summaryrefslogtreecommitdiff
path: root/1898/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1898/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1898/CH4')
-rwxr-xr-x1898/CH4/EX4.1/Ex4_1.sce48
-rwxr-xr-x1898/CH4/EX4.10/Ex4_10.sce27
-rwxr-xr-x1898/CH4/EX4.11/Ex4_11.sce43
-rwxr-xr-x1898/CH4/EX4.12/Ex4_12.sce52
-rwxr-xr-x1898/CH4/EX4.13/Ex4_13.sce21
-rwxr-xr-x1898/CH4/EX4.14/Ex4_14.sce33
-rwxr-xr-x1898/CH4/EX4.15/Ex4_15.sce55
-rwxr-xr-x1898/CH4/EX4.16/Ex4_16.sce28
-rwxr-xr-x1898/CH4/EX4.17/Ex4_17.sce54
-rwxr-xr-x1898/CH4/EX4.2/Ex4_2.sce40
-rwxr-xr-x1898/CH4/EX4.3/Ex4_3.sce53
-rwxr-xr-x1898/CH4/EX4.5/Ex4_5.sce42
-rwxr-xr-x1898/CH4/EX4.6/Ex4_6.sce47
-rwxr-xr-x1898/CH4/EX4.7/Ex4_7.sce43
-rwxr-xr-x1898/CH4/EX4.8/Ex4_8.sce47
-rwxr-xr-x1898/CH4/EX4.9/Ex4_9.sce29
16 files changed, 662 insertions, 0 deletions
diff --git a/1898/CH4/EX4.1/Ex4_1.sce b/1898/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..63c7f0da8
--- /dev/null
+++ b/1898/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,48 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.1 : ")
+
+//Given:
+a_ab = 600; //mm^2
+a_bd = 1200; //mm^2
+a_bc = a_bd;
+p = 75; //kN
+l_ab = 1; //m
+l_bc = 0.75; //m
+l_cd = 0.5; //m
+
+//Calculations:
+
+//Internal Forces: By method of Sections
+P_bc = 35; //kN
+P_cd = 45;//kN
+
+//Displacement:
+E_st = 210*(10^3); //From the tables
+
+P = [p P_bc -P_cd];
+A =[a_ab a_bc a_bd];
+L= [l_ab l_bc l_cd];
+E = []
+n = length(P)
+
+delta_sum =0;
+
+for i = 1:n;
+ delta_sum = delta_sum + (P(i)*L(i)*(10^6))/(A(i)*E_st);
+end
+
+delta_bc = (P_bc*l_bc*10^6)/(a_bc*E_st);
+
+
+
+//Display:
+
+printf("\n\nThe vertical displacement of end A = +%1.2f mm",delta_sum);
+printf("\nThe displacement of B relative to C is = +%1.3f mm",delta_bc);
+
+//------------------------------------------------------------------------END----------------------------------------------------------------------------------
+
+
+
+
diff --git a/1898/CH4/EX4.10/Ex4_10.sce b/1898/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..43b1fbd35
--- /dev/null
+++ b/1898/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,27 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.10 : ")
+
+//Given:
+T1 = 30; //degree celcius
+T2 = 60;//degress celcius
+l_ab = 1;//m
+area = 10*10*10^-6; //m^2
+alpha = 12*10^-6;// per degree celcius
+E = 200*10^6; //kPa
+
+//Equilibrium:
+//F_a = F_b = F
+
+del_T = T2-T1;
+F = alpha*del_T*area*E; //Thermal Stress Formula
+
+avg_normal_comp_stress = (F*10^-3)/area; // sigma = F/A
+
+//Display:
+
+printf("\n\nThe force at A and B = %1.1f kN",F);
+printf('\nThe average normal compressive stress = %1.1f MPa',avg_normal_comp_stress);
+
+
+//-------------------------------------------------------------------END--------------------------------------------------------------------------------------
diff --git a/1898/CH4/EX4.11/Ex4_11.sce b/1898/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..538d71672
--- /dev/null
+++ b/1898/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,43 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.11 : ")
+
+//Given:
+area_sleeve = 600*10^-6; //m^2
+area_bolt = 400*10^-6; //m^2
+T1 = 15; //degree celcius
+T2 = 80; //degree celcius
+alpha_bolt = 12*10^-6; //per degree celcius
+alpha_sleeve = 23*10^-6; //per degree celcius
+l = 0.15; //m
+E_bolt = 200*10^9; //N/m^2
+E_sleeve = 73.1*10^9; //N/m^2
+
+//Equilibrium:
+//F_s = F_b
+
+//Compatibility:
