x | 215/CH11/EX11.1/ex11_1.sce | 27 | ||||
-rwxr-xr-x | 215/CH11/EX11.2/Figure11_21.jpg | bin | 0 -> 50085 bytes | |||
-rwxr-xr-x | 215/CH11/EX11.2/Figure11_22.jpg | bin | 0 -> 65046 bytes | |||
-rwxr-xr-x | 215/CH11/EX11.2/ex11_2.sce | 29 | ||||
-rwxr-xr-x | 215/CH11/EX11.3/ex11_3.sce | 11 | ||||
-rwxr-xr-x | 215/CH11/EX11.4/Figure11_41.jpg | bin | 0 -> 123088 bytes | |||
-rwxr-xr-x | 215/CH11/EX11.4/Figure11_42.jpg | bin | 0 -> 102372 bytes | |||
-rwxr-xr-x | 215/CH11/EX11.4/ex11_4.sce | 21 | ||||
-rwxr-xr-x | 215/CH11/EX11.6/ex11_6.sce | 9 | ||||
-rwxr-xr-x | 215/CH11/EX11.7/ex11_7.sce | 10 | ||||
-rwxr-xr-x | 215/CH11/EX11.8/ex11_8.sce | 26 | ||||
-rwxr-xr-x | 215/CH11/EX11.9/ex11_9.sce | 34 |
12 files changed, 167 insertions, 0 deletions
diff --git a/215/CH11/EX11.1/ex11_1.sce b/215/CH11/EX11.1/ex11_1.sce new file mode 100755 index 000000000..57ef313b2 --- /dev/null +++ b/215/CH11/EX11.1/ex11_1.sce @@ -0,0 +1,27 @@ +clc
+//Example 11.1
+//Calculate the powerr absorbed by capacitor and resistor
+printf("Given")
+disp('Capacitor 5uF, Resistor 200 ohm, Voltage source is 40+60*u(t)')
+C=5*10^-6;R=200;
+//For t<0 the value of u(t) is zero hence at t=0- the value of voltage is 40V
+//For t=0+ the voltage is 100V
+//At t=0+ the capacitor cannot charge instantaneously hence resistor voltage is 60V
+disp('For t=0+')
+VR=60;
+i0=VR/R
+T=R*C
+t=1.2*10^-3
+disp('The value of current is i(t)=i0*exp(-t/T)')
+ival=i0*exp(-t/T)
+printf("Value of resistor current at 1.2ms=%3.2f mA \n",ival*10^3)
+//Let PR be the power absorbed by the resistor
+PR=ival^2*R
+printf("Value of resistive power at 1.2ms=%3.2f W \n",PR)
+//Out of the 100V available at t>0 the voltage across the capacitor is
+disp('vC(t)=100-60*exp(-t/T)')
+vCval=100-60*exp(-t/T)
+printf("Value of capacitor voltage at 1.2ms=%3.2f V \n",vCval)
+//Let PC be the power absorbed by the capacitor
+PC=ival*vCval
+printf("Value of capacitive power at 1.2ms=%3.2f W \n",PC)
\ No newline at end of file diff --git a/215/CH11/EX11.2/Figure11_21.jpg b/215/CH11/EX11.2/Figure11_21.jpg Binary files differnew file mode 100755 index 000000000..9d428ea12 --- /dev/null +++ b/215/CH11/EX11.2/Figure11_21.jpg diff --git a/215/CH11/EX11.2/Figure11_22.jpg b/215/CH11/EX11.2/Figure11_22.jpg Binary files differnew file mode 100755 index 000000000..64962b856 --- /dev/null +++ b/215/CH11/EX11.2/Figure11_22.jpg diff --git a/215/CH11/EX11.2/ex11_2.sce b/215/CH11/EX11.2/ex11_2.sce new file mode 100755 index 000000000..d9afdb0dd --- /dev/null +++ b/215/CH11/EX11.2/ex11_2.sce @@ -0,0 +1,29 @@ +clc
+//Example 11.2
+//Calculate the average power
+printf("Given")
+disp('v=4*cos(%pi/6*t), V=4(0 deg), Z=2(60 deg)')
+Vamp=4;Vang=0;Zamp=2;Zang=60;
