diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /2015 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '2015')
88 files changed, 1973 insertions, 0 deletions
diff --git a/2015/CH1/EX1.1/1_1.sce b/2015/CH1/EX1.1/1_1.sce new file mode 100755 index 000000000..23105c915 --- /dev/null +++ b/2015/CH1/EX1.1/1_1.sce @@ -0,0 +1,28 @@ +
+clc
+//initialisation of variables
+clear
+t1=300 //K
+t3=1900 //K
+r=15
+g=1.4
+p1=1 //bar
+cp=1.005
+cv=0.718
+R=0.287 //kj/kgk
+//CALCULATIONS
+t2=t1*r^(g-1)
+p2=p1*r^(g)
+p3=p2
+t4=t3*0.143^(g-1)
+p4=p3*(0.143)^(g)
+qs=cp*(t3-t2)
+qr1=cv*(t4-t1)
+wo=qs-qr1
+ef=wo/qs
+v1=R*t1/p1
+v2=v1/r
+sv=v1-v2
+cl=v2/(v1-v2)
+mep=wo/sv
+printf('mean effective pressure is %2f',mep)
diff --git a/2015/CH1/EX1.2/1_2.sce b/2015/CH1/EX1.2/1_2.sce new file mode 100755 index 000000000..ab6be9388 --- /dev/null +++ b/2015/CH1/EX1.2/1_2.sce @@ -0,0 +1,11 @@ +clc
+//initialisation of variables
+tl=279 //k
+ta=294 //k
+th=393 //k
+re=0.14
+//CALCULATIONS
+cop=(tl*(th-ta))/((ta-tl)*th)
+acop=cop*re
+//RESULTS
+printf('actual COP is %2f',acop)
diff --git a/2015/CH1/EX1.3/1_3.sce b/2015/CH1/EX1.3/1_3.sce new file mode 100755 index 000000000..87dc23c29 --- /dev/null +++ b/2015/CH1/EX1.3/1_3.sce @@ -0,0 +1,12 @@ +clc
+//initailisation variables
+d=20 //cm
+l=25 //cm
+cv=1400 //cc
+g=1.4
+//CALCULATIONS
+sv=(22/7*d^2*l)/4
+tv=sv+cv
+r=tv/cv
+e=1-1/(r)^(g-1)
+printf('otto efficiency is %2f',e)
diff --git a/2015/CH1/EX1.4/1_4.sce b/2015/CH1/EX1.4/1_4.sce new file mode 100755 index 000000000..28b769fe3 --- /dev/null +++ b/2015/CH1/EX1.4/1_4.sce @@ -0,0 +1,26 @@ +
+clc
+//initialisation of variables
+t1=305 //K
+t3=1920 //K
+r=7
+g=1.4
+p1=1 //bar
+cv=0.718
+R=0.287 //kj/kgk
+//CALCULATIONS
+t2=t1*r^(g-1)
+p2=p1*r^(g)
+p3=p2*(t3/t2)
+t4=t3*1/r^(g-1)
+p4=p3*(1/r)^(g)
+qs=cv*(t3-t2)
+qr1=cv*(t4-t1)
+wo=qs-qr1
+ef=wo/qs
+v1=R*t1/p1
+v2=v1/r
+sv=v1-v2
+cl=v2/(v1-v2)
+mep=wo/sv
+printf('mean effective pressure is %2f',mep)
diff --git a/2015/CH1/EX1.5/1_5.sce b/2015/CH1/EX1.5/1_5.sce new file mode 100755 index 000000000..908a19752 --- /dev/null +++ b/2015/CH1/EX1.5/1_5.sce @@ -0,0 +1,9 @@ +clc
+//initialisation of variables
+r=14
+g=1.4
+x=1.78 //x=v3/v2
+//CALCULATIONS
+oef=1-(1/14)^(g-1)
+def=1-((1/(14)^(g)*1.4))*((x^(g) -1)/(x-1))
+printf('otto efficiency is %2f',oef)
diff --git a/2015/CH1/EX1.6/1_6.sce b/2015/CH1/EX1.6/1_6.sce new file mode 100755 index 000000000..4b1bd0c1a --- /dev/null +++ b/2015/CH1/EX1.6/1_6.sce @@ -0,0 +1,40 @@ +clc
+//initialisation of variables
+t1=300 //temparature in k
+r=10 //compression ratio
+p1=1 //pressure in bar
+g=1.4
+p3=40 //pressure in bar
+x=0.166 //x=v4/v5=t4/v1=(v4/v2)*(v2/v1)
+t4=2000 //temparature in k
+p4=40 //pressure in bar
+cv=0.718 //calorific value(const volume)
+cp=1.005 //calorific value(const preussure)
+R=0.287
+r=10
+//CALCULATIONS
+t2=(t1*(r)^(g-1))
+p2=(p1*(r)^(g))
+t3=t2*(p3/p2)
+t5=t4*(x)^(g-1)
+p5=p4*(x)^(g)
+q23=cv*(t3-t2)
+q34=cp*(t4-t3)
+q44=cv*(t5-t1)
+nwd=q23+q34-q44
+ef=nwd/(q23+q34)
+v1=(R*t1)/(p1*100)
+v2=v1/r
+mep=nwd/(v1-v2)
+effo=1-(1/(r)^(g-1))
+v3=(R*t4)/(p2*100)
+cr=v3/v2
+effd=1-((1/(r)^(g-1))*(1/g)*((cr)^(g)-1)/(cr-1))
+//RESULTS
+printf('temparature 2,3,5 and pressure 2,5 are %2fk,%2fk,%2fk and %2fbar,%2fbar',t2,t3,t5,p2,p5)
+printf('\nheat supplied at const volume is %2fkj/kg/cycle',q23)
+printf('\nheat supplied at const pressure is %2fkj/kg/cycle',q34)
+printf('\nnet work output is %2f',nwd)
+printf('\nefficiency is %2f',ef)
+printf('\notto efficiency is %2f',effo)
+printf('\ndiesel efficiency is %2f',effd)
diff --git a/2015/CH1/EX1.7/1_7.sce b/2015/CH1/EX1.7/1_7.sce new file mode 100755 index 000000000..268f3ad7c --- /dev/null +++ b/2015/CH1/EX1.7/1_7.sce @@ -0,0 +1,24 @@ +clc
+//initialisation of variables
+t1=295 //temparature in k
+r=5.25
+g=1.4
+t3=923 //temparature in k
+tc=511 //temparature in k
+tt=633 //temparature in k
+//CALCULATIONS
+t2=t1*(r)^((g-1)/g)
+t4=t3/(r)^((g-1)/g)
+effb=1-((t4-t1)/(t3-t2))
+wt=t3-t4
+wc=t2-t1
+wr1=(1-(t2-t1)/(t3-t4))
+ctwr1=(t2-t1)/(t3-t4)
+effc=(t2-t1)/(tc-t1)
+efft=(t3-tt)/(t3-t4)
+effbr=1-((tt-t1)/(t3-tc))
+wr2=1-((tc-t1)/(t3-tt))
+ctwr2=(tc-t1)/(t3-tt)
+//RESULTS
+printf('work ratio and compressed turbine wrok ratio in first part of problem are %2f and %2f',wr1,ctwr1)
+printf('\nwork ratio and compressed turbine wrok ratio in second part of problem are %2f and %2f',wr2,ctwr2)
diff --git a/2015/CH4/EX4.1/4_1.sce b/2015/CH4/EX4.1/4_1.sce new file mode 100755 index 000000000..4778cfc12 --- /dev/null +++ b/2015/CH4/EX4.1/4_1.sce @@ -0,0 +1,26 @@ +clc
+//initialisation of variables
+t1=523.3 //temparature under p1=40 bar in k
+t2=314.5 //temparature under p2=0.80 bar in k
+s4=2.797 //entropy under p1=40 bar
+s1=6.070 //entropy under p1=40 bar
+sf3=0.593 //entropy under p2=0.08 bar
+sfg3=7.634 //entropy under p2=0.08 bar
+h4=1087 //kj/kg
+h1=2801 //kj/kg
+hf3=174 //kj/kg under p2=0.08bar
+hfg3=2402 //kj/kg under p2=0.08bar
+//CALCULATIONS
+eff=(t1-t2)/t1
+x3=(s4-sf3)/sfg3
+x2=(s1-sf3)/sfg3
+h3=hf3+(x3*hfg3)
+h2=hf3+(x2*hfg3)
+wt=h1-h2
+cw=h4-h3
+wr=(wt-cw)/wt
+//RESULTS
+printf('efficiency of carnot cycle is %2f',eff)
+printf('\nquality is %2f',x3)
+printf('\ngross work of expansion is %2f',wt)
+printf('\nwork ratio is %2f',wr)
diff --git a/2015/CH4/EX4.10/4_10.sce b/2015/CH4/EX4.10/4_10.sce new file mode 100755 index 000000000..65d13f0c8 --- /dev/null +++ b/2015/CH4/EX4.10/4_10.sce @@ -0,0 +1,40 @@ +clc
+//no 4.9 printed in the book....print mistake
+//initialisation of variables
+//for the mercury cycle
+ha=360.025 //kj/kg
+sa=0.50625 //kj/kgk
+sfb=0.0961 //kj/kgk
+sfgb=0.5334 //kj/kgk
+hfb=38.05 //kj/kg
+hfgb=294.02 //kj/kg
+//for the steam cycle
+h5=2801 //kj/kg
+h3=163 //kj/kg
+hb=264.2 //kj/kg
+h1=2963 //kj/kg
+s1=6.364 //kj/kgk
+sf2=0.559 //kj/kgk
+sfg2=7.715 //kj/kgk
+qs=3916.2 //kj/kg
+hf2=163 //kj/kg
+hfg2=2409 //kj/kg
+//CALCULATIONS
+xb=(sa-sfb)/sfgb
+hb=hfb+(xb*hfgb)
+m1=(h5-h3)/(hb-hfb)
+x2=(s1-sf2)/sfg2
+h2=hf2+(x2*hfg2)
+wn=m1*(ha-hb)+(h1-h2)
+teff1=wn/qs
+hx=ha-(0.8*(ha-hb))
+hy=h1-(0.8*(h1-h2))
+m2=(h5-h3)/(hx-hfb)
+wo=m2*(ha-hx)+(h1-hy)
+qs=m2*(ha-hfb)+(h1-h5)
+teff2=wo/qs
+//RESULTS
+printf('thermal efficiency of steam cycle is %2f',teff1)
+printf('\nwork output of plant is %2fkj/kg',wo)
+printf('\nheat supplied is %2fkj/kg',qs)
+printf('\nthermal efficiency of the plant is %2f',teff2)
diff --git a/2015/CH4/EX4.11/4_11.sce b/2015/CH4/EX4.11/4_11.sce new file mode 100755 index 000000000..3ed39b0a6 --- /dev/null +++ b/2015/CH4/EX4.11/4_11.sce @@ -0,0 +1,17 @@ +clc
+//initialisation of variables
+ha=360.025 //kj/kg
+hfb=38.05 //kj/kg
+hb=264.2 //kj/kg
+h1=2963 //kj/kg
+h2=1974.6 //kj/kg
+h3=163 //kj/kg
+h4=1087 //kj/kg
+h=1714 //kj/kg
+//CALCULATIONS
+m=h/(hb-hfb)
+wo=7.58*(ha-hb)+(h1-h2)
+qs=7.58*(ha-hfb)+(h4-h3)+(h1-h)
+teff=(wo/qs)
+//RESULTS
+printf('thermal efficiency is %2f',teff)
diff --git a/2015/CH4/EX4.12/4_12.sce b/2015/CH4/EX4.12/4_12.sce new file mode 100755 index 000000000..8c3edbf05 --- /dev/null +++ b/2015/CH4/EX4.12/4_12.sce @@ -0,0 +1,30 @@ +clc
+//initialisation of variables
+ha=359.11 //under 10 bar pressure in kj/kg
+sa=0.5089 //under 10 bar pressure in kj/kgk
+sfb=0.0870 //under 0.08 bar pressure in kj/kgk
+sfgb=0.57 //under 0.08 bar pressure in kj/kgk
+hfb=33.21 //under 0.08 bar pressure in kj/kg
+hfgb=294.7 //under 0.08 bar pressure in kj/kg
+h=1840.5 //kj/kg
+h1=3350 //under 25 bar pressure and 723 k in kj/kg
+s1=7.183 //under 25 bar pressure and 723 k in kj/kgk
+sf2=0.476 //under 25 bar pressure and 723 k in kj/kgk
+sfg2=7.918 //under 25 bar pressure and 723 k in kj/kgk
+hf2=138 //under 25 bar pressure and 723 ki n kj/kg
+hfg2=2423 //under 25 bar pressure and 723 k in kj/kg
+h5=964 //kj/kg
+//CALCULATIONS
+xb=(sa-sfb)/(sfgb)
+hb=hfb+(xb*hfgb)
+m=h/(hb-hfb)
+x2=(s1-sf2)/sfg2
+h2=hf2+(x2*hfg2)
+wo=8.47*(ha-hb)+(h1-h2)
+qs=8.47*(ha-hfb)+(h5-138)+(h1-2802.5)
+teff=(wo/qs)*100
+//RESULTS
+printf('work output is %2f',wo) //textbook ans slightly varies