+del_T = T2 - T1; // temperature difference
+delb_T = alpha_bolt*del_T*l;
+delb_F = l/(area_bolt*E_bolt);
+dels_T = alpha_sleeve*del_T*l;
+dels_F = l/(area_sleeve*E_sleeve);
+
+//delb_T + F_b*delb_F = dels_T + F_s*dels_F
+
+F_b = (dels_T-delb_T)/(delb_F+dels_F);
+F_b = F_b/1000; //in kN
+F_s= F_b;
+
+sigma_b = F_b/(area_bolt*10^3); //Average Normal Stress
+sigma_s = F_s/(area_sleeve*10^3); //Average Normal Stress
+
+//Display:
+
+
+printf("\n\nThe force experienced by sleeve and bolt = %1.2f kN",F_s);
+printf('\nThe average normal stress on bolt = %1.1f MPa',sigma_b);
+printf('\nThe average normal stress on sleeve = %1.1f MPa',sigma_s);
+
+
+//-----------------------------------------------------------END-----------------------------------------------------------------------------------------------
diff --git a/1898/CH4/EX4.12/Ex4_12.sce b/1898/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..906f0215b
--- /dev/null
+++ b/1898/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,52 @@
+
+clear all; clc;
+
+disp("Scilab Code Ex 4.12 : ")
+
+//Given:
+h = 0.250; //m
+T1 = 20; //degree celcius
+udl = 150; //kN/m
+T2 = 80; //degree celcius
+len = 0.3; //m
+dia_steel = 0.04;//m
+r_steel = 0.02;
+dia_aluminium = 0.06; //m
+r_al = dia_aluminium/2;
+area_st = %pi*(r_steel^2);
+area_al = %pi*(r_al^2);
+F = 90*10^3;//N
+alpha_st = 12*10^-6; //per degree celcius
+alpha_al = 23*10^-6; //per degree celcius
+E_st = 200*10^9; // N/m^2
+E_al = 73.1*10^9; // N/m^2
+
+//Equilibrium:
+//From the free body diagram: Eqn1 : 2F_st + F_al-
+
+
+// -delst_T + F_st*delst_F = -delal_T + F_al*delal_F
+
+//Eqn2 : 165.9*10^3 =1.216F_al - F_st F = 0
+
+//Compatibility:
+delst_T = alpha_st*(T1+T2)*h;
+delst_F = h/(area_st*E_st);
+delal_T = alpha_al*(T1+T2)*h;
+delst_F = h/(area_al*E_al);
+
+coeffMat = [2 1; -1 1.216]
+b= [90*10^3 ; 165.9*10^3]
+F = coeffMat\b;
+F_st = F(1)/1000;
+F_al =F(2)/1000;
+F_al =ceil(F_al);
+
+//Display:
+
+
+printf("\n\nThe force on the steel post = %1.1f kN",F_st);
+printf('\nThe force on the aluminium post = %1.1f kN',F_al);
+
+//-----------------------------------------------------------------------------END----------------------------------------------------------------------------------
+
diff --git a/1898/CH4/EX4.13/Ex4_13.sce b/1898/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..4e6746e23
--- /dev/null
+++ b/1898/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,21 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.13 : ")
+
+//Given:
+sigma_allow = 115; //MPa
+
+//Determinng the stress concentration factor:
+
+r_n =10/20;
+w_h = 40/20;
+k = 1.4; //from graph
+sigma_avg = sigma_allow/k;
+P =sigma_avg*20*10;
+P = P/1000;
+
+//Display:
+
+printf("\n\nThe largest axial force that the bar can carry = %1.2f kN",P);
+
+//------------------------------------------------------------------------------END---------------------------------------------------------------------
diff --git a/1898/CH4/EX4.14/Ex4_14.sce b/1898/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..eefadc038
--- /dev/null
+++ b/1898/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,33 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.14 : ")
+
+//Given:
+P = 80*10^3; //N
+yield_stress = 700; //MPa;
+E = 200*10^9; //N/mm^2
+l1 = 0.3; //m
+l2 = 0.8; //m
+
+//Maximum Normal Stress:
+r_h = 6/20;
+w_h = 40/20;
+K = 1.6;
+
+area2 = 0.02*0.01; //m^2 note its not 0.001.