+//Let I be the phasor current
+Iamp=Vamp/Zamp
+Iang=Vang-Zang
+P=0.5*Vamp*Zamp*cos((Zang*%pi)/180)
+printf("P=%d W \n",P);
+t=-1:1:15
+t1=-3:1:12
+v=Vamp*cos(%pi/6*t)
+//i=2*cos((%pi/6)*t-(%pi/3))
+i=Iamp*cos(%pi/6*t+((Iang*%pi)/180))
+figure
+a= gca ();
+plot (t,v,t,i)
+xtitle ('v,i vs t' ,'t' ,'v,i');
+a. thickness = 2;
+//Instantaneous power p=v*i
+//On solving
+p=2+4*cos(%pi/3*t+((Iang*%pi)/180))
+figure
+a= gca ();
+plot (t,p)
+xtitle ('p vs t' ,'t' ,'p');
+a. thickness = 2;
diff --git a/215/CH11/EX11.3/ex11_3.sce b/215/CH11/EX11.3/ex11_3.sce new file mode 100755 index 000000000..4fb84d381 --- /dev/null +++ b/215/CH11/EX11.3/ex11_3.sce @@ -0,0 +1,11 @@ +clc
+//Example 11.3
+//Calculate the Average Power
+printf("Given")
+disp('ZL=8-i*11 ohm, I=5(20 deg)A')
+R=8;Iamp=5;
+//We need to calculate the average power
+//In the calculation of average power the resistance part of impedace only occurs
+//Let P be the average power
+P=0.5*Iamp^2*R
+printf("Average Power=%d W \n",P)
\ No newline at end of file diff --git a/215/CH11/EX11.4/Figure11_41.jpg b/215/CH11/EX11.4/Figure11_41.jpg Binary files differnew file mode 100755 index 000000000..626b2974f --- /dev/null +++ b/215/CH11/EX11.4/Figure11_41.jpg diff --git a/215/CH11/EX11.4/Figure11_42.jpg b/215/CH11/EX11.4/Figure11_42.jpg Binary files differnew file mode 100755 index 000000000..47abc9048 --- /dev/null +++ b/215/CH11/EX11.4/Figure11_42.jpg diff --git a/215/CH11/EX11.4/ex11_4.sce b/215/CH11/EX11.4/ex11_4.sce new file mode 100755 index 000000000..d51e61522 --- /dev/null +++ b/215/CH11/EX11.4/ex11_4.sce @@ -0,0 +1,21 @@ +clc
+//Example 11.4
+//Calculate the Average power absorbed and average power supplied by source
+//From figure 11.6
+//By applying mesh analysis
+I1mag=11.18;I1ang=-63.43;I2mag=7.071;I2ang=-45;R=2;Vleft=20;Vright=10;
+//Current through 2 ohm resistor
+printf("I1-I2=%d(%d ang) A \n",5,-90)
+//Average power absorbed by resistor
+PR=0.5*5^2*R
+printf("Average power absorbed by resistor=%d W \n",PR)
+//Power supplied by left source
+Pleft=0.5*Vleft*I1mag*cos(0-I1ang*%pi/180)
+//Power supplied by right source
+Pright=0.5*Vright*I2mag*cos(0+I2ang*%pi/180)
+printf("Power supplied by sources \t Pleft=%d W \t Pright=%3.1f W",Pleft,Pright);
+
+
+
+
+
diff --git a/215/CH11/EX11.6/ex11_6.sce b/215/CH11/EX11.6/ex11_6.sce new file mode 100755 index 000000000..dc3252ccd --- /dev/null +++ b/215/CH11/EX11.6/ex11_6.sce @@ -0,0 +1,9 @@ +clc
+//Example 11.6
+//Calculate the Average power
+printf("Given")
+disp('Resistor value is 4 ohm, i1=2*cos(10t)-3*cos(20t) A')
+R=4;im1=2;im2=-3;
+//Let P be the average power delievered
+P=0.5*im1^2*R+0.5*im2^2*R
+printf("Average power=%d W",P)