+printf('\nheat supplied to the plant is %2f',qs)
+printf('\nthermal efficiency is %2f',teff)
+
diff --git a/2015/CH4/EX4.2/4_2.sce b/2015/CH4/EX4.2/4_2.sce new file mode 100755 index 000000000..f20514219 --- /dev/null +++ b/2015/CH4/EX4.2/4_2.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+v=0.1008*10^-2
+p1=40 //pressure in bar
+p2=0.08 //pressure in bar
+wt=903.8 //kj/kg
+wp=4.02 //kj/kg
+h1=2801 //kj/kg
+h3=174 //kj/kg
+//CALCULATIONS
+pw=v*(p1-p2)
+wn=wt-wp
+qs=h1-(h3+wp)
+reff=wn/qs
+wr=wn/wt
+//RESULTS
+printf('heat supplied is %2f',qs)
+printf('\nrankine efficiency and work ratio is %2f and %2f',reff,wr)
diff --git a/2015/CH4/EX4.3.a/4_3a.sce b/2015/CH4/EX4.3.a/4_3a.sce new file mode 100755 index 000000000..77d2b0c9f --- /dev/null +++ b/2015/CH4/EX4.3.a/4_3a.sce @@ -0,0 +1,23 @@ +clc
+//initialisation of variables
+h1=2801 //kj/kg
+h3=867.5 //kj/kg
+h4=1087 //kj/kg
+ieff=0.50 //isentropic efficiency of compression
+wt=903.8 //kj/kg
+feff=0.75 //furnace efficiency
+ieeff=0.85//isentropic expansion efficiency
+//CALCULATIONS
+hx=((h4-h3)/0.5)+867.5
+wr=hx-h3
+atu=ieeff*wt
+hs=h1-hx
+nwo=atu-wr
+eff=nwo/hs
+oeff=eff*feff
+wrt=nwo/atu
+ssc=3600/nwo
+hr=3600/oeff
+//RESULTS
+printf('steam and heat rates are %2fkg/kwh and %2fkj/kwh',ssc,hr)
+
diff --git a/2015/CH4/EX4.3.b/4_3b.sce b/2015/CH4/EX4.3.b/4_3b.sce new file mode 100755 index 000000000..6b87bd78c --- /dev/null +++ b/2015/CH4/EX4.3.b/4_3b.sce @@ -0,0 +1,23 @@ +clc
+//initialisation of variables
+h3=174 //kj/kg
+h4=178.02 //kj/kg
+ieff=0.50 //isentropic efficiency of compression
+wt=903.8 //kj/kg
+feff=0.75 //furnace efficiency
+ieeff=0.85//isentropic expansion efficiency
+wp=4.02 //kj/kg
+h1=2801 //kj/kg
+//CALCULATIONS
+hx=((h4-h3)/0.5)+174
+wr=wp/ieff
+atu=ieeff*wt
+hs=h1-hx
+nwo=atu-wr
+eff=nwo/hs
+oeff=eff*feff
+wrt=nwo/atu
+ssc=3600/nwo
+hr=3600/oeff
+//RESULTS
+printf('steam and heat rates are %2fkg/kwh and %2fkj/kwh',ssc,hr)
diff --git a/2015/CH4/EX4.4/4_4.sce b/2015/CH4/EX4.4/4_4.sce new file mode 100755 index 000000000..c3ed3dc43 --- /dev/null +++ b/2015/CH4/EX4.4/4_4.sce @@ -0,0 +1,33 @@ +clc
+//initialisation of variables
+h1=3221.6 //kj/kg
+s1=7.399 //kj/kgk
+sf2=0.521 //kj/kgk
+sfg2=7.808 //kj/kgk
+hf2=152 //kj/kg
+hfg2=2415 //kj/kg
+t1=653 //temp in k
+t2=309.2 //temp in k
+v=0.1006*10^-2
+p1=10 //pressure in bar
+p2=0.06 //pressure in bar
+h3=152 //kj/kg
+x=110
+y=639.7
+z=610
+a=2015
+//CALCULATIONS
+x2=(s1-sf2)/sfg2
+h2=hf2+(x2*hfg2)
+wo=h1-h2
+hs=h1-h3
+theff=wo/hs
+sr1=3600/wo
+ceff=(t1-t2)/t1
+wp=v*(p1-p2)
+h4=h3+wp
+reff=(x+y)/(z+a)
+sr2=3600/(x+y)
+hr=3600/reff
+printf('steam rate and carnot efficiency are %2fkg/kwh and %2f',sr1,ceff)
+printf('\nsteam rate and heat rate are %2fkg/kwh and %2f',sr2,hr)
diff --git a/2015/CH4/EX4.5/4_5.sce b/2015/CH4/EX4.5/4_5.sce new file mode 100755 index 000000000..6c9c76e65 --- /dev/null +++ b/2015/CH4/EX4.5/4_5.sce @@ -0,0 +1,37 @@ +clc
+//initialisation of variables
+h1=3157 //kj/kg
+h2=2725 //kj/kg
+h3=3299 //kj/kg
+h4=2257.9 //kj/kg
+h5=1940.3 //kj/kg
+h6=152 //kj/kg
+x4=0.872
+x5=0.7405
+v=0.1006*10^-2 //volume
+p1=100 //pressure in bar
+p2=0.06 //pressure in bar
+//CALCULATIONS
+wp=v*(p1-p2)*100
+h7=h6+wp
+wt1=h1-h5
+wn1=wt1-wp
+qs1=h1-h7
+wr1=wn1/wt1
+reff=wn1/qs1
+//reheat cycle
+wt2=(h1-h2)+(h3-h4)
+wn2=wt2-wp
+wr2=wn2/wt2
+qs2=h1-h7+h3-h2
+teff=wn2/qs2
+pd=wn2/3600
+pdi=(pd-0.3352)/0.3352
+df=1-pdi
+//RESULTS
+printf('work ratio and rakine efficiency of rankine cycle is %2f and %2f',wr1,reff)
+disp('dryness fraction of steam is 0.872')
+printf('\nheat supplied is %2f',qs1)
+printf('\npower developed is %2f',pd)
+printf('\npower developed per kg of steam is %2f',pdi)
+
diff --git a/2015/CH4/EX4.6/4_6.sce b/2015/CH4/EX4.6/4_6.sce new file mode 100755 index 000000000..a30ab71af --- /dev/null +++ b/2015/CH4/EX4.6/4_6.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+h1=2979 //kj/kg
+h2=2504.3 //kj/kg
+h3=1987.4 //kj/kg
+h4=152 //kj/kg
+h6=561 //kj/kg
+//CALCULATIONS
+m=(h6-h4)/(h2-h4)
+wo=(h1-h2)+(1-m)*(h2-h3)
+qs=h1-h6
+teff=wo/qs
+ssc=3600/wo
+//RESULTS
+printf('work output is %2fkj/kg',wo)
+printf('\nheat supplied is %2fkj/kg',qs)
+printf('\nthermal efficiency is %2f',teff)
+printf('\nspecific steam consumption is %2fkg/kwh',ssc)
diff --git a/2015/CH4/EX4.7.a/4_7a.sce b/2015/CH4/EX4.7.a/4_7a.sce new file mode 100755 index 000000000..a9a3d973f --- /dev/null +++ b/2015/CH4/EX4.7.a/4_7a.sce @@ -0,0 +1,22 @@ +clc
+//initialisation of variables
+h1=3222.5 //kj/kg
+h2=3127.5 //kj/kg
+h3=2692.5 //kj/kg
+h4=2406.7 //kj/kg
+h5=360 //kj/kg
+h6=360 //kj/kg
+h7=584 //kj/kg
+h8=962 //kj/kg
+//CALCULATIONS
+m1=(h8-h7)/(h2-h7)
+m2=((1-m1)*(h7-h5))/(h3-h5)
+wo=(h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4)
+qs=h1-h8
+teff=wo/qs
+sr=3600/wo
+//RESULTS
+printf('work output is %2fkj/kg',wo)
+printf('\nheat supplied is %2fkj/kg',qs)
+printf('\nthermal efficiency is %2f',teff)
+printf('\nsteam rate is %2fkg/kwh',sr)
diff --git a/2015/CH4/EX4.7.b/4_7b.sce b/2015/CH4/EX4.7.b/4_7b.sce new file mode 100755 index 000000000..d1c3e6bc0 --- /dev/null +++ b/2015/CH4/EX4.7.b/4_7b.sce @@ -0,0 +1,22 @@ +clc
+//initialisation of variables
+h1=3222.5 //kj/kg
+h2=3127.5 //kj/kg
+h3=2692.5 //kj/kg
+h4=2406.7 //kj/kg
+h5=360 //kj/kg
+h6=360 //kj/kg
+h7=584 //kj/kg
+h8=962 //kj/kg
+//CALCULATIONS
+m1=(h8-h7)/(h2-h8)
+m2=((h7-h6)-m1*(h8-h7))/(h3-h7)
+wo=(h1-h2)+(1-m1)*(h2-h3)+(1-m1-m2)*(h3-h4)
+qs=h1-h8
+teff=wo/qs
+sr=3600/wo
+//RESULTS
+printf('work output is %2fkj/kg',wo)
+printf('\nheat supplied is %2fkj/kg',qs)
+printf('\nthermal efficiency is %2f',teff)
+printf('\nsteam rate is %2fkg/kwh',sr)
diff --git a/2015/CH4/EX4.8/4_8.sce b/2015/CH4/EX4.8/4_8.sce new file mode 100755 index 000000000..58fd68ffc --- /dev/null +++ b/2015/CH4/EX4.8/4_8.sce @@ -0,0 +1,23 @@ +clc
+//initialisation of variables
+h1=2990 //kj/kg
+h2=2710 //kj/kg
+h3=2325 //kj/kg
+h4=152 //kj/kg
+h5=152 //kj/kg
+h7=505 //kj/kg
+wo=612 //kj/kg
+qs=2485 //kj/kg
+//CALCULATIONS
+m=(h7-h4)/(h2-h4)
+mph=m*30000
+ip=((h1-h2)+(1-m)*(h2-h3))*(30000/3600)
+teff=wo/qs
+//when there is no feeding
+eff=(h1-h3)/(h1-h4)
+sc=(3600/(h1-h3))*ip
+//RESULTS
+printf('internal powers is %2fkw',ip)
+printf('\nthermal efficiency when feeding is there is %2f',teff)
+printf('\nwhen there is no feeding,thermal efficiency is %2f',eff)
+printf('\nsteam consumption is %2fkg/h',sc)
diff --git a/2015/CH5/EX5.1/5_1.sce b/2015/CH5/EX5.1/5_1.sce new file mode 100755 index 000000000..400298e6b --- /dev/null +++ b/2015/CH5/EX5.1/5_1.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+c=300 //velocity in m/s
+cp=1.005 //kj/kgk
+g=1.4
+t=478 //static temparature in k
+p=15 //static pressure in bar
+//CALCULATIONS
+t0=t+((c)^2/(2*cp*1000))
+x=(t0/t)^(g/(g-1))*p
+//RESULTS
+printf('stagnation temparature and stagnation pressure is %2fk and %2fbar',t0,x)
diff --git a/2015/CH5/EX5.10/5_10.sce b/2015/CH5/EX5.10/5_10.sce new file mode 100755 index 000000000..fd3a11b66 --- /dev/null +++ b/2015/CH5/EX5.10/5_10.sce @@ -0,0 +1,31 @@ +clc
+//initialisation of variables
+h1=2724.7 //kj/kg under 3 bar pressure
+s1=6.991 //kj/kgk under 3 bar pressure
+sf2=1.530 //kj/kgk
+sfg2=5.597 //kj/kgk
+hf2=504.7 //kj/kg
+hfg2=2201.6 //kj/kg
+vg2=0.8854
+a2=3*10^-4 //area in m*m
+v1=0.6056 //m*m*m/kg
+p1=3 //bar
+p2=2 //bar
+n=1.3
+t1=406.54 //temparature in k
+ps=0.917 //bar
+v2=0.8273 //m*m*m/kg
+//CALCULATIONS
+x2=(s1-sf2)/(sfg2)
+h2=hf2+(x2*hfg2)
+v2=x2*vg2
+c2=44.72*(h1-h2)^(0.5)
+m1=a2*c2/v2
+v2=v1*(p1/p2)^(1/n)
+c3=((-2*n/n-1)*p1*v1*((p2/p1)^((n-1)/n)-1))^0.5*543.53
+m2=a2*c3/v2
+t2=t1*(p2/p1)^((n-1)/n)
+de=2/ps
+//RESULTS
+printf('mass flow rate is %2f',m2)
+printf('\ndegree of super saturation is %2f',de)
diff --git a/2015/CH5/EX5.2/5_2.sce b/2015/CH5/EX5.2/5_2.sce new file mode 100755 index 000000000..8faf72704 --- /dev/null +++ b/2015/CH5/EX5.2/5_2.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+hg=2803.4 //kj/kg
+c=300 //m/s
+sg=6.1253 //kj/kgk
+h2=2090.0 //kj/kg
+//CALCULATIONS
