summaryrefslogtreecommitdiff
path: root/1919/CH11
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1919/CH11
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1919/CH11')
-rwxr-xr-x1919/CH11/EX11.1/Ex11_1.sce27
-rwxr-xr-x1919/CH11/EX11.10/Ex11_10.sce32
-rwxr-xr-x1919/CH11/EX11.11/Ex11_11.sce25
-rwxr-xr-x1919/CH11/EX11.2/Ex11_2.sce21
-rwxr-xr-x1919/CH11/EX11.3/Ex11_3.sce32
-rwxr-xr-x1919/CH11/EX11.4/Ex11_4.sce22
-rwxr-xr-x1919/CH11/EX11.5/Ex11_5.sce21
-rwxr-xr-x1919/CH11/EX11.6/Ex11_6.sce24
-rwxr-xr-x1919/CH11/EX11.7/Ex11_7.sce21
-rwxr-xr-x1919/CH11/EX11.8/Ex11_8.sce23
-rwxr-xr-x1919/CH11/EX11.9/Ex11_9.sce30
11 files changed, 278 insertions, 0 deletions
diff --git a/1919/CH11/EX11.1/Ex11_1.sce b/1919/CH11/EX11.1/Ex11_1.sce
new file mode 100755
index 000000000..7c5abca22
--- /dev/null
+++ b/1919/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,27 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 1
+clear ;clc;
+
+//Given data
+phi = 30 // phi lies between 29.5 and 30.5
+theta = 45 // theta lies between 44.5 and 45.5
+
+// Calculations
+// fraction of gas having velocities ia given by
+// dn_p_t/n = 1/4/%pi*sin(theta)dt*dp where t=theta; p=phi
+// since dt and dp are small values , above equation can be written in the
+// differnt form as
+// dn_p_t/n = 1/4/%pi*sin(theta)*del_t*del_p
+
+del_t = %pi/180 // in radians for 1 degree
+del_p = %pi/180 // in radians for 1 degree
+theta = 45 * del_t // in radians
+
+f = 1/(4*%pi)*sin(theta)*del_t*del_p
+
+
+// output results
+mprintf('fraction of gas having velocities = %4.3f E-05', f*1e5)
diff --git a/1919/CH11/EX11.10/Ex11_10.sce b/1919/CH11/EX11.10/Ex11_10.sce
new file mode 100755
index 000000000..43b4ffbcb
--- /dev/null
+++ b/1919/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,32 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 10
+
+clear ;clc;
+
+//Given data
+r1 = 0.18 // radius of oxygen molecule in nm
+P = 0.01 // pressure of oxygen in MPa
+T = 500 // temperature of oxygen in K
+R = 8.314 // gas constant
+N0 = 6.023*1e23 // number of atoms per mole
+M = 32*1e-3 // molar mass of oxygen in kg/mol
+
+// Calculations
+sig = 4*%pi*((r1*1e-9)^2) // collision cross section
+
+n = P*N0/(R*T) // molecules per m^3
+
+lam = 1/(sig*n) // mean free path
+
+X1 = exp(-1.5/lam) // fraction of free paths longer than 1.5m
+X2 = 1- X1 // fraction of free paths shorter than 1.5m
+X3 = 1- exp(-2/lam) // fraction of free paths shorter than 2m
+
+r_f = X3 - X2 // fraction between 1.5 and 2 m
+
+// output results
+mprintf('(a) Fraction of free paths longer than 1.5 m = %4.4f ', X1)
+mprintf('\n (b) Fraction of free paths longer than 1.5 m but shorter than 2 m = %4.4f ', r_f)
diff --git a/1919/CH11/EX11.11/Ex11_11.sce b/1919/CH11/EX11.11/Ex11_11.sce
new file mode 100755
index 000000000..cbdb095b7
--- /dev/null
+++ b/1919/CH11/EX11.11/Ex11_11.sce
@@ -0,0 +1,25 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 11
+
+clear ;clc;
+
+//Given data
+T = 273 // temperature of oxygen in K
+vis =19.2 // viscosity of oxygen
+R = 8.314 // gas constant
+N0 = 6.023*1e23 // number of atoms per mole
+M = 32*1e-3 // molar mass of oxygen in kg/mol
+
+// Calculations
+V = (8*R*T/(%pi*M))^0.5 // average velocity of gas molecule
+
+sig = M*V/(N0*vis*(1e-6)*3*(2^0.5))
+
+//sig = 4*%pi*r1^2
+r1 = (sig/(4*%pi))^0.5
+
+// output results
+mprintf('Hard sphere radius of oxygen molecule = %4.2f nm', r1*1e9)
