summaryrefslogtreecommitdiff
path: root/1898/CH8
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1898/CH8
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1898/CH8')
-rwxr-xr-x1898/CH8/EX8.1/Ex8_1.sce24
-rwxr-xr-x1898/CH8/EX8.2/Ex8_2.sce34
-rwxr-xr-x1898/CH8/EX8.3/Ex8_3.sce34
-rwxr-xr-x1898/CH8/EX8.4/Ex8_4.sce46
-rwxr-xr-x1898/CH8/EX8.5/Ex8_5.sce51
-rwxr-xr-x1898/CH8/EX8.6/Ex8_6.sce50
6 files changed, 239 insertions, 0 deletions
diff --git a/1898/CH8/EX8.1/Ex8_1.sce b/1898/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..558879a47
--- /dev/null
+++ b/1898/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,24 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.1 : ")
+
+//Given:
+di = 1.2*1000; //m
+ri = di/2;
+t = 12; //mm
+sigma = 140; //MPa
+
+//Cylindrical Pressure Vessel:
+
+p1 = (t*sigma)/ri; //sigma = pr/t
+
+//Spherical Vessel:
+
+p2 = (2*t*sigma)/(ri); //sigma = pr/2t
+
+//Display:
+
+printf("\n\nThe maximum internal pressure the cylindrical pressure vessel can sustain = %1.1f N/mm^2',p1);
+printf('\nThe maximum internal pressure a spherical pressure vessel can sustain = %1.1f N/mm^2',p2);
+
+//----------------------------------------------------------------------END--------------------------------------------------------------------------------
diff --git a/1898/CH8/EX8.2/Ex8_2.sce b/1898/CH8/EX8.2/Ex8_2.sce
new file mode 100755
index 000000000..4da7b432d
--- /dev/null
+++ b/1898/CH8/EX8.2/Ex8_2.sce
@@ -0,0 +1,34 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.2 : ")
+
+//Given:
+P = 15000; //N
+a = 40; //mm
+b = 100; //mm
+
+//Stress Components:
+
+//Normal Force:
+A = a*b;
+sigma = P/A;
+
+//Bending Moment:
+I = (a*b^3)/12; //I = (1/12)*bh^3
+M = P*(b/2);(b/2);
+c = b/2;
+sigma_max =(M*c)/I;
+
+//Superposition:
+x = ((sigma_max-sigma)*b)/((sigma_max+sigma)+(sigma_max-sigma));
+sigma_b = (sigma_max-sigma);
+sigma_c = (sigma_max + sigma);
+
+//Display:
+
+printf("\n\nThe state of stress at B = %1.1f MPa (tensile)',sigma_b);
+printf('\nThe state of stress at C = %1.1f MPa (compressive)',sigma_c);
+
+//----------------------------------------------------------------------END--------------------------------------------------------------------------------
+
+
diff --git a/1898/CH8/EX8.3/Ex8_3.sce b/1898/CH8/EX8.3/Ex8_3.sce
new file mode 100755
index 000000000..6a534502e
--- /dev/null
+++ b/1898/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,34 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.3 : ")
+
+//Given:
+ri = 600/1000; //m
+t = 12/1000; //m
+ro = ri+t;
+sp_wt_water = 10; //kN/m^3
+sp_wt_steel = 78; //kN/m^3
+l_a = 1; //m depth of point A from the top
+
+//Internal Loadings:
+v = (%pi*l_a)*(ro^2 - ri^2);
+W_st = sp_wt_steel*v;
+
+p = sp_wt_water*l_a; //Pascal's Law
+
+//Stress Components:
+
+//Circumferential Stress:
+sigma1 = (p*ri)/t;
+
+//Longitudinal Stress:
+A_st = (%pi)*(ro^2 - ri^2);
+sigma2 = W_st/A_st;
+
+//Display:
+
+
+printf("\n\nThe state of stress at A (Circumferential) = %1.1f kPa',sigma1);
+printf('\nThe state of stress at A (Longitudinal) = %1.1f kPa',sigma2);
+
+//----------------------------------------------------------------------END--------------------------------------------------------------------------------
diff --git a/1898/CH8/EX8.4/Ex8_4.sce b/1898/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..3219b3282
--- /dev/null
+++ b/1898/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,46 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.4 : ")
+
+//Given:
+y_c = 125/1000; //m
+x_c = 1.5; //m
+y_b = 1.5; //m
+x_b = 6; //m
+udl = 50; //kN/m
+l_udl = 2.5; //m
+l = 250/1000; //m
+width = 50/1000; //m
+
+
+//Internal Loadings:
+N = 16.45; //kN