+h0=hg+((c)^2)/2000
+c2=44.72*(h0-h2)^0.5
+//RESULTS
+printf('total enthalpy is %2fkj/kg',h0) //textbook answer is wrong
+printf('\nfinal stream is %2fm/s',c2) //textbook answer is wrong
diff --git a/2015/CH5/EX5.3.a/5_3a.sce b/2015/CH5/EX5.3.a/5_3a.sce new file mode 100755 index 000000000..cd293f178 --- /dev/null +++ b/2015/CH5/EX5.3.a/5_3a.sce @@ -0,0 +1,17 @@ +clc
+//initialisation of variables
+R=0.2897 //kj/kgk
+g=1.4
+t1=313 //temparature in k
+p1=20 //pressure in bar
+p2=13 //pressure im bar
+cp=1.0138 //kj/kgk
+a=5*10^-4
+//CALCULATIONS
+rc=(2/(g+1))^(g/0.4)
+t2=t1*(p2/p1)^((g-1)/g)
+c2=44.72*(cp*(t1-t2))^(0.5)
+rho=p2*100/(R*t2)
+m=rho*c2*a
+//RESULTS
+printf('mass f;ow rate and velocity of air at exit are %2fkg/s and %2fkg/m*m*m',m,rho) //textbook answer slightly varies
diff --git a/2015/CH5/EX5.3.b/5_3b.sce b/2015/CH5/EX5.3.b/5_3b.sce new file mode 100755 index 000000000..386f457cd --- /dev/null +++ b/2015/CH5/EX5.3.b/5_3b.sce @@ -0,0 +1,17 @@ +clc
+//initialisation of variables
+R=0.2897 //kj/kgk
+g=1.4
+t1=313 //temparature in k
+p1=20 //pressure in bar
+p2=10.56 //pressure im bar
+cp=1.0138 //kj/kgk
+a=5*10^-4
+//CALCULATIONS
+rc=(2/(g+1))^(g/0.4)
+t2=t1*(p2/p1)^((g-1)/g)
+c2=44.72*(cp*(t1-t2))^(0.5)
+rho=p2*100/(R*t2)
+m=rho*c2*a
+//RESULTS
+printf('mass flow rate and velocity of air at exit are %2fkg/s and %2fkg/m*m*m',m,rho)
diff --git a/2015/CH5/EX5.4/5_4.sce b/2015/CH5/EX5.4/5_4.sce new file mode 100755 index 000000000..18889d7b3 --- /dev/null +++ b/2015/CH5/EX5.4/5_4.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+x=100 //x=h1-h* in kj/kg
+m=120 //mass in kg
+pi=(22/7)
+y=501.5 //y=h1-h2 in kj/kg
+v1=0.607 //volume
+v2=6.477 //volume
+//CALCULATIONS
+c1=44.72*(x)^(0.5)
+a1=m*v1/(c1*60)
+d1=(4*a1/pi)^0.5
+c2=44.72*(y)^(0.5)
+a2=m*v2/(c2*60)
+d2=(4*a2/pi)^0.5
+//RESULTS
+printf('area of cross section of throat and diameter of throat are %2fm*m and %2fm',a1,d1)
+printf('\narea of cross section at exit and diameter at exit are %2fm*m and %2fm',a2,d2)
diff --git a/2015/CH5/EX5.5/5_5.sce b/2015/CH5/EX5.5/5_5.sce new file mode 100755 index 000000000..1bb97e14b --- /dev/null +++ b/2015/CH5/EX5.5/5_5.sce @@ -0,0 +1,25 @@ +
+clc
+//initialisation of variables
+clear
+t1=593 //temparature in k
+p2=1.05 //pressure in bar
+p1=7 //pressure in bar
+cp=1.005
+p3=3.696 //pressure in bar
+r=0.287 //kj/kgk
+a=6.25*10^-4
+g= 32.2 //ft/sec^2
+R= 8.314
+//CALCULATIONS
+t2=t1*(p2/p1)^((g-1)/g)
+c2=44.72*(cp*(t1-t2))^(0.5)
+rho2=p2*100/(r*t2)
+m2=rho2*c2*a
+t3=t1*(p3/p1)^((g-1)/g)
+c3=44.72*(cp*(t1-t3))^(0.5)
+rho3=p3*100/(R*t3)
+a3=m2/(rho3*c3)
+//RESULTS
+printf('exit velocity and mass flow rate are %2fm/s and %2fkg/s',c2,m2)
+printf('\nthroat area is %2fm*m',a3)
diff --git a/2015/CH5/EX5.6/5_6.sce b/2015/CH5/EX5.6/5_6.sce new file mode 100755 index 000000000..3819dec5a --- /dev/null +++ b/2015/CH5/EX5.6/5_6.sce @@ -0,0 +1,30 @@ +
+clc
+//initialisation of variables
+clear
+g=1.4 //gamma-const value
+p1=4.5 //pressure in bar
+p3=1.1 //pressure in bar
+cp=1.005 //kj/kgk
+rho4=0.5405 //density
+rho3=0.9725 //density
+t1=1023 //temparature in k
+t2=852.16 //temparature in k
+r=0.287 //cp-cv=const value
+m=0.5 //mass
+ieff=0.85 //isentropic efficiency
+R= 8.314
+//CALCULATIONS
+p2=0.528*p1
+t2=0.833*t1
+c2=44.72*(cp*(t1-t2))^(0.5)
+rho2=p2*100/(R*t2)
+a2=m/(rho3*c2)
+t3=t2*(p3/p2)^((g-1)/g)
+t4=t2-(ieff*(t2-t3))
+c3=44.72*(cp*(t1-t4))^(0.5)
+rho3=p2*100/(R*t4)
+a3=m/(rho4*c3)
+//RESULTS
+printf('throat area is %2fm*m',a2)
+printf('\nvelocity at exit,area at exit are %2fm/s and %2fm*m',c3,a3)
diff --git a/2015/CH5/EX5.7/5_7.sce b/2015/CH5/EX5.7/5_7.sce new file mode 100755 index 000000000..9dac29138 --- /dev/null +++ b/2015/CH5/EX5.7/5_7.sce @@ -0,0 +1,22 @@ +clc
+//initialisation of variables
+p1=5 //pressure in bars
+h1=2709 //kj/kg
+h2=2649.5 //kj/kg
+v2=0.6059 //volume flowrate in m*m*m/kg
+m=2 //mass in kg
+v3=6.5098 //volume flowrate in m*m*m/kg
+h1=2714.0 //kj/kg
+h2=2649.5 //kj/kg
+h3=2247.4 //kj/kg
+eff=0.9 //efficiency
+//CALCULATIONS
+p2=0.578*p1
+c2=44.72*(h1-h2)^(0.5)
+a2=m*v2/c2
+x=eff*(h1-h3) //x=h1-h3
+c3=44.72*(x)^(0.5)
+a3=m*v3/c3
+//RESULTS
+printf('velocity and area at throat are %2fm/s and %2fm*m',c2,a2)
+printf('\nvelocity and area at exit are %2fm/s and %2fm*m',c3,a3)
diff --git a/2015/CH5/EX5.8/5_8.sce b/2015/CH5/EX5.8/5_8.sce new file mode 100755 index 000000000..5e8d5ca67 --- /dev/null +++ b/2015/CH5/EX5.8/5_8.sce @@ -0,0 +1,21 @@ +
+clc
+//initialisation of variables
+clear
+t1=323 //temp in k
+c1=300 //velocity in m/s
+c2=100 //velocity in m/s
+cp=1.005 //kj/kgk
+p1=10 //pressure in bar
+p3=14 // pressure in bar
+g= 32.2 //ft/sec^2
+//CALCULATIONS
+t2=t1+(((c1)^2)+(c2)^2)/(2*cp)
+p2=p1*(t2/t1)^(g/(g-1))
+t2=t1*(p3/p1)^((g-1)/g)
+h3=cp*t2
+x=(0.5*((c1)^2-(c2)^2))/1000 //x=h2-h1
+h1=cp*t1
+eff=(h3-h1)/(x)
+//RESULTS
+printf('diffuser efficiency is %2f',eff)
diff --git a/2015/CH5/EX5.9/5_9.sce b/2015/CH5/EX5.9/5_9.sce new file mode 100755 index 000000000..fbbafda58 --- /dev/null +++ b/2015/CH5/EX5.9/5_9.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+t1=323 //temparature in k
+t2=362.8 //temparature in k
+c1=300 //velocity in m/s
+c2=100 //velocity in m/s
+cp=1.005 //kj/kgk
+p1=10 //pressure in bar
+p3=14 // pressure in bar
+g=1.4
+//CALCULATIONS
+tx=t1+((c1)^2/(2*cp*1000))
+po1=p1*(tx/t1)^(g/(g-1))
+po2=p3*(tx/t2)^(g/(g-1))
+tpr=po2/po1
+rrr=(po2-p1)/(po1-p1)
+//RESULTS
+printf('total pressure ratio and ram recovery ratio are %2f and %2f',tpr,rrr)
diff --git a/2015/CH6/EX6.1/6_1.sce b/2015/CH6/EX6.1/6_1.sce new file mode 100755 index 000000000..0ff7d85d7 --- /dev/null +++ b/2015/CH6/EX6.1/6_1.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+c=400 //steam speed in m/s
+alpla=12 //angle in degrees
+cwo=0
+pi=(22/7)
+//CALCULATIONS
+u=c*cos(12*(pi/180))/2
+cwi=c*cos(12*(pi/180))
+cfi=c*sin(12*(180/pi))
+thetha=atan(cfi/(cwi-u))*(pi/180)
+cro=sqrt((cfi)^2+(cwi-u)^2)
+phi=acos(u/cro)*(180/pi)
+wo=(cwi-cwo)*u
+ke=(c)^2/2
+eff=wo/ke
+//RESULTS
+printf('blade efficiency is %2f',eff)
diff --git a/2015/CH6/EX6.2/6_2.sce b/2015/CH6/EX6.2/6_2.sce new file mode 100755 index 000000000..0cc0fcdbf --- /dev/null +++ b/2015/CH6/EX6.2/6_2.sce @@ -0,0 +1,34 @@ +clc
+//initialisation of variables
+hd=159 //heat drop in kj/kg
+eff=0.89 //and its corresponding efficiency is mentioned
+ra=0.4 //ratio of blade speed to steam speed
+sp=3000 //rotational speed of an impulse turbine wheel in revolutions
+a=20 //angle is 20 degrees
+beff=0.76 //blade efficiency
+cwo=5.4 //m/s
+pi=(22/7)
+bvc=0.82 //blade velocity coefficient
+m=15 //mass is 15 kgs
+//CALCULATIONS
+ci=44.72*sqrt(eff*hd)
+u=ci*ra
+dm=(60*u)/(sp*0.3184)
+cfi=ci*sin(20*(pi/180))
+cwi=ci*cos(20*(pi/180))
+cri=sqrt((cwi-u)^2+(cfi)^2)
+cro=bvc*cri
+x=(beff*(ci)^2)/(2*u) //x=cwi-cwo
+theta=atan((cfi/(cwi-u)))*(180/pi)
+cfo=sqrt((cro)^2-(cwo+u)^2)
+co=sqrt((cwo)^2+(cfo)^2)
+bet=(asin(cfo/co))*(180/pi)
+pd=(m*x*u)/1000
+re=hd-(pd/15)
+phi=asin((cfo/cro))*(180/pi)
+//RESULTS
+printf('mean blade ring diameter is %2fm',dm) //textbook answer is wrong
+printf('\npower developed is %2fkw',pd)
+printf('\nresidual energy at out let foe friction and nozzle efficiency is %2fkw/kg',re)
+printf('\nblade angles are %2f,%2f,%2f',theta,bet,phi)
+
diff --git a/2015/CH6/EX6.3/6_3.sce b/2015/CH6/EX6.3/6_3.sce new file mode 100755 index 000000000..e7ec1fe0f --- /dev/null +++ b/2015/CH6/EX6.3/6_3.sce @@ -0,0 +1,20 @@ +clc
+//initialisation of variables
+alpha=20 //angle in degrees
+theta=27 //angle in degrees
+m=10 //kgs
+vs=0.4799 //specific volume in m*m*m/kg
+pi=(22/7)
+u=100 //blade speed in m/s
+//CALCULATIONS
+ci=u*tan(27*(pi/180))/(cos(20*(pi/180))*tan(27*(pi/180))-sin(20*(pi/180)))
+x=2*ci*cos(20*(pi/180))-u
+pd=m*x*u
+cf=ci*sin(20*(pi/180))
+a=(m*vs)/cf
+dm=sqrt(a/(0.08*pi))
+h=0.08*dm
+//RESULTS
+printf('power developed is %2fw',pd)
+printf('\narea of flow is %2fm*m',a)
+printf('\nblade height is %2fm',h)
