diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1904/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1904/CH4')
-rwxr-xr-x | 1904/CH4/EX4.1/4_1.sce | 19 | ||||
-rwxr-xr-x | 1904/CH4/EX4.10/4_10.sce | 22 | ||||
-rwxr-xr-x | 1904/CH4/EX4.11/4_11.sce | 38 | ||||
-rwxr-xr-x | 1904/CH4/EX4.2/4_2.sce | 12 | ||||
-rwxr-xr-x | 1904/CH4/EX4.3/4_3.sce | 13 | ||||
-rwxr-xr-x | 1904/CH4/EX4.4/4_4.sce | 13 | ||||
-rwxr-xr-x | 1904/CH4/EX4.5/4_5.sce | 18 | ||||
-rwxr-xr-x | 1904/CH4/EX4.6/4_6.sce | 32 | ||||
-rwxr-xr-x | 1904/CH4/EX4.7/4_7.sce | 42 | ||||
-rwxr-xr-x | 1904/CH4/EX4.8/4_8.sce | 38 |
10 files changed, 247 insertions, 0 deletions
diff --git a/1904/CH4/EX4.1/4_1.sce b/1904/CH4/EX4.1/4_1.sce new file mode 100755 index 000000000..7046b5874 --- /dev/null +++ b/1904/CH4/EX4.1/4_1.sce @@ -0,0 +1,19 @@ +//To determine the constant K for 16kV feeder
+//Page 201
+clc;
+clear;
+
+//Conductor Pararmeters
+r=1.503;
+xa=0.609;
+xd=0.1366;
+pf=0.9;
+Vb=2400;
+Vr=Vb;
+x=xa+xd;
+Kc=0.01; //From the Curve
+
+K=((r*pf)+(x+sind(acosd(pf))))*(1000/3)*100/(Vr*Vb); // In Percent
+
+printf('\na) The Value of Constant K is %g percent VDpu per kVA mile\n',K)
+printf('b) From the precalculated per cent voltage drop Curve, It is found that the K is \n%g percent VDpu per kVA mile which is same as the answer obtained in part a\n',Kc)
diff --git a/1904/CH4/EX4.10/4_10.sce b/1904/CH4/EX4.10/4_10.sce new file mode 100755 index 000000000..34c34c120 --- /dev/null +++ b/1904/CH4/EX4.10/4_10.sce @@ -0,0 +1,22 @@ +//To find the substation spacing and load on transformers
+//Page 217
+clc;
+clear;
+
+D=500; //Load Density in kVA per sq.miles
+Vl=12.47; //Line Voltage in kV
+N=2; //Feeders per substation
+//From Table A-5 Appendix A it Current Ampacity can be found
+
+Imax=340;
+
+S2=sqrt(3)*Vl*Imax; //Load Per Feeder
+
+l2=sqrt(S2/D); //Length of the feeder
+S=2*l2; //Substation Spacing
+TS2=S2*N; //Total Load on substation
+
+printf('\nThe Parts a,b and c of thhis question cannot be coded\n')
+printf('d) The substation size and spacing is %g kVA and %g miles\n',TS2,S)
+
+
diff --git a/1904/CH4/EX4.11/4_11.sce b/1904/CH4/EX4.11/4_11.sce new file mode 100755 index 000000000..440827b63 --- /dev/null +++ b/1904/CH4/EX4.11/4_11.sce @@ -0,0 +1,38 @@ +//To Compare the method of service area coverage with four feeders
+//Page 221
+clc;
+clear;
+
+Ts=1; //Assumed Load on station
+K=1; //Assumption Constant
+K2=K;
+K4=K;
+D=1;//Assumption Load Density
+//Number of feeders
+N2=2;
+N4=4;
+S2=Ts/N2; //Load per feeder //Two feeders
+S4=Ts/N4; //Load per feeder //4 feeders
+l=poly(0,'l'); //Variable Value of length
+L2eff=1*l/3;
+L4eff=2*l/3;
+
+deff('x=VD(y)','x=D*(l^2)*K*y') //Function to find VD
+
+VD2=VD(L2eff);
+VD4=VD(L4eff);
+RVD=VD2/VD4;
+X=l-RVD;
+RVD=1/roots(X(2)); //To find the ratio of (l2^3)/(l4^3)
+
+Rl=nthroot(RVD,3); //Ratio of length of feeder for 2 feeders two by length of feeder for 4 feeders
+
+//A is directly proportional to l^2
+RA=(Rl^2);
+
+//TSn is directly proportional to n and l^2
+RTS=(N2/N4)*(Rl^2);
+
+printf('\na) Ratio of substation spacings = 2l2/2l4 = %g\n',Rl)
+printf('b) Ratio of areas covered per feeder main = A2/A4 = %g\n',RA)
+printf('c) Ratio of substation loads = TS2/TS4 = %g\n',RTS)