diff --git a/1919/CH11/EX11.2/Ex11_2.sce b/1919/CH11/EX11.2/Ex11_2.sce
new file mode 100755
index 000000000..326d2e131
--- /dev/null
+++ b/1919/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,21 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 2
+clear ;clc;
+
+//Given data
+P = 0.1 // pressure of helium surface exposed in MPa
+T = 300 // temperature of helium surface exposed in K
+R = 8.314 // gas constant
+M = 4*1e-3 // molecular weight of helium
+k = 1.3804*1e-23 // boltzmann constant
+
+// Calculations
+V = (8*R*T/(%pi*M))^0.5 // average velocity of gas molecule
+n = P*1e6/(k*T) // number of mlucules per m^3
+num_col = 1/4*n*V // number of collisions per m^2 per second
+
+// output results
+mprintf('number of collisions per m^2 per second = %4.4f E+27', num_col*1e-27)
diff --git a/1919/CH11/EX11.3/Ex11_3.sce b/1919/CH11/EX11.3/Ex11_3.sce
new file mode 100755
index 000000000..f524a0c75
--- /dev/null
+++ b/1919/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,32 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 3
+clear ;clc;
+
+//Given data
+r = 0.18 // radius of oxygen molecule in nm
+P = 0.1 // pressure of oxygen in MPa
+T = 300 // temperature of oxygen in K
+R = 8.314 // gas constant
+N = 6.023*1e23 // number of atoms per mole
+
+// Calculations
+v_m = R*T/(P*1e6) // volume occupied by one mole of gas
+V_M = N*(4/3)*%pi*((r*1e-9)^3) // volume occupied by oxygen molecules
+
+V = v_m/N // volume available for one molecule
+deff('y=radius(r)', 'y = V - (4/3)*%pi*r^3')
+r = fsolve(0.001,radius) // radius of sphere in a molecule
+
+d = 2*r // average distance between 2 molecules
+
+V_E = 4*V_M // excluded volume for molecular motion
+
+
+// output results
+mprintf('(a) volume occupied by one mole of gas = %4.4f cubic m/mol', v_m)
+mprintf('\n (b) volume occupied by oxygen molecules = %4.4f E-05 cubic m', V_M *1e5)
+mprintf('\n (c) average distance between 2 molecules = %4.2f nm', d*1e9)
+mprintf('\n (d) excluded volume for molecular motion = %4.4f E-05 cubic m', V_E*1e5)
diff --git a/1919/CH11/EX11.4/Ex11_4.sce b/1919/CH11/EX11.4/Ex11_4.sce
new file mode 100755
index 000000000..def305250
--- /dev/null
+++ b/1919/CH11/EX11.4/Ex11_4.sce
@@ -0,0 +1,22 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 4
+clear ;clc;
+
+//Given data
+T = 1000 // Temperature of nitrogen gas in K
+M = 28*1e-3 // molar mass of nitrogen in kg/mol
+R = 8.314 // gas constant
+
+// Calculations
+V = (8*R*T/%pi/M)^0.5 // average speed of nitrogen
+V_rms = (3*R*T/M)^0.5 // root mean square speed of nitrogen
+V_mp = (2*R*T/M)^0.5 // most probable speed of nitrogen
+
+
+// Output results
+mprintf('Average speed of nitrogen = %4.2f m/s', V)
+mprintf('\n Root mean square speed of nitrogen = %4.2f m/s', V_rms)
+mprintf('\n Most probable speed of nitrogen = %4.2f m/s', V_mp)
diff --git a/1919/CH11/EX11.5/Ex11_5.sce b/1919/CH11/EX11.5/Ex11_5.sce
new file mode 100755
index 000000000..4bfcd337f
--- /dev/null
+++ b/1919/CH11/EX11.5/Ex11_5.sce
@@ -0,0 +1,21 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 5
+clear ;clc;
+
+//Given data
+V1 = 1 // X-component velocity low range
+V2 = 1.6 // X-component velocity upper range
+
+// Caluclations
+// Required fraction from The Maxwell-Boltzmann distribution of the X-component // velocity
+
+// F = (1/sqrt(%pi))integrate(exp(-X^2),'X',1,1.6)