diff --git a/2015/CH6/EX6.4/6_4.sce b/2015/CH6/EX6.4/6_4.sce new file mode 100755 index 000000000..e36c67e1c --- /dev/null +++ b/2015/CH6/EX6.4/6_4.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+sp=1500 //rotational speed of an impulse turbine wheel in revolutions
+pi=(22/7)
+dm=1.5 //diameter in m
+ra=0.8 //ratio of blade speed to steam speed
+x=159 //x=cwi-cwo in m/s
+m=10 //kgs mass
+cf=50.4 //m*m*m/kg
+vs=1.159 //
+//CALCULATIONS
+u=(pi*dm*sp)/60
+ci=u/ra
+pd=(m*x*u)/1000
+a=(m*vs)/cf
+h=a/(pi*dm)
+//RESULTS
+printf('power developed for steam flow is %2fkw',pd)
+printf('\nheight of the blade is %2fm',h)
diff --git a/2015/CH6/EX6.5/6_5.sce b/2015/CH6/EX6.5/6_5.sce new file mode 100755 index 000000000..04ba5576b --- /dev/null +++ b/2015/CH6/EX6.5/6_5.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+u=170 //blade velocity in m/s
+ra=0.2 //ratio of blade speed to steam speed
+cril=696 //m/s
+co1=0.84 //velocity coefficient
+co2=0.87 //velocity coefficient
+co3=0.90 //velocity coefficient
+cri2=232 //m/s
+//CALCULATIONS
+ci=u/ra
+crol=cril*co1
+ci2=crol*co2
+cro2=cri2*co3
+wd=(1176+344)*u*10^-3
+beff=wd*1000*2/(ci^2)
+//RESULTS
+printf('work developed in the blade is %2fkj/kg',wd)
+printf('\nblading efficiency is %2f',beff)
diff --git a/2015/CH6/EX6.6/6_6.sce b/2015/CH6/EX6.6/6_6.sce new file mode 100755 index 000000000..8cf1f6775 --- /dev/null +++ b/2015/CH6/EX6.6/6_6.sce @@ -0,0 +1,31 @@ +clc
+//initialisation of variables
+u=250 //blade speed in m/s
+theta=80 //angle in degrees
+alpha=20 //angle in degrees
+oed=786.7 //overall enthalpic drop in kj/kg
+sp=3000 //rotational speed of an impulse turbine wheel in revolutions
+p=6000 //power developed in kw
+rf=1.04 //reheat factor
+ie=2993.4 //kj/kg
+vs=9.28 //m*m*m/kg
+pi=(22/7)
+//CALCULATIONS
+ci=(u*sin(100*(pi/180)))/sin(60*(pi/180))
+x=(2*ci*cos(20*(pi/180)))-u //x=cwi-cwo
+wd=x*u*10^-3
+ed=wd*10
+teff=ed/oed
+seff=teff/rf
+m=p/ed
+ae=ie-ed
+cf=ci*sin(20*(pi/180))
+a=(m*vs)/cf
+dm=(60*u)/(pi*sp)
+h=a/(pi*dm)
+//RESULTS
+printf('enthalpy drop is %2fkj/kg',ed)
+printf('\nturbine efficiency is %2f',teff)
+printf('\nstage efficiency is %2f',seff)
+printf('\nmass flow of steam is %2fkg/s',m)
+printf('\nblade height us %2fm',h)
diff --git a/2015/CH6/EX6.7/6_7.sce b/2015/CH6/EX6.7/6_7.sce new file mode 100755 index 000000000..630efe3a1 --- /dev/null +++ b/2015/CH6/EX6.7/6_7.sce @@ -0,0 +1,27 @@ +clc
+//initialisation of variables
+x1=3025 // according to 20 bar pressure and 300 degrees temp
+x2=2262 //according to 20 bar pressure and 300 degrees temp
+x3=2039 //according to 20 bar pressure and 300 degrees temp
+x4=2896 //according to 20 bar pressure and 300 degrees temp
+x5=2817 //according to 20 bar pressure and 300 degrees temp
+x6=2728 //according to 20 bar pressure and 300 degrees temp
+x7=2699 //according to 20 bar pressure and 300 degrees temp
+x8=2592 //according to 20 bar pressure and 300 degrees temp
+x9=2525 //according to 20 bar pressure and 300 degrees temp
+x10=2430 //according to 20 bar pressure and 300 degrees temp
+x11=2398 //according to 20 bar pressure and 300 degrees temp
+x12=2262 //according to 20 bar pressure and 300 degrees temp
+x13=2192 //according to 20 bar pressure and 300 degrees temp
+//CALCULATIONS
+ieff=(x1-x2)/(x1-x3)
+feff=(x1-x4)/(x1-x5)
+seff=(x4-x6)/(x4-x7)
+teff=(x6-x8)/(x6-x9)
+oeff=(x8-x10)/(x8-x11)
+yeff=(x10-x12)/(x10-x13)
+ced=(x1-x5)+(x4-x7)+(x6-x9)+(x8-x11)+(x10-x13)
+rf=ced/(x1-x3)
+//RESULTS
+printf('cumulative enthaloy drop is %2f',ced)
+printf('\nreheat factor is %2f',rf)
diff --git a/2015/CH7/EX7.1/7_1.sce b/2015/CH7/EX7.1/7_1.sce new file mode 100755 index 000000000..a28b96da1 --- /dev/null +++ b/2015/CH7/EX7.1/7_1.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+ps=0.024853 //at 21 degress
+phi=0.34 //relative humidity
+p=1.013 //pressure in bar
+//CALCULATIONS
+pv=ps*phi
+w=0.622*(pv/(p-pv))
+tdew=4.5 //at 0.00845 bar
+//RESULTS
+printf('specific humidity is %2fkg/kg of da',w)
+disp('dew point temp is 4.5 degrees',tdew)
diff --git a/2015/CH7/EX7.10/7_10.sce b/2015/CH7/EX7.10/7_10.sce new file mode 100755 index 000000000..63d723c68 --- /dev/null +++ b/2015/CH7/EX7.10/7_10.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+x1=90.12 //kj/kg
+x3=42.25 //kj/kg
+ps3=0.023366 //bar pressure
+td3=35 //temp in degrees
+phi1=0.6 //relative humidity
+p=1.01325 //pressure in bar
+//CALCULATIONS
+pv3=phi1*ps3
+w3=0.622*(pv3/(p-pv3))
+h3=(1.005*td3+w3*(2500+1.86*td3))
+qs=h3-x3
+ql=x1-h3
+shf=qs/(qs+ql)
+//RESULTS
+printf('sensible heat removed is %2fkj/kg of da',qs)
+printf('\nlatent heat removed is %2fkj/kg of da',ql)
+printf('\nsensible heat factor is %2f',shf)
diff --git a/2015/CH7/EX7.11/7_11.sce b/2015/CH7/EX7.11/7_11.sce new file mode 100755 index 000000000..65ebfacee --- /dev/null +++ b/2015/CH7/EX7.11/7_11.sce @@ -0,0 +1,30 @@ +clc
+//initialisation of variables
+ps1=0.010720 //bar pressure
+phi1=0.3 //relative humidity
+td1=8 //temp in degrees
+td2=32 //temp in degrees
+td3=30 //temp in degrees
+ps3=0.042415 //bar pressure
+phi3=0.5 //relative humidity
+hf=762.6 //kj/kg
+hfg=2013.6 //kj/kg
+p=1.01325 //pressure in bar
+//CALCULATIONS
+pv1=phi1*ps1
+w1=0.622*(pv1/(p-pv1))
+h1=(1.005*td1+w1*(2500+1.86*td1))
+h2=(1.005*td2+w1*(2500+1.86*td2))
+ha=h2-h1
+pv3=phi3*ps3
+w3=0.622*(pv3/(p-pv3))
+h3=(1.005*td3+w3*(2500+1.86*td3))
+wa=w3-w1
+hw=(h3-h2)/(w3-w1)
+x=(hw-hf)/hfg
+//RESULTS
+printf('heat added is %2fkj/kg of da',ha)
+printf('\nwater added is %2fkg/kg of da',wa)
+disp('temp os steam supplied is 179.88 degrees') //at 10 bar pressure
+printf('\nsteam required is %2fkj/kg of steam',hw)
+printf('\nquality of steam at 10 bar is %2f',x)
diff --git a/2015/CH7/EX7.12/7_12.sce b/2015/CH7/EX7.12/7_12.sce new file mode 100755 index 000000000..c06e47c47 --- /dev/null +++ b/2015/CH7/EX7.12/7_12.sce @@ -0,0 +1,26 @@ +clc
+//initialisation of variables
+ps1=0.023366 //bar pressure
+phi1=0.4//relative humidity
+td1=20 //temp in degrees
+m1=40 //kg/s
+ps2=0.01227 //bar pressure
+phi2=0.8//relative humidity
+td2=10 //temp in degrees
+m2=20 //kg/s
+p=1.01325 //pressure in bar
+//CALCULATIONS
+pv1=phi1*ps1
+w1=0.622*(pv1/(p-pv1))
+h1=(1.005*td1+w1*(2500+1.86*td1))
+ma1=m1/(1+w1)
+pv2=phi2*ps2
+w2=0.622*(pv2/(p-pv2))
+h2=(1.005*td2+w2*(2500+1.86*td2))
+ma2=m2/(1+w2)
+w3=((ma1*w1)+(ma2*w2))/(ma1+ma2)
+h3=((ma1*h1)+(ma2*h2))/(ma1+ma2)
+td3=((ma1*td1)+(ma2*td2))/(ma1+ma2)
+//RESULTS
+printf('specific humidity is %2fkj/kg of da',w3)
+printf('\ntemparature of air leaving chamber is %2fdegrees',td3)
diff --git a/2015/CH7/EX7.13/7_13.sce b/2015/CH7/EX7.13/7_13.sce new file mode 100755 index 000000000..08ae74cd6 --- /dev/null +++ b/2015/CH7/EX7.13/7_13.sce @@ -0,0 +1,43 @@ +
+clc
+//initialisation of variables
+clear
+ps1=0.062739 //bar pressure
+phi1=0.9 //relative humidity
+td1=37 //temp in degrees
+td3=10.7 //dew point temparature
+ps4=0.02366 //bar pressure
+phi4=0.55 //relative humidity
+td4=20 //temp in degrees
+w12=1.5 //work input in kw
+v4=50 //
+t4=310 //temp in k
+r= 1
+w2= 1
+w3= 1
+hf3= 2
+p=1.01325 //pressure in bar
+//CALCULATIONS
+pv1=phi1*ps1
+w1=0.622*(pv1/(p-pv1))
+h1=(1.005*td1+w1*(2500+1.86*td1))
+pv4=phi4*ps4
+w4=0.622*(pv4/(p-pv4))
+h4=(1.005*td4+w4*(2500+1.86*td4))
+h3=(1.005*td3+w4*(2500+1.86*td3))
+pa4=p-pv4
+ma=(pa4*v4*100)/(r*t4)
+q12=(w12*60)/ma
+h2=h1+q12
+q23=((h3+(w2-w3)*hf3)-h2)
+Q23=-1*q23*ma
+q34=h4-h3
+Q34=q34*ma
+//RESULTS
+printf('enthalpy rate 1 is %2fkj/kg of da',h1)
+printf('\nenthalpy rate 4 is %2fkj/kg of da',h4)
+printf('\nenthalpy rate 3 is %2fkj/kg of da',h3)
+printf('\nmass of dry air is %2fkg/min',ma)
+printf('\nenthalpy rate 2 is %2fkj/kg of da',h2)
+printf('\ncapacity od cooling coil q23 is %2fkj/min',Q23)
+printf('\ncapacity od cooling coil q34 is %2fkj/min',Q34)
diff --git a/2015/CH7/EX7.14/7_14.sce b/2015/CH7/EX7.14/7_14.sce new file mode 100755 index 000000000..7f28ccfd4 --- /dev/null +++ b/2015/CH7/EX7.14/7_14.sce @@ -0,0 +1,30 @@ +clc
+//initialisation of variables
+td3=15 //dew point temparature
