diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1970/CH13 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1970/CH13')
-rwxr-xr-x | 1970/CH13/EX13.1/CH13Exa1.sce | 15 | ||||
-rwxr-xr-x | 1970/CH13/EX13.2/CH13Exa2.sce | 11 | ||||
-rwxr-xr-x | 1970/CH13/EX13.3/CH13Exa3.sce | 15 | ||||
-rwxr-xr-x | 1970/CH13/EX13.4/CH13Exa4.sce | 30 | ||||
-rwxr-xr-x | 1970/CH13/EX13.5/CH13Exa5.sce | 21 | ||||
-rwxr-xr-x | 1970/CH13/EX13.6/CH13Exa6.sce | 18 | ||||
-rwxr-xr-x | 1970/CH13/EX13.7/CH13Exa7.sce | 16 | ||||
-rwxr-xr-x | 1970/CH13/EX13.8/CH13Exa8.sce | 13 | ||||
-rwxr-xr-x | 1970/CH13/EX13.9/CH13Exa9.sce | 11 |
9 files changed, 150 insertions, 0 deletions
diff --git a/1970/CH13/EX13.1/CH13Exa1.sce b/1970/CH13/EX13.1/CH13Exa1.sce new file mode 100755 index 000000000..4e6cae307 --- /dev/null +++ b/1970/CH13/EX13.1/CH13Exa1.sce @@ -0,0 +1,15 @@ +// Scilab code Exa13.1 : : Page-600 (2011) +clc; clear; +E = 200*1.6023e-13; // Energy released per fission, joule +E_t = 2; // Total power produced, watt +R_fiss = E_t/E; // Fission rate, fissions per sec +m = 0.5; // Mass of uranium, Kg +M = 235; // Mass number of uranium +N_0 = 6.023e+26; // Avogadro's number, per mole +N = m/M*N_0 // Number of uranium nuclei +E_rel = N*E/4.08*10^-3; // Energy released, kilocalories +printf("\nThe rate of fission of U-235 = %4.2e fissions per sec \nEnergy released = %e kcal", R_fiss, E_rel); + +// Result +// The rate of fission of U-235 = 6.24e+010 fissions per sec +// Energy released = 1.006535e+010 kcal
\ No newline at end of file diff --git a/1970/CH13/EX13.2/CH13Exa2.sce b/1970/CH13/EX13.2/CH13Exa2.sce new file mode 100755 index 000000000..ab3bc435b --- /dev/null +++ b/1970/CH13/EX13.2/CH13Exa2.sce @@ -0,0 +1,11 @@ +// Scilab code Exa13.2 : : Page-600 (2011) +clc; clear; +E = 200*1.6e-13; // Energy released per fission, joules per neutron +t = 10^-3; // Time, sec +P = E/t; // Power produced by one free neutron, watt per neutron +P_l = 10^9; // Power level, watt +N = P_l/P; // Number of free neutrons in the reactor, neutrons +printf("\nThe number of free neutrons in the reactor = %5.3e neutrons", N); + +// Result +// The number of free neutrons in the reactor = 3.125e+016 neutrons
\ No newline at end of file diff --git a/1970/CH13/EX13.3/CH13Exa3.sce b/1970/CH13/EX13.3/CH13Exa3.sce new file mode 100755 index 000000000..92d276e07 --- /dev/null +++ b/1970/CH13/EX13.3/CH13Exa3.sce @@ -0,0 +1,15 @@ +// Scilab code Exa13.3 : : Page-600 (2011) +clc; clear; +N_0_235 = 1; // Number of uranium 235 per 238 +N_0_238 = 20; // Number of uranium 238 for one uranium 235 +sigma_a_235 = 683; // Absorption cross section for uranium 235, barn +sigma_a_238 = 2.73; // Absorption cross section for uranium 238, barn +sigma_f_235 = 583; // Fission cross section, barn +sigma_a = (N_0_235*sigma_a_235+N_0_238*sigma_a_238)/(N_0_235+N_0_238); //Asorption cross sec, barn +sigma_f = N_0_235*sigma_f_235/(N_0_235+N_0_238); // Fisssion cross section +v = 2.43; +eta = v*sigma_f/sigma_a; // Average number of neutron released per absorption +printf("\nThe average number of neutrons released per absorption = %5.3f", eta); + +// Result +// The average number of neutrons released per absorption = 1.921