diff --git a/1904/CH4/EX4.2/4_2.sce b/1904/CH4/EX4.2/4_2.sce new file mode 100755 index 000000000..afa20b8f9 --- /dev/null +++ b/1904/CH4/EX4.2/4_2.sce @@ -0,0 +1,12 @@ +//To Calculate the percent voltage drop in the main for a lumped load
+//Page 202
+clc;
+clear;
+
+K=0.01; //Percentage Value
+Sn=500; //Load in kVA
+pf=0.9; //Lagging
+s=1; //Length of the feeder
+VD=s*K*Sn; //Voltage drop in percent
+
+printf('The Percent Voltage drop in the Main is %g percent\n',VD)
diff --git a/1904/CH4/EX4.3/4_3.sce b/1904/CH4/EX4.3/4_3.sce new file mode 100755 index 000000000..f77e8f2e1 --- /dev/null +++ b/1904/CH4/EX4.3/4_3.sce @@ -0,0 +1,13 @@ +//To Calculate percent voltage drop in the main for a uniformly distributed load
+//Page 203
+clc;
+clear;
+
+K=0.01; //Percentage Value
+Sn=500; //Load in kVA
+pf=0.9; //Lagging
+l=1; //Total Length of the feeder
+s=l/2; //effective Length of the feeder
+VD=s*K*Sn; //Voltage drop in percent
+
+printf('The Percent Voltage drop in the Main is %g percent\n',VD)
diff --git a/1904/CH4/EX4.4/4_4.sce b/1904/CH4/EX4.4/4_4.sce new file mode 100755 index 000000000..03e7bc1eb --- /dev/null +++ b/1904/CH4/EX4.4/4_4.sce @@ -0,0 +1,13 @@ +//To Calculate percent voltage drop in the main for a uniformly increasing load
+//Page 203
+clc;
+clear;
+
+K=0.01; //Percentage Value
+Sn=500; //Load in kVA
+pf=0.9; //Lagging
+l=1; //Total Length of the feeder
+s=l*2/3; //effective Length of the feeder
+VD=s*K*Sn; //Voltage drop in percent
+
+printf('The Percent Voltage drop in the Main is %g percent\n',VD)
diff --git a/1904/CH4/EX4.5/4_5.sce b/1904/CH4/EX4.5/4_5.sce new file mode 100755 index 000000000..99808961b --- /dev/null +++ b/1904/CH4/EX4.5/4_5.sce @@ -0,0 +1,18 @@ +//To Compare the results the percent voltage drop ratio for different loading
+//Page 204
+clc;
+clear;
+
+//Voltage Drops in Percentage
+VDlumped=5;
+VDuniform=2.5;
+VDincreasing=3.333;
+
+//Ratio of the percent voltage drops
+Rlu=VDlumped/VDuniform;
+Rli=VDlumped/VDincreasing;
+Riu=VDincreasing/VDuniform;
+
+printf('\na) Percent VDlumped = %g Percent VDuniform\n',Rlu)
+printf('b) Percent VDlumped = %g Percent VDincreasing\n',Rli)
+printf('c) Percent VDincreasing = %g Percent VDuniform\n',Riu)
diff --git a/1904/CH4/EX4.6/4_6.sce b/1904/CH4/EX4.6/4_6.sce new file mode 100755 index 000000000..c1f8fc273 --- /dev/null +++ b/1904/CH4/EX4.6/4_6.sce @@ -0,0 +1,32 @@ +//To determine the substation parameters for various Load densities
+//Page 208
+clc;
+clear;
+
+D=[500,500,2000,2000,10000,10000,2000,2000]; //Load Densities in kVA/sq.miles
+TAn=[6,6,3,3,1,1,15,15]; //Substation Area in sq.miles
+VD=[3,6,3,6,3,6,3,6]; //Maximum Total Primary Feeder Voltage drops in percentage
+Vll=[4.16,4.16,4.16,4.16,4.16,4.16,13.2,13.2]; //Base Feeder Voltage in kV
+
+TSn=D.*TAn; //Susbstation Load
+//From the Graphs of feeders vs load desity in the textbook; The Number of feeders are found to be
+
+n=[4,2,5,3,5,4,6,5]; //No of feeders
+
+//Also from the graph, The characteristic or the feeder is determined
+//1-5, 7 are VDL feeders
+//6 and 8 are TL feeders
+
+Sn=TSn./n; //Load Per Feeder
+//To Determine the Load Current
+Il=Sn./(sqrt(3).*Vll);
+
+printf('\na)')
+printf('\nThe Substation Size is\n')
+disp(TSn)