+ps3=0.017039 //bar pressure
+phi3=0.55 //relative humidity
+p=1 //bar pressure
+ps4=0.029821 //bar pressure
+phi4=1 //relative humidity
+td4=24 //temp in degrees
+mw1=1000 //kg/min
+hf1=109 //kj/kg
+hf2=50.4 //kj/kg
+w4=0.01912
+w3=0.00588
+//CALCULATIONS
+pv3=phi3*ps3
+w1=0.622*(pv3/(p-pv3))
+h3=(1.005*td3+w3*(2500+1.86*td3))
+pv4=phi4*ps4
+w4=0.622*(pv4/(p-pv4))
+h4=(1.005*td4+w4*(2500+1.86*td4))
+ma=mw1*(hf1-hf2)/(h4-h3-(w4-w3)*hf2)
+x=ma*(w4-w3) //mw1-mw2
+mf=ma+x
+pl=(x/mw1)*100
+//RESULTS
+printf('mass of dry air is %2f',ma)
+printf('\nmass cooling water loss by evoporation is %2f',x)
+printf('\nmass flow of moist air is %2f',mf)
+printf('\npercentage loss by evoporation is %2f',pl)
diff --git a/2015/CH7/EX7.15/7_15.sce b/2015/CH7/EX7.15/7_15.sce new file mode 100755 index 000000000..b9b3d0b78 --- /dev/null +++ b/2015/CH7/EX7.15/7_15.sce @@ -0,0 +1,36 @@ +clc
+//initialisation of variables
+td3=17 //dew point temparature
+ps3=0.019362 //bar pressure
+phi3=0.6 //relative humidity
+p=0.98 //bar pressure
+t3=290 //temp in k
+ps4=0.042415 //bar pressure
+phi4=1 //relative humidity
+td4=30 //temp in degrees
+mw2=80
+v=110 //volume
+ma=127.98
+w4=0.02814
+w3=0.007464
+r=0.287
+hf1=209.3
+//CALCULATIONS
+pv3=phi3*ps3
+w3=0.622*(pv3/(p-pv3))
+h3=(1.005*td3+w3*(2500+1.86*td3))
+pa3=p-pv3
+m=(pa3*v*100)/(r*t3)
+h2=h3+(240/ma)
+pv4=phi4*ps4
+w4=0.622*(pv4/(p-pv4))
+h4=(1.005*td4+w4*(2500+1.86*td4))
+mw1=mw2+ma*(w4-w3)
+hf2=((mw1*hf1)+(ma*h2)-(ma*h4))/mw2
+//RESULTS
+printf('mass of dry air is %2fkg/min',m)
+printf('\nenthalpy rate 3 is %2fkj/kg of da',h3)
+printf('\nenthalpy rate 2 is %2fkj/kg of da',h2)
+printf('\nenthalpy rate 4 is %2fkj/kg of da',h4)
+printf('\nenthalpy rate is %2fkj/kg of da',hf2)
+disp('temparature of water leaving the tower is 27.1 degrees')
diff --git a/2015/CH7/EX7.16/7_16.sce b/2015/CH7/EX7.16/7_16.sce new file mode 100755 index 000000000..0816e2f82 --- /dev/null +++ b/2015/CH7/EX7.16/7_16.sce @@ -0,0 +1,40 @@ +
+clc
+//initialisation of variables
+clear
+uw=2.5
+aw=127.82
+to=34 //temp in degrees
+tr=26 //temp in degrees
+ur=1.5
+ar=90
+ag=8.68
+clf1=100
+pvwo=0.037782
+p=1.013 //pressure in bar
+a=6.66*10^-4
+phi=0.5
+//CALCULATIONS
+shgw=uw*aw*(to-tr)
+shgr=ur*ar*(to-tr)
+sg=ag*clf1
+pvo=pvwo-(p*a*(to-tr))
+wo=0.622*(pvo/(p-pvo))
+ho=(1.005*to+wo*(2500+1.86*to))
+pvr=phi*pvo
+wr1=0.622*(pvr/(p-pvr))
+hr=(1.005*tr+wr1*(2500+1.86*tr))
+//RESULTS
+disp('recommended indoor conditions are25.5-26.7 degrees and 50% rh and outdoor conditions are 26 degrees and 50%rh')
+disp('area of the roof is 90 m*m')
+disp('overall heat transfer coefficients are2.5 w/m*m')
+printf('\nsensible heat gain through walls is %2f',shgw)
+printf('\nsensible heat gain through roofs is %2f',shgr)
+printf('\nsensible heat gain through windows is %2f',sg)
+disp('sensible heat per adult male is 67.5w and latent heat is 55.7w')
+printf('\nenthalpy rate o is %2f',ho)
+printf('\nenthalpy rate r is %2f',hr)
+disp('volume of air infiltered is 1.628 m*m*m/min')
+disp('latent heat gain is 902.4w')
+disp('sensible heat gain is 257.2w')
+disp('room sensible heat factor is 0.803')
diff --git a/2015/CH7/EX7.2/7_2.sce b/2015/CH7/EX7.2/7_2.sce new file mode 100755 index 000000000..8501800c6 --- /dev/null +++ b/2015/CH7/EX7.2/7_2.sce @@ -0,0 +1,16 @@ +clc
+//initialisation of variables
+t1=26 //temp in degrees
+t2=32 //temp in degrees
+pvs=0.033597 //pressure in bar
+ps=0.047534 //pressure in bar
+p=1.013 //pressure in bar
+a=6.6*10^-4
+//CALCULATIONS
+pv=pvs-(p*a*(t2-t1))
+w=(0.622*pv)/(p-pv)
+phi=pv/ps
+//RESULTS
+printf('specific humidity is %2fkg/kg of da',w)
+printf('\nrelative humidity is %2f',phi)
+disp('dew point temp is 23.5 degrees') //from steam tables
diff --git a/2015/CH7/EX7.3/7_3.sce b/2015/CH7/EX7.3/7_3.sce new file mode 100755 index 000000000..6241f593a --- /dev/null +++ b/2015/CH7/EX7.3/7_3.sce @@ -0,0 +1,27 @@ +clc
+//initialisation of variables
+ps=0.042415 //under 30 degrees temp in bar
+vg=32.929 //m*m*m/kg
+phi=0.3 //relative humidity
+p=1.01325 //bar
+pv=0.012725^10^2 //pressure
+rv=0.4615
+t=313 //temp in k
+pa=1.005*10^2
+ra=0.287
+//CALCULATIONS
+pv=phi*ps
+w1=0.622*(pv/(p-pv))
+rhos=1/vg
+rhov=phi*rhos
+rho=pv/(rv*t)
+pa=p-pv
+rhoa=pa*100/(ra*t)
+w2=rhov/rhoa
+ds=phi*((p-ps)/(p-pv))
+//RESULTS
+printf('partial pressure of water vapour is %2fbar',pv)
+printf('\ndensity of dry air is %2fkg/m*m*m',rhoa)
+disp('dew point temp is 10.5 degrees')
+printf('\nspecific humidity is %2fkg/kg of da',w2) //textbook answer slightly varies
+printf('\ndegree of saturation is %2f',ds)
diff --git a/2015/CH7/EX7.4/7_4.sce b/2015/CH7/EX7.4/7_4.sce new file mode 100755 index 000000000..7ba43ad56 --- /dev/null +++ b/2015/CH7/EX7.4/7_4.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+ps=0.035636 //pressure in bar
+pvw=0.018168 //pressure in bar
+p=1.01325 //pressure in bar
+a=6.6*10^-4
+w=0.00667
+td=27 //temparature in degrees
+tw=16 //temparature in degrees
+//CALCULATIONS
+pv=pvw-(p*a*(td-tw))
+w=0.622*(pv/(p-pv))
+phi=pv/ps
+h=(1.005*td+w*(2500+1.86*td))
+//RESULTS
+printf('humidity ratio is %2fkg/kg of da',w)
+printf('\nrelative humidity is %2f',phi)
+disp('dew point temparature is 8 degrees')
+printf('\nenthalphy of moist air is %2fkg/kg of da',h)
diff --git a/2015/CH7/EX7.5/7_5.sce b/2015/CH7/EX7.5/7_5.sce new file mode 100755 index 000000000..bb634f317 --- /dev/null +++ b/2015/CH7/EX7.5/7_5.sce @@ -0,0 +1,20 @@ +clc
+//initialisation of variables
+p=1.01325 //pressure in bar
+pv=0.020 //pressure in bar at 21 degrees temp
+ws=0.0154 //kg/kg of da
+w=0.0123 //kg/kg of da
+vs=0.86 //under 21 degrees temp m*m*m/kg
+w1=0.0074
+//CALCULATIONS
+pa=p-pv
+sr=w/ws
+rho=1/vs
+avc=0.0163-w1
+//RESULTS
+printf('partial pressure of vapour and dry air are %2fbar and %2fbar',pv,pa)
+disp('dew point temp is 17.4 degrees')
+disp('specific humidity is 0.0123 kg/kg of da')
+printf('\nsaturation ratio is %2f',sr)
+printf('\ndensity of misture is %2fkg/m*m*m',rho)
+printf('\namount of water vapour condensed is %2fkg/kg of da',avc)
diff --git a/2015/CH7/EX7.6/7_6.sce b/2015/CH7/EX7.6/7_6.sce new file mode 100755 index 000000000..618d1a3da --- /dev/null +++ b/2015/CH7/EX7.6/7_6.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+p=1.01325 //pressure in bar
+w1=0.01468
+td=20 //temp in degrees
+tw=40 //temp in degrees
+//CALCULATIONS
+ha=(1.005*td+w1*(2500+1.86*td))
+w2=(ha-(1.005*tw))/(2500+1.86*tw)
+//RESULTS
+printf('humidity rate is %2fkg/kg of da',ha)
+printf('\nw2 is %2fkg/kg of da',w2)
diff --git a/2015/CH7/EX7.7/7_7.sce b/2015/CH7/EX7.7/7_7.sce new file mode 100755 index 000000000..acc98a838 --- /dev/null +++ b/2015/CH7/EX7.7/7_7.sce @@ -0,0 +1,21 @@ +clc
+//initialisation of variables
+ps1=0.006566 //bar pressure
+phi1=0.6 //relative humidity
+td2=21 //temp in degrees
+td1=1 //temp in degrees
+ps2=0.02486 //pressure in bar
+td3=26 //temp in degrees
+p=1.013 //pressure in bar
+//CALCULATIONS
+pv1=(phi1*ps1)
+w=0.622*(pv1/(p-pv1))
+q=(td2-td1)*(1.005+(1.86*w))
+phi2=pv1/ps2
+cbf=(td3-td2)/(td3-td1)
+cf=1-cbf
+//RESULTS
+printf('heat supplied to air is %2fkg/kg of da',q)
+printf('\nfinal relative humidity is %2fkg/kg of da',phi2)
+printf('\ncoil bypass factor is %2f',cbf)
+printf('\ncontact factor is %2f',cf)
diff --git a/2015/CH7/EX7.8/7_8.sce b/2015/CH7/EX7.8/7_8.sce new file mode 100755 index 000000000..24e6b5bdd --- /dev/null +++ b/2015/CH7/EX7.8/7_8.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+ps1=0.056216 //bar pressure
+phi1=0.2 //relative humidity
+td1=35 //temp in degrees
+p=1.01325 //pressure in bar
+td2=25 //temp in degrees
+ps2=0.03166 //bar
+//CALCULATIONS
+pv1=phi1*ps1
+w1=0.622*(pv1/(p-pv1))
+ha=(1.005*td1+w1*(2500+1.86*td1))
+w2=(ha-(1.005*td2))/(2500+1.86*td2)
+pv2=(w2*p)/(w2+0.622)
+phi2=pv2/ps2
+//RESULTS
+printf('relative humidity rate is %2fkg/kg of da',ha)
+printf('\nrelative humidity is %2f',phi2)
+printf('\namount of water to be added is %2fkg/kg of da',w2)