+V = 21.93; //kN
+M = 32.89; //kNm
+
+//Stress Components:
+
+//Normal Force:
+A = l*width;
+sigma1 = N/(A*1000);
+
+//Shear Force:
+tou_c = 0;
+
+//Bending Moment:
+c = y_c;
+I = (1/12)*(width*l^3);
+sigma2 = (M*c)/(I*1000);
+
+//Superposition:
+sigmaC = sigma1+sigma2;
+
+//Display:
+
+
+printf('\n\nThe stress due to normal force at C = %1.2f MPa',sigma1);
+printf('\nThe stress due to shear force at C = %1.2f MPa',tou_c);
+printf('\nThe stress due to bending moment at C = %1.2f MPa',sigma2);
+printf('\nThe resultant stress at C = %1.1f MPa',sigmaC);
+
+//----------------------------------------------------------------------END--------------------------------------------------------------------------------
diff --git a/1898/CH8/EX8.5/Ex8_5.sce b/1898/CH8/EX8.5/Ex8_5.sce
new file mode 100755
index 000000000..e67e455b0
--- /dev/null
+++ b/1898/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,51 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.5 : ")
+
+//Given:
+r = 0.75*10; //mm
+f_x =500;//N
+f_y =800;//N
+l1 = 8*10; //mm
+l2 = 10*10; //mm
+l3 = 14*10; //mm
+
+//Stress Components:
+
+//Normal Force:
+A1 = (%pi*r^2);
+sigma1 = f_x/A1; //stress = P/A
+
+//Shear Force:
+y_bar = (4*r)/(3*%pi);
+A2 = A1/2;
+Q = y_bar*A2; //Q = yA
+V = f_y;
+I = (1/4)*(%pi*r^4);
+t = 2*r;
+tou_a = (V*Q)/(I*t); //Shear = VQ/It
+
+//Bending Moment:
+M_y = f_x*l3;
+c = r;
+sigma_A = (M_y*c)/I;
+
+//Torsional Moment:
+T = f_y*l3;
+J = (0.5*%pi*r^4);
+tou_A = (T*c)/J;
+
+//Resultant:
+res_normal= sigma1+sigma_A;
+res_shear = tou_a+tou_A;
+
+//Display:
+
+printf('\n\nThe stress due to normal force at A = %1.2f MPa',sigma1);
+printf('\nThe stress due to shear force at A = %1.2f MPa',tou_a);
+printf('\nThe stress due to bending moment at A = %1.2f MPa',sigma_A);
+printf('\nThe stress due to torsional moment at A = %1.2f MPa',tou_A);
+printf('\nThe resultant normal stress component at A = %1.2f MPa',res_normal);
+printf('\nThe resultant shear stress component at A = %1.2f MPa',res_shear);
+
+//------------------------------------------------------------------------END------------------------------------------------------------------------------
diff --git a/1898/CH8/EX8.6/Ex8_6.sce b/1898/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..935aed26f
--- /dev/null
+++ b/1898/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,50 @@
+clear all; clc;
+
+disp("Scilab Code Ex 8.6 : ")
+
+//Given:
+P = 40; //kN
+l_ab = 0.4; //m
+l_bc = 0.8; //m
+
+//Stress Components:
+
+//Normal Force:
+A = l_ab*l_bc;
+sigma = P/A;
+
+//Bendng Moments:
+M_x = P*l_ab/2;
+cy = l_ab/2;
+Ix = (1/12)*(l_bc*l_ab^3); //I = (1/12)*(bh^3)
+sigma_max_1 = (M_x*cy)/Ix; //sigma = My/I
+
+M_y = P*l_bc/2;
+cx = l_bc/2;
+Iy = (1/12)*(l_ab*l_bc^3); //I = (1/12)*(bh^3)
+sigma_max_2 = (M_y*cx)/Iy; //sigma = My/I
+
+//Superposition:
+stress_A = -sigma + sigma_max_1 + sigma_max_2;
+stress_B = -sigma - sigma_max_1 + sigma_max_2;
+stress_C = -sigma - sigma_max_1 - sigma_max_2;
+stress_D = -sigma + sigma_max_1 - sigma_max_2;
+
+e = abs((stress_B*l_ab)/(stress_A-stress_B));
+h = abs((stress_B*l_bc)/(stress_A-stress_B));
+
+//Display:
+
+
+printf('\n\nThe normal stress at corner A = %1.0f kPa',stress_A);
+printf('\nThe normal stress at corner B = %1.0f kPa',stress_B);
+printf('\nThe normal stress at corner C = %1.0f kPa',stress_C);
+printf('\nThe normal stress at corner D = %1.0f kPa',stress_D);
+printf('\nThe line of zero stress along AB = %1.4f m',e);
+printf('\nThe line of zero stress along AD = %1.3f m',h);
+
+//------------------------------------------------------------------------END------------------------------------------------------------------------------
+
+
+
+