summaryrefslogtreecommitdiff
path: root/1910/CH2/EX2.13
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1910/CH2/EX2.13
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1910/CH2/EX2.13')
-rwxr-xr-x1910/CH2/EX2.13/Chapter213.sce64
1 files changed, 64 insertions, 0 deletions
diff --git a/1910/CH2/EX2.13/Chapter213.sce b/1910/CH2/EX2.13/Chapter213.sce
new file mode 100755
index 000000000..4524355eb
--- /dev/null
+++ b/1910/CH2/EX2.13/Chapter213.sce
@@ -0,0 +1,64 @@
+// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Introduction to heat transfer by S.K.Som, Chapter 2, Example 13")
+//A very long,10mm diameter(D) copper rod(thermal conductivity,k=370W/(m*K))is exposed to an enviroment at temprature,Tinf=20°C.
+D=0.01;
+k=370;
+Tinf=20;
+//The base temprature of the radius maintained at Tb=120°C.
+Tb=120;
+//The heat transfer coefficient between the rod and the surrounding air is h=10W/(m*K^2)
+h=10;
+//The rate of heat transfer for all finite lengths will be given by P/A=(4*pi*D)/(pi*D^2)
+//Let P/A=X
+disp("P/A in m^-1 is")
+X=(4*%pi*D)/(%pi*D^2)
+//m is defined as [(h*p)/(k*A)]^0.5
+disp("m in m^-1 is")
+m=(h*X/k)^0.5
+//Let Y=h/(m*k)
+Y=h/(m*k)
+//Let M=(h*P*k*A)^0.5
+P=(%pi*D);//perimeter of the rod
+A=(%pi*D^2)/4;//Area of the rod
+disp("M in W/K is")
+M=(h*P*k*A)^0.5
+//thetab is the parameter that defines the base temprature
+disp("thetab in °C is ")
+thetab=Tb-Tinf
+//Heat loss from the rod is defined as Q=(h*P*k*A)*thetab*{[(h/m*k)+tanh(m*L)]/[1+(h/m*k)*tanh(m*L)]}
+disp("Heat loss from rod in Watt, for different value of length(in m) is ")
+L=0.02//Length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=0.04//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=0.08//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=0.20//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=0.40//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=0.80//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=1.00//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+L=10.00//length of rod
+Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]}
+//For an infinitely long rod we use heat loss as ,Qinf=(h*P*k*A)^0.5*thetab
+disp("For an infintely long rod heat loss in W is")
+Qinf=(h*P*k*A)^0.5*thetab
+disp("We see that since k is large there is significant difference between the finite length and the infinte length cases")
+disp("However when the length of the rod approaches 1m,the result become almost same." )
+
+
+
+
+
+
+
+
+