diff --git a/2015/CH7/EX7.9/7_9.sce b/2015/CH7/EX7.9/7_9.sce new file mode 100755 index 000000000..aabf835b2 --- /dev/null +++ b/2015/CH7/EX7.9/7_9.sce @@ -0,0 +1,31 @@ +clc
+//initialisation of variables
+ps1=0.056216 //bar pressure
+ps3=0.023366 //bar pressure
+phi1=0.6 //relative humidity
+td3=20 //temp in degress
+td1=35 //temp in degrees
+td2=12 //temp in degrees
+r=0.287
+p=1.01325 //pressure in bar
+x1=90.12 //kj/kg
+x2=34.08 //kj/kg
+x3=42.25 //kj/kg
+hf=0.4 //kj/kg
+w1=0.02142
+w2=0.00873
+//CALCULATIONS
+pv1=phi1*ps1
+w1=0.622*(pv1/(p-pv1))
+h1=(1.005*td1+w1*(2500+1.86*td1))
+pv3=phi1*ps3
+w3=0.622*(pv3/(p-pv3))
+h3=(1.005*td3+w3*(2500+1.86*td3))
+h2=(1.005*td2+0.0073*(2500+1.86*td2))
+ma=((p-pv1)*100*2.5)/(r*(td1+273))
+q1=ma*(x2-x1)+(w1-w2)*hf
+q2=(ma*(x3-x2))
+//RESULTS
+printf('mass of dry air is %2fkg/s',ma)
+printf('\ncooler load on the dehumidyfier is %2fkw',q1)
+printf('\nheating load of the heater is %2fkw',q2)
diff --git a/2015/CH8/EX8.1/8_1.sce b/2015/CH8/EX8.1/8_1.sce new file mode 100755 index 000000000..7e3a00ccd --- /dev/null +++ b/2015/CH8/EX8.1/8_1.sce @@ -0,0 +1,11 @@ +clc
+//initialisation of variables
+cc=12000 //btu/h
+pi=1565 ///watts
+ra=7 //btu/h/w
+//CALCULATIONS
+eer=cc/pi
+p(1)=cc/ra
+//RESULTS
+printf('eer is %2f',eer)
+printf('\npower consumption of first unit is %2fwatts',p(1))
diff --git a/2015/CH8/EX8.10/8_10.sce b/2015/CH8/EX8.10/8_10.sce new file mode 100755 index 000000000..0f8ee5d07 --- /dev/null +++ b/2015/CH8/EX8.10/8_10.sce @@ -0,0 +1,31 @@ +
+clc
+//initialisation of variables
+ph=13.89 //pressure in bar under 36 degrees temp
+p1=1.447 //pressure in bar under -26 degrees temp
+h1=1411.4 //kj/kg
+s1=5.718 //kj/kgk
+h2=1561.7 //kj/kg
+h3= 150 //kj/kg
+h4=185.8 //kj/kg
+h5=1445.5 //kj/kg
+s5=5.327 //kj/kgk
+s5=5.327 //kj/kgk
+h6=1607.6 //kj/kg
+r=25
+//CALCULATIONS
+pi=(p1*ph)^0.5
+m1=(3.5164*r)/(h1-h4)
+mh=m1*(h2-h3)/(h5-h1)
+poc=m1*(h2-h1)
+pohc=mh*(h6-h5)
+pr=poc+pohc
+re=h1-h4
+wi=(h2-h1)+(h6-h5)
+cop=re/wi
+//RESULTS
+printf('power of lp compressor is %2fkw',poc)
+printf('\npower of hp compressor is %2fkw',pohc)
+printf('\ntotal power required is %2fkw',pr)
+printf('\nrefrigerating effect is%2fkj/kg',re)
+printf('\ncoefficient of performance is %2f',cop)
diff --git a/2015/CH8/EX8.11/8_11.sce b/2015/CH8/EX8.11/8_11.sce new file mode 100755 index 000000000..7cd7b571f --- /dev/null +++ b/2015/CH8/EX8.11/8_11.sce @@ -0,0 +1,16 @@ +clc
+//initialisation of variables
+h1=1411.4 //kj/kg
+s1=5.718 //kj/kgk
+s2=5.718 //kj/kgk
+h2=1755.7 //kj/kg
+h4=352.3 //under 13.89 bar in kj/kg
+h3=352.3 //under 13.89 bar in kj/kg
+//CALCULATIONS
+m=(3.5164*25)/(h1-h4)
+poc=m*(h2-h1)
+cop=(h1-h4)/(h2-h1)
+//RESULTS
+printf('mass flow rate of refrigerant is %2fkg/s',m)
+printf('\ncoefficient of performance is %2f',cop)
+printf('\npower of compressor is %2fkw',poc)
diff --git a/2015/CH8/EX8.12/8_12.sce b/2015/CH8/EX8.12/8_12.sce new file mode 100755 index 000000000..da60b8448 --- /dev/null +++ b/2015/CH8/EX8.12/8_12.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+h1=178.73 //under -20 degrees in kj/kg
+h5=185.66 //under 5 degrees in kj/kg
+h3=79.71 //under 10.84 degrees in kj/kg
+h6=79.71 //under 10.84 degrees in kj/kg
+h4=79.71 //under 10.84 degrees in kj/kg
+h2=219.33 //kj/kg
+//CALCULATIONS
+m1=(7*211)/(h1-h4)
+mh=(5*211)/(h5-h4)
+h8=((m1*h1)+(mh*h5))/(m1+mh)
+poc=(m1+mh)*(h2-h8)
+cop=(12*211)/poc
+//RESULTS
+printf('power of compressor is %2fkj/min',poc)
+printf('\nrefrigerant flow rate is %2fkg/min',mh)
+printf('\ncoefficient of performance is %2f',cop)
diff --git a/2015/CH8/EX8.13/8_13.sce b/2015/CH8/EX8.13/8_13.sce new file mode 100755 index 000000000..5ec4f14c8 --- /dev/null +++ b/2015/CH8/EX8.13/8_13.sce @@ -0,0 +1,21 @@ +clc
+//initialisation of variables
+h1=185.38 //under -5 degrees temp in kj/kg
+s1=0.6991 //nder -5 degrees temp in kj/kgk
+ps2=7.449 //under 30 degrees in bar
+s2=0.6991 //under 30 degrees in bar
+h2=203.9 //kj/kg
+h3=64.59 //kj/kg
+h4=64.59 //kj/kg
+//CALCULATIONS
+he=h2-h3
+wi=h2-h1
+cop1=he/wi
+mf=84400/he
+pr=(mf/3600)*(wi)
+coe=pr*1
+//RESULTS
+printf('coefficient of performance is %2f',cop1)
+printf('\nmass flow rate of refrigerant is %2fkg/h',mf)
+printf('\npower required is %2fkw',pr)
+printf('\ncost of electricity is %2frs',coe)
diff --git a/2015/CH8/EX8.14/8_14.sce b/2015/CH8/EX8.14/8_14.sce new file mode 100755 index 000000000..ad4dd1faa --- /dev/null +++ b/2015/CH8/EX8.14/8_14.sce @@ -0,0 +1,15 @@ +clc
+//initialisation of variables
+t1=1100 //K
+t2=275 //K
+g=1.4
+pa=101.32
+qs=250 //kj/kg
+r=0.287 //kj/kgK
+//CALCULATIONS
+p1=(t1/t2)^(3.5)*pa //(g/g-1)=3.5
+pb=2.2075*p1
+va=(r*t2)/pa
+vb=(r*t1)/pb
+mep=(0.75*qs)/(va-vb)
+printf('mean effective pressure is %2f units',mep)
diff --git a/2015/CH8/EX8.15/8_15.sce b/2015/CH8/EX8.15/8_15.sce new file mode 100755 index 000000000..eecfa1b30 --- /dev/null +++ b/2015/CH8/EX8.15/8_15.sce @@ -0,0 +1,25 @@ +clc
+//initialisation of variables
+ps2=0.008129 //under 4 degree temp in bar
+ps3=0.047534 //under32 degree temp in bar
+v=0.75 //volume in m*m*m
+vf=0.001
+h1=50.4 //under 12 degree temp in kj/kg
+h2=16.8 //kj/kg
+hf3=16.8 //kj/kg
+hfg3=2492.1 //kj/kg
+x3=0.98
+vg3=157.27 //under 4 degree temparature
+//CALCULATIONS
+pr=ps3/ps2
+mfr=v/vf
+re=mfr*(h1-h2)
+h3=hf3+(x3*hfg3)
+mf3=re/(h3-h1)
+vv=mf3*x3*vg3
+//RESULTS
+disp('pressures in flash chamber are ps2=0.008129 and ps3=0.047534')
+printf('\npressure ratio is %2f',pr)
+printf('\nthe refrigeration effect is %2fkj/kg',re)
+printf('\namount of makeup water is %2fkg/min',mf3)
+printf('\nvolume of water entering the ejector is %2fm*m*m/min',vv)
diff --git a/2015/CH8/EX8.16/8_16.sce b/2015/CH8/EX8.16/8_16.sce new file mode 100755 index 000000000..2914d3d2b --- /dev/null +++ b/2015/CH8/EX8.16/8_16.sce @@ -0,0 +1,15 @@ +clc
+//initialisation of variables
+h1=272.763 //under 300 k temp in kj/kg
+s1=6.4125 //under 300 k temp in kj/kg
+h2=230.347 //under 200 k temp in kj/kg1
+s2=4.9216 //under 300 k temp in kj/kg
+hf=-133.347 //kj/kg
+t1=300 //temp in k
+//CALCULATIONS
+y=(h1-h2)/(h1-hf)
+mw=(t1*(s2-s1))-(h2-h1)
+x=mw/0.1044
+//RESULTS
+printf('fraction of oxygen condensed is %2f',y)
+printf('\nwork required is %2f',x) //answer is wrong in tb
diff --git a/2015/CH8/EX8.19/8_19.sce b/2015/CH8/EX8.19/8_19.sce new file mode 100755 index 000000000..1259bbcbc --- /dev/null +++ b/2015/CH8/EX8.19/8_19.sce @@ -0,0 +1,15 @@ +clc
+//initialisation of variables
+t1=300 //temp in k
+sf=2.9409 //kj/kgk
+s1=6.44125 //kj/kgk
+hf=-133.347 //kj/kg
+h1=272.763 //kj/kg
+w=-4690.5
+//CALCULATIONS
+mw=(t1*(sf-s1)-(hf-h1))
+fom=mw/w
+//RESULTS
+printf('minimum work is %2fkj/kg of o2 liquefied',mw)
+printf('\nfigure of merit is %2f',fom)
+//no 8.17 and 8.19 in tb print mistake
diff --git a/2015/CH8/EX8.2/8_2.sce b/2015/CH8/EX8.2/8_2.sce new file mode 100755 index 000000000..ff0918310 --- /dev/null +++ b/2015/CH8/EX8.2/8_2.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+t1=278 //temparature in k
+t2=300 //temparature in k
+hf2=21 //kj/kg
+hfg2=2489.7 //kj/kg
+h3=113.1 //under 300 k in kj/kg
+x2=0.8
+p=3.154 //power
+//CALCULATIONS
+cop=t1/(t2-t1)
+h2=hf2+(x2*hfg2)
+re=h2-h3
+pr=p/cop
+//RESULTS
+printf('cop is %2f',cop)
+printf('\npower required is%2fkw/ton of refrigeration',pr)
+printf('\nrefrigeration effect is %2fkj/kg',re)
diff --git a/2015/CH8/EX8.3/8_3.sce b/2015/CH8/EX8.3/8_3.sce new file mode 100755 index 000000000..87e653a0b --- /dev/null +++ b/2015/CH8/EX8.3/8_3.sce @@ -0,0 +1,19 @@ +clc
+//initialisation of variables
+t1=253 //temp in k
+t3=313 //temp in k
+cp=1.005 //kj/kg
+r=4 //bar
+g=1.4
+//CALCULATIONS
+t2=(t1*(r)^((g-1)/g))
+t4=(t3/(r)^((g-1)/g))
+re=cp*(t1-t4)
+wi=cp*((t2-t3)-(t1-t4))
+cop=re/wi
+ma=(3.5164*10)/re
+p=ma*wi
+//RESULTS
+printf('cop is %2f',cop)
+printf('\nmass of refrigeration is %2fkg/s',ma)
+printf('\npower required to drive the unit is %2fkw',p)
diff --git a/2015/CH8/EX8.4/8_4.sce b/2015/CH8/EX8.4/8_4.sce new file mode 100755 index 000000000..d3395d14f --- /dev/null +++ b/2015/CH8/EX8.4/8_4.sce @@ -0,0 +1,24 @@ + +clc