+max_stress = (K*P)/area2;
+max_stress = (max_stress/10^6); // converting to MPa
+
+//Displacement:
+area1 = 0.04*0.01;
+del_ad_1 = (P*l1)/(area1*E);
+del_ad_2 = (P*l2)/(area2*E);
+del_ad = (2*del_ad_1)+ del_ad_2;
+del_ad = del_ad*1000; //converting m to mm
+
+//Display:
+
+
+printf("\n\nThe maximum normal stress = %1.1f MPa",max_stress);
+printf('\nThe displacement of one end with respect to the other = %1.2f mm',del_ad);
+
diff --git a/1898/CH4/EX4.15/Ex4_15.sce b/1898/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..3121f5351
--- /dev/null
+++ b/1898/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,55 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.15 : ")
+
+//Given
+weight = 15; //kN
+l_ab = 5; //m
+l_ac= 5.0075; //m
+area = 30; //mm^2
+
+//calculations:
+strain_ab = (l_ac-l_ab)/l_ab;
+max_strain = 0.0017;
+
+stress_ab = (350*strain_ab)/max_strain;
+F_ab = stress_ab*area; // F= stress*area
+E_st = 350/max_strain; //Modulus ofelasticity
+
+del1 = l_ab/(area*10^-6*E_st*10^3); //del = PL/AE
+del2 = l_ac/(area*10^-6*E_st*10^3); //del = PL/AE
+
+//Eqn1 = T_ab + T_ac = weight
+//Eqn2 = del1*T_ab - del2*T_ac = (l_ac-l_ab)
+
+//Solving using matrices:
+A = [1 1;del1 -del2];
+b = [weight; (l_ac-l_ab)];
+T = A\b;
+
+T_ab = T(1);
+T_ac = T(2);
+
+stress_in_ab = (T_ab*10^3)/area;
+
+if(stress_in_ab>350)
+ T_ab = (350*area)/1000;
+end
+
+T_ac = 15-T_ab;
+stress = (T_ac*10^3)/area;
+strain_ac = (stress*max_strain)/350;
+
+elong_ac = strain_ac*l_ac; //m
+elong_ab = (l_ac-l_ab)+elong_ac; //m
+
+
+
+//Display:
+
+printf('\n\nThe force experienced by wire AB = %1.1f kN',T_ab);
+printf('\nThe force experienced by wire AC = %1.1f kN',T_ac);
+printf('\nThe elongation in wire AB = %1.5f m',elong_ab);
+printf('\nThe elongation in wire AC = %1.5f m',elong_ac);
+
+//---------------------------------------------------------------------------END------------------------------------------------------------------------
diff --git a/1898/CH4/EX4.16/Ex4_16.sce b/1898/CH4/EX4.16/Ex4_16.sce
new file mode 100755
index 000000000..1b277ca7e
--- /dev/null
+++ b/1898/CH4/EX4.16/Ex4_16.sce
@@ -0,0 +1,28 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.16 : ")
+
+//Given:
+yield = 250; //MPa
+r = 4; //mm
+width = 40; //mm
+thick = 2; //mm
+
+//a)
+r_h = r/(width - (2*r));
+w_h = width/(width - (2*r));
+K = 1.75;
+area = (thick*(width - (2*r))*10^-6);
+P_y = (yield*10^6*area)/K;
+P_y = P_y/1000;
+
+//b)
+P_p = (yield*10^6*area);
+P_p = P_p/1000;
+
+//Display:
+
+printf("\n\nThe maximum load P that does not cause the steel to yield = %1.2f kN",P_y);
+printf('\nThe maximum load that the bar can support = %1.2f kN',P_p);
+
+//-------------------------------------------------------------------------END----------------------------------------------------------------------
diff --git a/1898/CH4/EX4.17/Ex4_17.sce b/1898/CH4/EX4.17/Ex4_17.sce
new file mode 100755
index 000000000..b868234f4
--- /dev/null
+++ b/1898/CH4/EX4.17/Ex4_17.sce
@@ -0,0 +1,54 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.17 : ")
+
+//Given:
+r = 5/1000; //m
+yield = 420; //MPa
+E = 70; //GPa
+P = 60; //kN
+l_ac = 100/1000; //m
+l_cb = 300/1000; //m
+F_a = 45; //kN by elastic analysis
+F_b = 15; //kN by elastic analysis