+// F = 1/2*((2/sqrt(%pi))integrate(exp(-X^2),'X',1,1.6) - (2/sqrt(%pi))integrate// (exp(-X^2),'X',0,1))
+
+F = 0.5*(erf(1.6) - erf(1))
+
+// Output results
+mprintf('The fraction of molecules of a gas X-component velocities in the range Vmp and 1.6Vmp = %4.4f', F)
diff --git a/1919/CH11/EX11.6/Ex11_6.sce b/1919/CH11/EX11.6/Ex11_6.sce
new file mode 100755
index 000000000..338ae2f83
--- /dev/null
+++ b/1919/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,24 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 6
+clear ;clc;
+
+//Given data
+V = 1.2 // X-component velocity lower range
+
+// Caluclations
+// The fraction of molecules with positive x-component of velocity = 0.5
+F_mol = 0.5
+
+// F = (1/sqrt(%pi))integrate(exp(-X^2),'X',0,1.2)
+
+F_0 = 0.5*erf(V)
+
+// The fraction of molecules with positive X-Component of velocity greater then 1.2Vmp
+F_12 = F_mol - F_0
+
+
+// Output results
+mprintf('The fraction of molecules with positive X-Component of velocity greater then 1.2Vmp = %4.4f', F_12)
diff --git a/1919/CH11/EX11.7/Ex11_7.sce b/1919/CH11/EX11.7/Ex11_7.sce
new file mode 100755
index 000000000..4ef0dbeff
--- /dev/null
+++ b/1919/CH11/EX11.7/Ex11_7.sce
@@ -0,0 +1,21 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 7
+clear ;clc;
+
+//Given data
+V1 = 1 // X-component velocity low range
+V2 = 1.6 // X-component velocity upper range
+
+// Caluclations
+// Required fraction from The Maxwell-Boltzmann distribution of the X-component // velocity
+
+// F = (1/sqrt(%pi))integrate(exp(-X^2),'X',1,1.6)
+// F = 1/2*((2/sqrt(%pi))integrate(exp(-X^2),'X',1,1.6) - (2/sqrt(%pi))integrate// (exp(-X^2),'X',0,1))
+
+F = erf(V2) - (2/sqrt(%pi))*V2*exp(-V2^2) - erf(V1) + (2/sqrt(%pi))*exp(-V1)
+
+// Output results
+mprintf('The fraction of molecules of a gas with speed between Vmp and 1.6Vmp = %4.4f', F)
diff --git a/1919/CH11/EX11.8/Ex11_8.sce b/1919/CH11/EX11.8/Ex11_8.sce
new file mode 100755
index 000000000..2a8ec117d
--- /dev/null
+++ b/1919/CH11/EX11.8/Ex11_8.sce
@@ -0,0 +1,23 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 8
+clear ;clc;
+
+//Given data
+R = 8.314 // Gas constant
+
+// u = 5*(0.5*R*T) // Energy of molecule
+
+// h = u+Pv = 5/2*R*T + RT = 7/2*R*T
+
+ Cv = 5/2*R
+
+ Cp = 7/2*R
+
+ gam = Cp/Cv
+
+
+ // output results
+ mprintf('The ratio of the molar heat capacity of CO2 = %1.1f', gam)
diff --git a/1919/CH11/EX11.9/Ex11_9.sce b/1919/CH11/EX11.9/Ex11_9.sce
new file mode 100755
index 000000000..208c3e5df
--- /dev/null
+++ b/1919/CH11/EX11.9/Ex11_9.sce
@@ -0,0 +1,30 @@
+
+// Theory and Problems of Thermodynamics
+// Chapter 11
+// Kinetic Theory of Gases
+// Example 9
+clear ;clc;
+
+//Given data
+r1 = 0.18 // radius of oxygen molecule in nm
+P = 0.01 // pressure of oxygen in MPa
+T = 500 // temperature of oxygen in K
+R = 8.314 // gas constant
+N0 = 6.023*1e23 // number of atoms per mole
+M = 32*1e-3 // molar mass of oxygen in kg/mol
+
+// Calculations
+sig = 4*%pi*((r1*1e-9)^2) // collision cross section
+
+n = P*N0/(R*T) // molecules per m^3
+
+V = (8*R*T/%pi/M)^0.5 // average speed of oxygen
+
+Z = sig*n*V // collision frequency
+
+lam = 1/(sig*n) // mean free path
+
+// output results
+mprintf('collision cross section for oxygen = %4.4f E-18 square m', sig*1e18)
+mprintf('\n collision frequency for oxygen = %4.0f collisions/s', Z)
+mprintf('\n mean free path for oxygen = %4.3f m', lam)