+//initialisation of variables
+t1=261 //temp in k
+t3=310 //temp in k
+cp=1.005 //kj/kg
+r=5
+//CALCULATIONS
+t2=(t1*(r)^((g-1)/g))
+t4=(t3/(r)^((g-1)/g))
+re=cp*(t1-t4)
+ma=(3.5164*3600)/re
+woc=cp*(t2-t1)
+woe=cp*(t3-t4)
+nw=woc-woe
+cop1=re/nw
+cop2=t1/(t3-t1)
+reff=cop1/cop2
+//RESULTS
+printf('temparature at states 2 and 4 are %2fk and %2fk',t2,t4)
+printf('\nmass of air per hour is %2fkg/h',ma)
+printf('\nnet work required is %2fkj/kg',nw)
+printf('\ncoefficient of perfoemance is %2f',cop1)
+printf('\nrelative efficiency is %2f',reff)
diff --git a/2015/CH8/EX8.5/8_5.sce b/2015/CH8/EX8.5/8_5.sce new file mode 100755 index 000000000..c7c5e961b --- /dev/null +++ b/2015/CH8/EX8.5/8_5.sce @@ -0,0 +1,20 @@ +clc
+//initialisation of variables
+h1=176.48 //under -25 degrees temp in kj/kg
+s1=0.7127 //under -25 degrees temp in kj/kgk
+h2=215.17 //under 58 degrees temp in kj/kg
+h3=79.71 //under 45 degrees temp in kj/kg
+h4=79.71 //under 45 degrees temp in kj/kg
+no=20 // number of tons
+//CALCULATIONS
+w=h2-h1
+re=h1-h4
+cop=re/w
+ha=no*3.5164
+cr=ha/re
+pr=cr*w
+//RESULTS
+printf('the refrigeration effect is %2fkj/kg',re)
+printf('\ncoefficient of performance is %2f',cop)
+printf('\npower required is %2fkw',pr)
+printf('\ncirculating rate of refrigerant is %2fkg/s',cr)
diff --git a/2015/CH8/EX8.6/8_6.sce b/2015/CH8/EX8.6/8_6.sce new file mode 100755 index 000000000..ae81af6c6 --- /dev/null +++ b/2015/CH8/EX8.6/8_6.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+h1=176.48 //under -25 degrees temp in kj/kg
+h2=215.17 //kj/kg
+h4=74.59 //kj/kg
+//CALCULATIONS
+re=h1-h4
+w=h2-h1
+cop=re/w
+//RESULTS
+printf('the refrigeration effect is %2fkj/kg',re)
+printf('\ncoefficient of performance is %2f',cop)
diff --git a/2015/CH8/EX8.7/8_7.sce b/2015/CH8/EX8.7/8_7.sce new file mode 100755 index 000000000..6593b5e02 --- /dev/null +++ b/2015/CH8/EX8.7/8_7.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+h1=179.43 //under -25 degrees temp in kj/kg
+h2=219.03 //kj/kg
+h4=74.59 //kj/kg
+//CALCULATIONS
+re=h1-h4
+w=h2-h1
+cop=re/w
+//RESULTS
+printf('the refrigeration effect is %2fkj/kg',re)
+printf('\ncoefficient of performance is %2f',cop)
diff --git a/2015/CH8/EX8.8/8_8.sce b/2015/CH8/EX8.8/8_8.sce new file mode 100755 index 000000000..2c5913aa5 --- /dev/null +++ b/2015/CH8/EX8.8/8_8.sce @@ -0,0 +1,31 @@ +clc
+//initialisation of variables
+h2=1472.6 //kj/kg
+s2=4.898 //kj/kgk
+sf1=0.510 //kj/kgk
+sfg1=5.504 //kj/kgk
+hf1=126.2 //kj/kg
+hfg1=1304.3 //kj/kg
+h4=362.1 //under 38 degrees in kj/kg
+h2=1472.6 //kj/kg
+h3=362.1 //under 38 degrees in kj/kg
+t1=261 //temp in k
+t2=311 //temp in k
+//CALCULATIONS
+x1=(s2-sf1)/sfg1
+h1=hf1+(x1*hfg1)
+re=h1-h4
+w=h2-h1
+cop=re/w
+hr=h2-h3
+ca=(2*re*50)/(3600*3.5164)
+pom=100*w/3600
+ccop=t1/(t2-t1)
+rff=cop/ccop
+//RESULTS
+printf('coefficient of performance is %2f',cop)
+printf('\nheat rejected in the condenser is%2fkj/kg',hr)
+printf('\nrefrigerating effect is%2fkj/kg',re)
+printf('\ncapacity of motor is%2frons of refrigeration',ca)
+printf('\npower of motor is %2fkw',pom)
+printf('\nrefrigerating befficiency is %2f',rff)
diff --git a/2015/CH8/EX8.9/8_9.sce b/2015/CH8/EX8.9/8_9.sce new file mode 100755 index 000000000..1b07b3436 --- /dev/null +++ b/2015/CH8/EX8.9/8_9.sce @@ -0,0 +1,33 @@ +
+clc
+//initialisation of variables
+hf1=-7.53 //kj/kg
+hfg1=245.8 //kj/kg
+x1=0.6
+sf1=-0.04187 //kj/kgk
+t1=268 //temp in degrees
+sf2=0.2513 //kj/kgk
+hf2=81.25 //kj/kg
+hfg2=121.5 //kj/kg
+t2=298 //temp in k
+h4=81.25 //under 20 degrees in kj/kg
+h3=81.25 //under 20 degrees in kj/kg
+sh=4.2 //kj/kgk
+lt=335 //kj/kg
+reff=0.5
+sfg1= 1 //kj/kg
+s2= 1 //kj/kg
+//CALCULATIONS
+h1=hf1+(x1*hfg1)
+s1=sf1+(x1*sfg1)
+x2=((s2-sf2)/hfg2)*t2
+h2=hf2+(x2*hfg2)
+re=h1-h4
+are=re*reff
+he=sh*10+lt
+ma=(are*6*60)/he
+//RESULTS
+printf('refrigerating effect is%2fkj/kg',re)
+printf('\nactual refrigerating effect is%2fkj/kg',are)
+printf('\nheat to be extracted to produce 1kg of ice is %2fkj/kg of ice',he)
+printf('\nmass of ice formed is %2fkg/day',ma)
diff --git a/2015/CH9/EX9.1/9_1.sce b/2015/CH9/EX9.1/9_1.sce new file mode 100755 index 000000000..130be9bbb --- /dev/null +++ b/2015/CH9/EX9.1/9_1.sce @@ -0,0 +1,25 @@ +clc
+//initialisation of variables
+t1=305 //temp in k
+r=0.287 //kj/kg
+p2=6 //pressure in bar
+p1=1.013 //pressure in bar
+g=1.4 //const value
+n=1.28
+v1=100 //volume
+//CALCULATIONS
+rp=(p2/p1)
+wiso=r*t1*log(p2/p1)
+wadia=(g/(g-1))*r*t1*0.6623
+wpoly=(n/(n-1))*r*t1*0.4756
+m=(p1*v1*100)/(r*t1)
+ipr=(wiso*m)/60
+apr=(wadia*m)/60
+//RESULTS
+printf('work for isthermal compression is %2fknm/kg',wiso)
+printf('\nwork for adiabatic compression is %2fknm/kg',wadia)
+printf('\nwork for polytropic compression is %2fknm/kg',wpoly)
+printf('\nmass of air compressed is %2fkg/min',m)
+printf('\nisothermal power required is %2fkw',ipr)
+printf('\nadiabatic power required is %2fkw',apr)
+
diff --git a/2015/CH9/EX9.10/9_10.sce b/2015/CH9/EX9.10/9_10.sce new file mode 100755 index 000000000..a31bb3c41 --- /dev/null +++ b/2015/CH9/EX9.10/9_10.sce @@ -0,0 +1,12 @@ +clc
+//initialisation of variables
+sp=200 //mean speed m/s
+//CALCULATIONS
+d=(21/(0.7773*1.18*200))^0.5
+l=1.5*d
+s=200/(3*d)
+//RESULTS
+disp('volumetric efficiency is 0.7773')
+printf('\ndiameter is %2fm',d)
+printf('\nstroke is %2fm',l)
+printf('\nspeed of compressor is %2frev/min',s)
diff --git a/2015/CH9/EX9.11/9_11.sce b/2015/CH9/EX9.11/9_11.sce new file mode 100755 index 000000000..4be13c8d8 --- /dev/null +++ b/2015/CH9/EX9.11/9_11.sce @@ -0,0 +1,30 @@ +
+clc
+//initialisation of variables
+r=0.287
+p=1.01325 //pressure in bar
+v=5 //volume in m*m*m
+t=288 //temparature in k
+t1=303 //temparature in k
+t2=403 //temparature in k
+p2=4.08 //pressure in bar
+p1=0.98 //pressure in bar
+p3=17 //pressure in bar
+n=1.25
+c=0.06 //clearance volume by swept volume
+//CALCULATIONS
+m=(p*v)/(r*t)
+rp=p2/p1
+t2s=(t1*(p2/p1)^((n-1)/n))
+wr=(n/n-1)*r*(t2-t1)
+wc=2*wr
+veff=(1+c-c*(rp)^(1/n))
+x=(p*100*v*t1)/(p1*100*t) //x=(v1-v4)
+vs=x/veff
+vsc=vs/125
+d1=((4*vsc)/%pi)^(1/3)
+//RESULTS
+printf('volumetric efficiency is %2f',veff)
+printf('\nstoke volume is %2fm*m*m/min',vs)
+printf('\nstroke volume per cycle is %2fm*m*m',vsc)
+printf('\nstoke of piston is %2f',d1)
diff --git a/2015/CH9/EX9.12/9_12.sce b/2015/CH9/EX9.12/9_12.sce new file mode 100755 index 000000000..62aed33a9 --- /dev/null +++ b/2015/CH9/EX9.12/9_12.sce @@ -0,0 +1,30 @@ +clc
+//initialisation of variables
+t1=303 //temparature in k
+p2=4.08 //pressure in bar
+p1=1 //pressure in bar
+t5=303 //temparature in k
+x=0.3247 //x=v2/v1 where the relation is v2=v1*(1/rp)^1/n
+y=0.0385 //y=v3/v1
+vo=0.2862 //vo=volume of air delivered/v1
+vf=0.8299 //vf=vome of free air /v1
+n=1.25
+p3=17.5 //pressure in bar
+r=0.287
+tatm=2911 //temp in k
+patm=1.02 //pressure in bar
+w=291
+//CALCULATIONS
+t2=(t1*(p2/p1)^((n-1)/n))
+veff=vf/(1-y)
+a=(r*(t2-t1)*5)
+t3=(t1*(p3/p2)^((n-1)/n))
+hp=(5*r*(t3-t1))
+iso=(r*tatm*log(p3/patm))/10 //its ln
+ieff=iso/w
+//RESULTS
+printf('volumetric efficiency is %2f',veff)
+printf('\nwork required for lp cyclinder is %2f',a)
+printf('\nwork required for hp cyclinder is %2f',hp)
+printf('\nwork required for isothermal is %2f',iso)
+printf('\nisothermal efficiency is %2f',ieff)
diff --git a/2015/CH9/EX9.13/9_13.sce b/2015/CH9/EX9.13/9_13.sce new file mode 100755 index 000000000..60e626f9a --- /dev/null +++ b/2015/CH9/EX9.13/9_13.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+p2=1.5 //pressure in bar
+p1=1 //pressure in bar
+v=0.05 //volume in m*m*m
+g=1.4
+r=1.4
+n=120 //number of cycles
+//CALCULATIONS
+wa=v*(p2-p1)*100
+wi=3.5*100*p1*v*(((p2/p1)^((r-1)/r))-1)
+reff=wi/wa
+vo=v/4
+pr=wa*n/60
+//RESULTS
+printf('roots efficiency is %2f',reff)
+printf('\nvolume of air is %2fm*m*m/cycle',vo)
+printf('\npower required is %2fkw',pr)