+
+//Calculations:
+area = %pi*(r^2)
+sigma_ac = F_a/(area*1000);
+sigma_ac1 = sigma_ac;
+sigma_cb = F_b/(area*1000);
+sigma_cb1 = sigma_cb;
+
+if(sigma_ac>yield)
+ F_a_y = yield*10^3*area;
+ F_b = P - F_a_y;
+
+ sigma_ac = yield;
+ sigma_cb = F_b/(area*1000);
+end
+
+//Residual Stress:
+defl_c = (F_b*l_cb)/(area*E*10^6);
+strain_cb = defl_c/l_cb;
+strain_ac = -defl_c/l_ac;
+
+sigma_ac_r = -sigma_ac+ sigma_ac1;
+sigma_cb_r = sigma_cb - sigma_cb1;
+
+ sigma = sigma_cb_r;
+
+//Permanent Displacement:
+res_strain_cb = (sigma*10^6)/(E*10^9);
+perm_defl_c = res_strain_cb*l_cb*1000;
+
+
+//Display:
+
+printf("\n\nThe residual stress in AC = %1.1f MPa",sigma_ac_r);
+printf("\nThe residual stress in CB = %1.1f MPa",sigma_cb_r);
+printf("\nThe permanent displacement of the collar at C = %1.3f mm",perm_defl_c);
+
+//----------------------------------------------------------------------END-----------------------------------------------------------------------------------
+
+
+
diff --git a/1898/CH4/EX4.2/Ex4_2.sce b/1898/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..6e18e8099
--- /dev/null
+++ b/1898/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,40 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.2 : ")
+
+//Given:
+a_ab = 400; //mm^2
+d_rod = 10; //mm
+r_rod = d_rod/(2*1000); //radius in m
+P = 80; //kN
+E_st = 200*(10^9); //Pa
+E_al = 70*(10^9); //Pa
+l_ab = 400; //mm
+l_bc = 600; //mm
+
+//Calculations:
+
+//Internal forces: tension = compression = 80kN.
+
+//Displacement:
+
+//delta =PL/AE
+numerator1 = P*(10^3)*(l_bc/1000);
+denominator1 = (%pi*r_rod^2*E_st);
+delta_cb = numerator1/denominator1; //to the right
+
+numerator2 = -P*(10^3)*(l_ab/1000);
+denominator2 = (a_ab* 10^-6 *E_al);
+delta_a = -numerator2/denominator2; //to the right
+
+delta_c = delta_a+delta_cb;
+
+//Display:
+
+
+
+printf("\n\nThe displacement of C with respect to B = +%1.6f m',delta_cb);
+printf("\nThe displacement of B with respect to A = +%1.6f m",delta_a);
+printf('\nThe displacement of C relative to A = +%1.5f m',delta_c);
+
+//------------------------------------------------------------------END---------------------------------------------------------------------
diff --git a/1898/CH4/EX4.3/Ex4_3.sce b/1898/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..14e5cb04e
--- /dev/null
+++ b/1898/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,53 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.3 : ")
+
+//Given:
+d_ac = 20; //mm
+r_ac = d_ac/(2*1000); //radius in m
+d_bd =40; //mm
+r_bd = d_bd/(2*1000); //radius in m
+P = 90; //kN
+E_st = 200*(10^9); //Pa
+E_al = 70*(10^9); //Pa
+l_af = 200; //mm
+l_fb = 400; //mm
+l_bd = 300; //mm
+l_ac = l_bd;
+
+//Calculations:
+
+//Internal Force:
+P_ac = 60; //kN
+P_bd = 30; //kN
+
+//Displacement:
+
+//Post AC: delta = PL/AE
+num1 = -(P_ac*10^3*(l_ac/1000));
+denom1 = %pi* r_ac^2*E_st;
+delta_a = -num1/denom1; //downwards
+delta_a = delta_a*1000; //in m
+
+//Post BD: delta = PL/AE
+num2 = -(P_bd*10^3*(l_bd/1000));
+denom2 = %pi* r_bd^2*E_al;
+delta_b = -num2/denom2; //downwards
+delta_b = delta_b*1000; //in m
+
+
+delta_f = delta_b + (0.184)*(l_fb/(l_af+l_fb)); //By similar triangles from the figure.