\ No newline at end of file diff --git a/1970/CH13/EX13.4/CH13Exa4.sce b/1970/CH13/EX13.4/CH13Exa4.sce new file mode 100755 index 000000000..6fe345a55 --- /dev/null +++ b/1970/CH13/EX13.4/CH13Exa4.sce @@ -0,0 +1,30 @@ +// Scilab code Exa13.4 : : Page-600(2011) +clc; clear; +a_v = 14.0; // Volume binding energy constant, mega electron volts +a_s = 13.0; // Surface binding energy constant, mega electron volts +a_c = 0.583; // Coulomb constant, mega electron volts +a_a = 19.3; // Asymmetric constant, mega electron volts +a_p = 33.5; // Pairing energy constant, mega electron volts +Z = 92; // Atomic number +// For U-236 +A = 235; // Mass number +E_exc_236 = a_v*(A+1-A)-a_s*((A+1)^(2/3)-A^(2/3))-a_c*(Z^2/(A+1)^(1/3)-Z^2/A^(1/3))-a_a*((A+1-2*Z)^2/(A+1)-(A-2*Z)^2/A)+a_p*(A+1)^(-3/4); // Excitation energy for uranium 236, mega electron volts +// For U-239 +A = 238; // Mass number +E_exc_239 = a_v*(A+1-A)-a_s*((A+1)^(2/3)-A^(2/3))-a_c*(Z^2/(A+1)^(1/3)-Z^2/A^(1/3))-a_a*((A+1-2*Z)^2/(A+1)-(A-2*Z)^2/A)+a_p*((A+1)^(-3/4)-A^(-3/4)); // Excitation energy for uranium 239 +// Now calculate the rate of spontaneous fissioning for U-235 +N_0 = 6.02214e+23; // Avogadro's constant, per mole +M = 235; // Mass number +t_half = 3e+17*3.15e+7; // Half life, years +lambda = 0.693/t_half; // Decay constant, per year +N = N_0/M; // Mass of uranium 235, Kg +dN_dt = N*lambda*3600; // Rate of spontaneous fissioning of uranium 235, per hour +printf("\nThe excitation energy for uranium 236 = %3.1f MeV\nThe excitation energy for uranium 239 = %3.1f MeV\nThe rate of spontaneous fissioning of uranium 235 = %4.2f per hour", E_exc_236, E_exc_239, dN_dt); + +// Result +// The excitation energy for uranium 236 = 6.8 MeV +// The excitation energy for uranium 239 = 5.9 MeV +// The rate of spontaneous fissioning of uranium 235 = 0.68 per hour + + +
\ No newline at end of file diff --git a/1970/CH13/EX13.5/CH13Exa5.sce b/1970/CH13/EX13.5/CH13Exa5.sce new file mode 100755 index 000000000..60882f4ab --- /dev/null +++ b/1970/CH13/EX13.5/CH13Exa5.sce @@ -0,0 +1,21 @@ +// Scilab code Exa13.5 : : Page-601 (2011) +clc; clear; +a = 10^5; // Area of the lake, square mile +d = 1/20; // Depth of the lake, mile +V = a*d*(1.6e+03)^3; // Volume of the lake, cubic metre +rho = 10^3; // Density of water, kg per cubic metre +M_water = V*rho; // Total mass of water in the lake, Kg +N_0 = 6.02214e+26; // Avogadro's constant, per mole +A = 18; // Milecular mass of water +N = M_water*N_0/A; // Number of molecules of water, molecules +abund_det = 0.0156e-02; // Abundance of deterium +N_d = N*2*abund_det; // Number of deterium atoms +E_per_det = 43/6; // Energy released per deterium atom, mega electron volts +E_t = N_d*E_per_det; // Total energy released during fusion, mega electron volt +printf("\nThe total energy released during fusion = %4.2e MeV", E_t); + +// Result +// Total energy released during fusion = 1.53e+039 MeV + + +