diff --git a/2015/CH9/EX9.14/9_14.sce b/2015/CH9/EX9.14/9_14.sce new file mode 100755 index 000000000..2cdab6379 --- /dev/null +++ b/2015/CH9/EX9.14/9_14.sce @@ -0,0 +1,29 @@ +clc
+//initialisation of variables
+p2=1.5 //pressure in bar
+p1=1 //pressure in bar
+v=0.05 //volume in m*m*m
+x=0.35 //increse in pressure
+g=1.4
+r=1.4
+n=120 //number of cycles
+//CALCULATIONS
+wa=v*(p2-p1)*100
+wi1=3.5*100*p1*v*(((p2/p1)^((r-1)/r))-1)
+ceff=wi1/wa
+vo=v/4
+pr=wa*n/60
+prs=x*(p2-p1)
+p3=p1+prs
+wi2=3.5*100*p1*v*(((p3/p1)^((r-1)/r))-1)
+vi=v*(p1/p3)^(1/g)
+w2=vi*(p2-p3)*100
+tw=w2+wi2
+comeff=wi1/tw
+po=tw*2
+//RESULTS
+printf('compressor efficiency is %2f',ceff)
+printf('\nwork required for internal compression is %2fknm/rev',wi2)
+printf('\npower required is %2fkw',pr)
+printf('\ncompressor efficiency 2 is %2f',comeff)
+printf('\npower required 2 is %2fkw',po)
diff --git a/2015/CH9/EX9.15/9_15.sce b/2015/CH9/EX9.15/9_15.sce new file mode 100755 index 000000000..668a5a42e --- /dev/null +++ b/2015/CH9/EX9.15/9_15.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+t1=295 //temp in k
+p1=1.02 //pressure in bar
+p2=7.14 //pressure in bar
+cp=1.005 //kj/kg
+g=1.4
+wr=250 //kj/kg
+//CALCULATIONS
+t2s=t1*(p2/p1)^((g-1)/g)
+wi=cp*(t2s-t1)
+ieff=wi/wr
+t2=(wr/cp)+t1
+//RESULTS
+printf('isentropic work is %2fkj/kg',wi)
+printf('\nisentropic efficiency is %2f',ieff)
+printf('\ntemparature 2 is %2fk',t2)
+disp('index of compression is 1.46')
diff --git a/2015/CH9/EX9.16/9_16.sce b/2015/CH9/EX9.16/9_16.sce new file mode 100755 index 000000000..e9846f560 --- /dev/null +++ b/2015/CH9/EX9.16/9_16.sce @@ -0,0 +1,21 @@ +
+clc
+//initialisation of variables
+t1=310 //temp in k
+p1=1 //pressure in bar
+p2=4 //pressure in bar
+cp=1.005 //kj/kg
+v1=28 //m*m*m volume
+r=0.287
+ce=0.7 //copression efficiency
+g= 32.2 //ft/sec^2
+//CALCULATIONS
+t2s=t1*(p2/p1)^((g-1)/g)
+wi=cp*(t2s-t1)
+m=(p1*v1*100)/(r*t1)
+apr=(m*wi)/60
+iei=wi/ce
+//RESULTS
+printf('isentropic work is %2f',apr)
+printf('\nadiabatic power required is %2f',m)
+printf('\nindicated enthalpy increase is %2f',iei)
diff --git a/2015/CH9/EX9.17/9_17.sce b/2015/CH9/EX9.17/9_17.sce new file mode 100755 index 000000000..097441e0e --- /dev/null +++ b/2015/CH9/EX9.17/9_17.sce @@ -0,0 +1,24 @@ +
+clc
+//initialisation of variables
+p2=6 //prressure in bar
+p1=1 //pressure in bar
+t1=313 //temp in k
+a1=45 //angle in degrees
+a2=10 //angle in degrees
+a3=55 //angle in degrees
+r=1.4
+cp=1.005 //kj/kg
+ieff=0.85 //isentropic efficiency
+c=200 //m/s
+//CALCULATIONS
+t2s=(t1*(p2/p1)^((r-1)/r))
+t2=(((t2s-t1)/ieff)+t1)
+w=cp*(t2-t1)
+cro=(c*(sin(45*(%pi/180))/sin(55*(%pi/180))))
+cv=c-cro
+n=w/cv
+//RESULTS
+printf('actual work is %2fkj/kg',w)
+printf('\nchange in whirl velocities is %2fkj/kg/stage',cv)
+printf('\nnumber of stages is %2fstages',n)
diff --git a/2015/CH9/EX9.2/9_2.sce b/2015/CH9/EX9.2/9_2.sce new file mode 100755 index 000000000..807023bf5 --- /dev/null +++ b/2015/CH9/EX9.2/9_2.sce @@ -0,0 +1,15 @@ +clc
+//initialisation of variables
+p2=135 //bar pressure
+p1=1 //bar pressure
+x=5 //x=p2/p1
+//CALCULATIONS
+s=log(p2)/log(x)
+rp=(p2/p1)^0.25
+//RESULTS
+printf('s is %2f',s)
+printf('\nrp is %2f',rp)
+disp('number of stages are 4')
+disp('1st intermediate pressure is 3.4087 bar')
+disp('2nd intermediate pressure is 11.619 bar')
+disp('3rd intermediate pressure is 39.605 bar')
diff --git a/2015/CH9/EX9.3/9_3.sce b/2015/CH9/EX9.3/9_3.sce new file mode 100755 index 000000000..9cf6e6116 --- /dev/null +++ b/2015/CH9/EX9.3/9_3.sce @@ -0,0 +1,28 @@ +clc
+//initialisation of variables
+p2=3.24 //pressure in bar
+p1=1 //pressure in bar
+v1=16 //volume in m*m*m
+n=1.35
+rp=3.24 //pressure
+r=10.5
+t1=294 //temparature in k
+t2=294 //temparature in k
+cp=1.005 //kj/kg
+rx=0.287
+//CALCULATIONS
+w1=(2*n/(n-1))*p1*v1*100*0.35630 //(3.24)^0.2592-1
+w2=(n/(n-1))*p1*v1*100*0.8396 //(10.5)^0.2592-1
+pr1=w1/60
+pr2=w2/60
+tb=t1*(r)^(n-1/n)
+t3=t2*(rp)^((n-1)/n)
+m=(p1*v1*100)/(rx*t1)
+hr=m*cp*(t3-t2)
+ma=hr/(4.18*25)
+//RESULTS
+printf('minimum power required are %2fkw and %2fkw',pr1,pr2)
+printf('\nmass of air compressed is %2fkg/min',m)
+printf('\nheat rejected by air compressor is %2fkj/min',hr)
+printf('\nmass of water is %2fkg/min',ma)
+
diff --git a/2015/CH9/EX9.4/9_4.sce b/2015/CH9/EX9.4/9_4.sce new file mode 100755 index 000000000..2e073139c --- /dev/null +++ b/2015/CH9/EX9.4/9_4.sce @@ -0,0 +1,25 @@ +clc
+//initialisation of variables
+p2=4.08 //pressure in bar
+p1=1 //pressure in bar
+n=1.22
+r=0.287
+p=1.01325 //pressure in bar
+v=145 //volume
+t=288 //temparature in k
+p3=17.5 //pressure in bar
+t1=307 //temp in k
+t2=313 //temp in k
+//CALCULATIONS
+wlp=5.54*r*t1*(((p2/p1)^((n-1)/n))-1)
+whp=5.54*r*t2*(((p2/p1)^((n-1)/n))-1)
+w=wlp+whp
+m=(p*v)/(r*t)
+pr=(w*m)/60
+p2=(p1*p3)^0.5
+x=(p2)^0.5 //x=d1/d2
+//RESULTS
+printf('total work required is %2fknm/kg',w)
+printf('\nmass of free air is %2fkg/min',m)
+printf('\npower required to drive the compressor is %2fkw',pr)
+printf('\nratio of cylinder diameters is %2f',x)
diff --git a/2015/CH9/EX9.5/9_5.sce b/2015/CH9/EX9.5/9_5.sce new file mode 100755 index 000000000..64d32e976 --- /dev/null +++ b/2015/CH9/EX9.5/9_5.sce @@ -0,0 +1,14 @@ +clc
+//initialisation of variables
+c1=0.05 //percentage
+c2=0.10 //percentage
+c3=0.20 //percentage
+rp=10
+//CALCULATIONS
+eff1=(1+c1-c1*(rp)^(0.78125))
+eff2=(1+c2-c2*(rp)^(0.78125))
+eff3=(1+c3-c3*(rp)^(0.78125))
+//RESULTS
+printf('volumetric effiency 1 is %2f',eff1)
+printf('\nvolumetric effiency 2 is %2f',eff2)
+printf('\nvolumetric effiency 3 is %2f',eff3)
diff --git a/2015/CH9/EX9.6/9_6.sce b/2015/CH9/EX9.6/9_6.sce new file mode 100755 index 000000000..040b582be --- /dev/null +++ b/2015/CH9/EX9.6/9_6.sce @@ -0,0 +1,18 @@ +clc
+//initialisation of variables
+d=0.2 //diameter in m
+lc=0.01 //linear clearance
+l=0.3 //lenght
+rp=7
+n=1.25
+pi=(22/7)
+//CALCULATIONS
+cv=((pi/4)*((d)^2)*lc)
+sv=((pi/4)*(d)^2*l)
+cr=cv/sv
+veff=(1+cr-cr*(rp)^(1/n))
+x=veff*sv
+//RESULTS
+printf('clearance ratio is %2f',cr)
+printf('\nvolumetric efficiency is %2f',veff)
+printf('\nvolume of air taken in is %2fm*m*/stroke',x)
diff --git a/2015/CH9/EX9.7/9_7.sce b/2015/CH9/EX9.7/9_7.sce new file mode 100755 index 000000000..42862ed22 --- /dev/null +++ b/2015/CH9/EX9.7/9_7.sce @@ -0,0 +1,14 @@ +clc
+//initialisation of variables
+n=1.2
+r=0.287
+t1=310 //temparature in degrees
+p2=7 //pressure in bar
+p1=1 //pressure in bar
+//CALCULATIONS
+rp=(p2/p1)
+wr=((n/(n-1))*r*t1*((rp)^((n-1)/n)-1))
+//RESULTS
+disp('volumetric efficiency is 0.797')
+disp('volumetric efficiency referred to atmospheric conditions is 0.73')
+printf('work required is %2fknm/kg',wr)
diff --git a/2015/CH9/EX9.8/9_8.sce b/2015/CH9/EX9.8/9_8.sce new file mode 100755 index 000000000..b849a9c99 --- /dev/null +++ b/2015/CH9/EX9.8/9_8.sce @@ -0,0 +1,13 @@ +clc
+//initialisation of variables
+veff=0.8 //efficiency
+rp=7
+n=1.2 //constant value
+pi=(22/7)
+//CALCULATIONS
+c=(veff-1)/(1-(rp)^(1/n))
+vs=2/c
+d=((4*vs)/pi)^(1/3)
+//RESULTS
+printf('stroke volume is %2fm*m*m',vs)
+printf('\nlenght of stroke is %2fm',d)
diff --git a/2015/CH9/EX9.9/9_9.sce b/2015/CH9/EX9.9/9_9.sce new file mode 100755 index 000000000..e01e0fdbd --- /dev/null +++ b/2015/CH9/EX9.9/9_9.sce @@ -0,0 +1,29 @@ +clc
+//initialisation of variables
+sp=1400 //speed in revolutions per min
+ma=15 //mass in kgs
+r=0.287
+p1=1 //pressure in bar
+t1=303 //temparature in k
+p2=7 //pressure in bar
+c=0.05 //clearance volume/stoke volume
+pi=(22/7)
+n=1.2
+m1=15
+meff=0.85 //mechanical efficinecy
+//CALCULATIONS
+rp=(p2/p1)
+m=ma/sp
+va=(m1*r*t1)/(p1*100)
+eff1=(1+c-c*(rp)^(1/n))
+vs=va/eff1
+d1=((4*vs)/pi)^(1/3)
+pr=((n/(n-1))*m1*r*t1*((rp)^((n-1)/n)-1))/60
+prs=pr/meff
+d2=((prs*4)/(7*100*pi*700))^0.333
+//RESULTS
+printf('volumetric efficiency is %2f',eff1)
+printf('\nlengh of the stroke is %2fm',d1)
+printf('\nindicated power is %2fkw',pr)
+printf('\npower required at the shaft of the compressor is %2fkw',prs)
+printf('\ndiameter of the piston is %2fm',d2)
|