+
+//Display:
+
+printf('\n\nThe displacement of Post AC = +%1.3f mm downwards',delta_a);
+printf('\nThe displacement of Post BD = +%1.3f mm downwards',delta_b);
+printf('\nnThe displacement of point F = +%1.3f mm downwards',delta_f);
+
+//------------------------------------------------------------------------------END-----------------------------------------------------------------------------------------
+
+
+
+
+
+
diff --git a/1898/CH4/EX4.5/Ex4_5.sce b/1898/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..c64765105
--- /dev/null
+++ b/1898/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,42 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.5 : ")
+
+//Given:
+d_ab = 5; //mm
+A = (%pi/4)*(d_ab/1000)^2;
+gap = 1; //mm
+P = 20; //kN
+E_st = 200; //GPa
+l_ac = 0.4; //m
+l_cb = 0.8; //m
+l_ab = l_ac+l_cb;
+
+//Calculations:
+
+//Equilibrium:
+// Eqn1: -Fa - Fb +P*10^3 = 0;
+
+//Compatibility:
+delta_ba = gap/1000; //in m
+
+delta = delta_ba*(A*E_st*10^9); //delta_ba* Lac/AE
+
+
+//Eqn2: (L/AE)*Fa -(Lb/AE)*Fb = delta_ba
+
+//Solving Equations 1 and 2 by matrices:
+coeff_F = [1 1; l_ac -l_cb];
+b =[P*10^3 ; delta];
+F = coeff_F\b;
+
+F_a = F(1)/1000;
+F_b = F(2)/1000;
+
+//Display:
+
+
+printf("\n\nThe reaction force at A = %1.1f kN",F_a);
+printf("\nThe reaction force at B = %1.2f kN",F_b);
+
+//--------------------------------------------------------------------------------END----------------------------------------------------------------------
diff --git a/1898/CH4/EX4.6/Ex4_6.sce b/1898/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..6dfbe178b
--- /dev/null
+++ b/1898/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,47 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.6 : ")
+
+//Given:
+P = 45; //kN
+E_al = 70*10^3;
+E_br = 105*10^3;
+h = 0.5; //m
+ri = 25/1000; //m
+ro = 50/1000; //m
+A = (%pi*(ro^2 -ri^2));
+Ai = %pi*ri^2;
+
+//Calculations:
+
+//Equilibrium: Eqn1:F_al +F_br = P
+
+//Compatibility:
+coeff_F_br = (A*E_al)/(Ai*E_br); // delta_al = delta_brass
+
+//Eqn2 : F_al- (coeff_F_br*F_br) = 0
+
+//Solving equations 1 and 2 using matrices:
+
+coeff_F = [1 1; 1 -coeff_F_br];
+b = [P; 0];
+F = coeff_F\b;
+
+F_al =F(1);
+F_br =F(2);
+
+avg_stress_al = F_al/A;
+avg_stress_br = F_br/Ai;
+
+avg_stress_al = avg_stress_al/1000;
+avg_stress_br = avg_stress_br/1000;
+
+//Display:
+
+
+printf("\n\nThe axial force experienced by Al = %1.1f kN",F_al);
+printf("\nThe axial force experienced by Brass = %1.2f kN",F_br);
+printf('\nThe average normal stress in Al = %1.2f MPa',avg_stress_al);
+printf('\nThe average normal stress in Al Brass = %1.2f MPa',avg_stress_br);
+
+//---------------------------------------------------------------------END-------------------------------------------------------------
diff --git a/1898/CH4/EX4.7/Ex4_7.sce b/1898/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..7c3a60604
--- /dev/null
+++ b/1898/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,43 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.7 : ")
+
+//Given:
+P = 15; //kN
+a_ab = 25; //mm^2
