diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1943/CH7/EX7.15/Ex7_15.sce | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1943/CH7/EX7.15/Ex7_15.sce')
-rwxr-xr-x | 1943/CH7/EX7.15/Ex7_15.sce | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/1943/CH7/EX7.15/Ex7_15.sce b/1943/CH7/EX7.15/Ex7_15.sce new file mode 100755 index 000000000..84fdbc19a --- /dev/null +++ b/1943/CH7/EX7.15/Ex7_15.sce @@ -0,0 +1,45 @@ + +clc
+clear
+//Input data
+p1=35//Pressure in bar
+T1=350+273//Temperature in K
+p2=0.07//Pressure in bar
+x=1/4//Fraction of drop in isentropic enthalpy
+a=20//Nozzle angle in degrees
+nn=88//Nozzle efficiency in percent
+y=0.2//Velocity ratio
+b2=30//Exit blade angle in degrees
+b4=30//Exit blade angle in degrees
+f=0.9//Friction coefficienct
+in=75//Internal efficiency of the turbine in percent
+
+//Calculations
+h1=3106.4//Enthalpy in kJ/kg
+s1=6.6643//Entropy in kJ/kg.K
+x2s=(s1-0.5582)/7.7198//dryness fraction
+h2s=(163.16+x2s*2409.54)//Enthalpy in kJ/kg
+dh=(h1-h2s)//Change in enthalpy in kJ/kg
+h13s=x*dh//Change in enthalpy in kJ/kg
+h13=(nn/100)*h13s//Change in enthalpy in kJ/kg
+V1=(44.72*sqrt(h13))//Velocity in m/s
+Vb=(y*V1)//Velocity in m/s
+b1=atand((V1*sind(a))/((V1*cosd(a))-Vb))//Angle in degrees
+Vr1=((V1*sind(a))/sind(b1))//Velocity in m/s
+Vr2=(f*Vr1)//Velocity in m/s
+dVw1=(Vr1*cosd(b1))+(Vr2*cosd(b2))//Velocity in m/s
+V2=sqrt((Vr2*sind(b2))^2+((Vr2*cosd(b2))-Vb)^2)//Velocity in m/s
+V3=f*V2//Velocity in m/s
+b3=atand((V3*sind(b2))/((V3*cosd(b2))-Vb))//Angle in degrees
+Vr3=((V3*sind(b2))/sind(b3))//Velocity in m/s
+Vr4=f*Vr3//Velocity in m/s
+dVw2=(Vr3*cosd(b3))+(Vr4*cosd(b4))//Velocity in m/s
+dVw=(dVw1+dVw2)//Velocity in m/s
+nb1=((2*dVw*Vb)/V1^2)*100//Efficiency in percent
+ns=(nn*nb1)/100//Efficiency in percent
+ht=(in/100)*dh//Total change in enthalpy in kJ/kg
+hc=(ns/100)*h13s//Total change in enthalpy in kJ/kg
+pp=(hc/ht)*100//Percentage of enthalpy
+
+//Output
+printf('Efficiency of first stage is %3.2f percent \n Percentage of the total power developed by the turbine is %3.2f percent',ns,pp)
|