diff --git a/215/CH11/EX11.7/ex11_7.sce b/215/CH11/EX11.7/ex11_7.sce new file mode 100755 index 000000000..d64e258b5 --- /dev/null +++ b/215/CH11/EX11.7/ex11_7.sce @@ -0,0 +1,10 @@ +clc
+//Example 11.7
+//Calculate the Average power
+printf("Given")
+disp('Resistor value is 4 ohm, i2=2*cos(10t)-3*cos(10t) A')
+disp('On solving we get i2=-cos(10t)')
+R=4;im=-1
+//Let P be the average power delievered
+P=0.5*im^2*R
+printf("Average power=%d W",P)
\ No newline at end of file diff --git a/215/CH11/EX11.8/ex11_8.sce b/215/CH11/EX11.8/ex11_8.sce new file mode 100755 index 000000000..4e381382f --- /dev/null +++ b/215/CH11/EX11.8/ex11_8.sce @@ -0,0 +1,26 @@ +clc
+//Example 11.8
+//Calculate average power, power supplied by source and the power factor
+printf("Given")
+disp('Voltage source is 60 V,Load values are 2-i ohm and 1+5i ohm')
+Vamp=60;Vang=0;
+//Let Z be the cobined resistance
+Z=2-%i+1+5*%i
+[Zmag Zph]=polar(Z)
+Isamp=Vamp/Zmag;
+Isang=Vang-Zph;
+printf("Ieff=%3.0f A rms and angle of Is is %3.2f degree\n",Isamp,(Isang*180)/%pi);
+//Let Pupper be the power delievered to the upper load
+Rtop=2;
+Pupper=Isamp^2*Rtop
+printf("Average Power delievered to the top load=%3.0f W \n",Pupper)
+//Let Plower be the power delievered to the lower load
+Rright=1;
+Plower=Isamp^2*Rright
+printf("Average Power delievered to the right load=%3.0f W \n",Plower)
+//Let Papp be the apparent power
+Papp=Vamp*Isamp
+printf("Apparent Power =%3.0f VA \n",Papp)
+//Let pf be the power factor
+pf=(Pupper+Plower)/Papp
+printf("power factor=%3.1f lag \n",pf)
\ No newline at end of file diff --git a/215/CH11/EX11.9/ex11_9.sce b/215/CH11/EX11.9/ex11_9.sce new file mode 100755 index 000000000..e2aad971b --- /dev/null +++ b/215/CH11/EX11.9/ex11_9.sce @@ -0,0 +1,34 @@ +clc
+//Example 11.9
+printf("Given")
+disp('Power of induction motor=50kW ,power factor is 0.8 lag,Source voltage is 230V')
+disp('The wish of the consumer is to raise the power factor to 0.95 lag')
+//Let S1 be the complex power supplied to the indiction motor
+V=230;Pmag=50*10^3;pf=0.8;
+Pang=(acos(pf)*180)/%pi
+S1mag=Pmag/pf
+S1ph=Pang
+x=S1mag * cos (( Pang * %pi ) /180) ;
+y=S1mag * sin (( Pang * %pi ) /180) ;
+z= complex (x,y)
+disp(z ,'S1=')
+//To achieve a power factor of 0.95
+pf1=0.95
+//Now the total complex power be S
+P1ang=(acos(pf1)*180)/%pi
+Smag=Pmag/pf1
+Sph=P1ang
+a=Smag * cos (( P1ang * %pi ) /180) ;
+b=Smag * sin (( P1ang * %pi ) /180) ;
+c= complex (a,b)
+disp(c,'S=')
+//Let S2 be the complex power drawn by the corrective load
+S2=c-z
+disp(S2,'S2=')
+disp('Let a phase angle of voltage source selected be 0 degree')
+//Let I2 be the current
+I2=-S2/V
+//Let Z2 be the impedance of corrective load
+Z2=V/I2
+disp(Z2,'Z2=')
+
|