+a_ef =a_ab;
+a_cd = 15; //mm^2
+l_ef = 0.5; //m
+l_ce = 0.4; //m
+l_ac = 0.4; //m
+
+//Calculations:
+
+//Equilibrium:
+//In the y direction ; F_a +F_c +F_e = P
+//of moments: -F_a(l_ac)+ P(l_ac/2) +F_e(l_ce) = 0
+
+//Compatibility equation for displacemnts:
+coeff_Fc = (1/a_cd); //coefficient of Fc
+coeff_Fa = (0.5/a_ab); //coefficient of Fc
+coeff_Fe = (0.5/a_ef); //coefficient of Fc
+
+//Using matrices to solve the 3 Equations:
+A = [1 1 1; -l_ac 0 l_ce; coeff_Fa -coeff_Fc coeff_Fe];
+b = [P ; -P*(l_ac/2); 0];
+F = A\b;
+
+
+F_a = F(1);
+F_b = F(2);
+F_c = F(3);
+
+//Display:
+
+
+printf("\n\nThe force in rod AB = %1.2f kN',F_a);
+printf('\nThe force in rod CD = %1.2f kN',F_b);
+printf('\nThe force in rod EF = %1.2f kN',F_c);
+
+//--------------------------------------------------------------------END--------------------------------------------------------------------------
+
diff --git a/1898/CH4/EX4.8/Ex4_8.sce b/1898/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..8b609d45c
--- /dev/null
+++ b/1898/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,47 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.8 : ")
+
+//Given:
+r_o = 10; //mm
+r_i = 5; //mm
+l = 60; //mm
+a_t = (%pi)*(r_o^2 - r_i^2); //Area of thread
+a_b = (%pi*(r_i^2));// Area of bolt
+one_turn =20/20;
+E_am = 45; //GPa
+E_al = 75; //GPa
+
+//calculations:
+
+//Equilibrium:
+// In Y direction: F_b - F_t = 0
+
+//Compatibility:
+half_turn = one_turn/2;
+coeff_Ft = l/(a_t*E_am*10^3); // delta = PL/AE
+coeff_Fb = l/(a_b*E_al*10^3);
+
+//Solving the two simultaneous equations for F_b and F_t:
+A = [1 -1; coeff_Fb coeff_Ft];
+b = [0 ; half_turn];
+F = A\b;
+
+F_b =F(1);
+F_t = F(2);
+
+stress_b = F_b/a_b;
+stress_t = F_t/a_t;
+
+F_b = F_b/1000; //in kN
+F_t = F_t/1000; //in kN
+
+//Display:
+
+
+printf('\n\nThe force experienced by threads = %1.2f kN',F_t);
+printf('\nThe force experienced by the bolt = %1.2f kN',F_b);
+printf('\nThe stress in the screw = %1.1f MPa',stress_t);
+printf('\nThe stress in the bolt = %1.1f MPa',stress_b);
+
+//------------------------------------------------------------------------END-----------------------------------------------------------------------------
diff --git a/1898/CH4/EX4.9/Ex4_9.sce b/1898/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..4b9406d00
--- /dev/null
+++ b/1898/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,29 @@
+clear all; clc;
+
+disp("Scilab Code Ex 4.9 : ")
+
+//Given:
+l_ab = 800 + 400;//mm
+P = 20; //kN
+d = 5/1000; //m
+area = (%pi/4)*d^2; //Cross sectional area
+l_bbdash = 1/1000;//m
+E = 200; //GPa
+
+//Calculations:
+
+//Compatibility
+delta_p = (P*10^3*0.4)/(area*E*10^9); //delta = PL/AE
+delta_b = delta_p-l_bbdash;
+F_b = (delta_b*area*E*10^9)/(l_ab/1000);
+F_b = F_b/1000;
+
+//Equilibrium:
+F_a = P - F_b;
+
+//Display:
+
+printf("\n\nThe reaction at A = %1.1f kN',F_a);
+printf('\nThe reaction at B = %1.1f kN',F_b);
+
+//------------------------------------------------------------END--------------------------------------------------------------------