+printf('\nThe Number of Feeders from the Curve is\n')
+disp(n)
+printf('\nAlso From the Curve, 1,2,3,4,5,7 cases are VDL but 6 and 8 case are TL\n')
+printf('\na)')
+printf('\nThe Load Current for 6th Case is %g A, which is less than the ampacities of the main but \nmore than that of the lateral, Hence it is thermally limited but not the main feeder\n',Il(6))
+printf('\nThe Load Current for 8th Case is %g A, which is less than the ampacities of the main but \nmore than that of the lateral, Hence it is thermally limited but not the main feeder\n',Il(8))
diff --git a/1904/CH4/EX4.7/4_7.sce b/1904/CH4/EX4.7/4_7.sce new file mode 100755 index 000000000..c08f52226 --- /dev/null +++ b/1904/CH4/EX4.7/4_7.sce @@ -0,0 +1,42 @@ +//To Find feeder properties of TL and VDL
+//Page 211
+clc;
+clear;
+
+D=1000; //Load Density in kVA per sq miles
+Vll=4.16; //Line to Lien voltage in kV
+//From The Tables and Curves from the Theory
+K=0.007;
+//For TL
+TLImax=230; //Maximum Feeder Current
+TLSn=sqrt(3)*Vll*TLImax; //Maximum Load Per Feeder
+TLn=4; //No of Feeders
+TLTSn=TLn*TLSn; //Substation Load
+TLl4=sqrt(TLSn/D); //Feeder Length
+TLS=2*TLl4; //Total Spacing
+
+TLVDn=2*K*D*(TLl4^3)/3; //TotalVoltageDrop in the main
+
+//For VDL
+VDLVDn=3; //Percent Voltage Drop
+VDLl4=nthroot((3*VDLVDn/(2*K*D)),3); //Feeder Length
+VDLS=2*VDLl4; //Station size
+VDLSn=D*(VDLl4^2); //Maximum Load Per Feeder
+VDLn=TLn; //Number Of Feeders
+VDLTSn=VDLn*VDLSn; //Susbtation Load
+VDLImax=VDLSn/(sqrt(3)*Vll); //Ampere Rating of the Main
+R=VDLImax/TLImax; //Ampere Loading
+
+printf('\na) For Thermally Limited \n')
+printf('i) The Substation Size = %g kVA\n',TLTSn)
+printf('ii) Substation Spacing = %g miles\n',TLS)
+printf('iii) Maximum Load Per Feeder = %g kVA\n',TLSn)
+printf('iv) The Voltage Drop is %g percent\n',TLVDn)
+
+printf('\nb) For Voltage Drop Limited \n')
+printf('i) The Substation Size = %g kVA\n',VDLTSn)
+printf('ii) Substation Spacing = %g miles\n',VDLS)
+printf('iii) Maximum Load Per Feeder = %g kVA\n',VDLSn)
+printf('iv) Ampere Loading of the Main is %g pu\n',R)
+
+//Note The Approximation to 750 kVA
diff --git a/1904/CH4/EX4.8/4_8.sce b/1904/CH4/EX4.8/4_8.sce new file mode 100755 index 000000000..34d1e9a7f --- /dev/null +++ b/1904/CH4/EX4.8/4_8.sce @@ -0,0 +1,38 @@ +//To determine the better susbstation site
+//Page 213
+clc;
+clear;
+DivF=1.2; //Diversity Factor
+DemF=0.6; //Demand Factor
+CL=2000; //Connected Load Density in kVA per sq.miles
+
+DD=DemF*CL/DivF; //Diversified Demand
+A=4; //Area of the Substation
+
+TSn=DD*A; //Peak Loads of A and B
+Sm=TSn; //Peak Loads
+
+//Constants for different conductors
+Km=0.0004;
+Kl=0.00095;
+//Number of Laterals
+Na=16; //Site A
+Nb=32; //Site B
+
+//Length of the Main
+La=2;
+Lb=3;
+//length of laterals
+Lla=2;
+Llb=1;
+//Length of expres Load
+Le=1;
+Leffb=Le+((Lb-Le)/2); //Effective Length of the feeder in site B
+//Voltage drops
+VDa=(La*Km*Sm/2)+(Lla*Kl*Sm/(Na*2));
+VDb=(Leffb*Km*Sm)+(Llb*Kl*Sm/(Nb*2));
+
+printf('\nThe Voltage drop in Site A is %g percent\n',VDa)
+printf('The Voltage drop in Site B is %g percent\n',VDb)
+printf('Comparing the results we find Site A suitable due to its less percent voltage drop\n')
+VDb=(La*Km*Sm/2)+(Lla*Kl*Sm/Na);
|