\ No newline at end of file diff --git a/1970/CH13/EX13.6/CH13Exa6.sce b/1970/CH13/EX13.6/CH13Exa6.sce new file mode 100755 index 000000000..2047de159 --- /dev/null +++ b/1970/CH13/EX13.6/CH13Exa6.sce @@ -0,0 +1,18 @@ +// Scilab code Exa13.6 : : Page-601 (2011) +clc; clear; +r = 1/2; // Radius of the tube, metre +a = %pi*r^2; // Area of the torus, square metre +V = 3*%pi*a; // Volume of the torus, cubic metre +P = 10^-5*13.6e+3*9.81; // Pressure of the gas, newton per square metre +C = 1200e-6; // Capacitance, farad +v = 4e+4; // potential, volts +T_room = 293; // Room temperature, kelvin +N_k = P*V/T_room; // From gas equation +E = 1/2*C*v^2; // Energy stored, joules +T_k = 1/6*E/(N_k*10); // Temperature attained by thermonuclear device, kelvin +printf("\nThe temperature attained by thermonuclear device = %4.2e K", T_k); + +// Result +// The temperature attained by thermonuclear device = 4.75e+005 K + +
\ No newline at end of file diff --git a/1970/CH13/EX13.7/CH13Exa7.sce b/1970/CH13/EX13.7/CH13Exa7.sce new file mode 100755 index 000000000..85d801f7e --- /dev/null +++ b/1970/CH13/EX13.7/CH13Exa7.sce @@ -0,0 +1,16 @@ +// Scilab code Exa13.7 : : Page-601 (2011) +clc; clear; +G = 6.67e-11; // Gravitational constant, newton square m per square kg +r = 7e+08; // Radius of the sun, metre +M_0 = 2e+30; // Mass of the sun, kg +E_rel = 3/5*G*M_0^2/r; // Energy released by the sun, joule +E_dia_shrink_10 = E_rel/9; // Energy released when sun diameter shrink by 10 percent, joule +R = 8.314; // Universal gas constant, joule per kelvin per kelvin per mole +T = E_rel/(M_0*R); // Temperature of the sun, kelvin +printf("\nThe energy released by the sun = %4.2e joule \nThe energy released when sun diameter is shrinked by 10 percent = %4.2e joule \nThe temperature of the sun = %4.2e kelvin ",E_rel, E_dia_shrink_10, T); + +// Result +// The energy released by the sun = 2.29e+041 joule +// The energy released when sun diameter is shrinked by 10 percent = 2.54e+040 joule +// The temperature of the sun = 1.38e+010 kelvin +
\ No newline at end of file diff --git a/1970/CH13/EX13.8/CH13Exa8.sce b/1970/CH13/EX13.8/CH13Exa8.sce new file mode 100755 index 000000000..cdab443a7 --- /dev/null +++ b/1970/CH13/EX13.8/CH13Exa8.sce @@ -0,0 +1,13 @@ +// Scilab code Exa13.8 : : Page-602 (2011) +clc; clear; +A_0 = 240; // Mass number of parent nucleus +A_1 = 120; // Mass number of daughter nucleus +B_120 = 8.5; // Binding energy of daughter nucleus +B_240 = 7.6; // Binding energy of parent nucleus +Q = 2*A_1*B_120-A_0*B_240; // Estimated Q-value, mega electron volts +printf("\nThe estimated Q-value is = %d MeV", Q); + +// Result +// The estimated Q-value is = 216 MeV + +
\ No newline at end of file diff --git a/1970/CH13/EX13.9/CH13Exa9.sce b/1970/CH13/EX13.9/CH13Exa9.sce new file mode 100755 index 000000000..23f215b58 --- /dev/null +++ b/1970/CH13/EX13.9/CH13Exa9.sce @@ -0,0 +1,11 @@ +// Scilab code Exa13.9 : : Page-602 (2011) +clc; clear; +E = 31.7; // Energy, MeV +a_a = 5/9*2^(-2/3)*E; // Asymmetric binding energy term, mega electron volts +printf("\nThe asymmetric binding energy term = %4.1f MeV", a_a); + +// Result +// The asymmetric binding energy term = 11.1 MeV + + +
\ No newline at end of file |