diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1883/CH3 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1883/CH3')
-rwxr-xr-x | 1883/CH3/EX3.3.1/Example3_1.sce | 9 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.2/Example3_2.sce | 15 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.3/Example3_3.sce | 13 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.4/Example3_4.sce | 17 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.5/Example3_5.sce | 9 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.6/Example3_6.sce | 9 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.7/Example3_7.sce | 11 | ||||
-rwxr-xr-x | 1883/CH3/EX3.3.8/Example3_8.sce | 14 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.1/Example3_9.sce | 17 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.2/Example3_10.sce | 17 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.3/Example3_11.sce | 32 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.4/Example3_12.sce | 23 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.5/Example3_13.sce | 17 | ||||
-rwxr-xr-x | 1883/CH3/EX3.4.6/Example3_14.sce | 21 | ||||
-rwxr-xr-x | 1883/CH3/EX3.6.1/Example3_17.sce | 13 | ||||
-rwxr-xr-x | 1883/CH3/EX3.6.2/Example3_16.sce | 13 | ||||
-rwxr-xr-x | 1883/CH3/EX3.6.3/Example3_18.sce | 21 | ||||
-rwxr-xr-x | 1883/CH3/EX3.6.4/Example3_15.sce | 13 |
18 files changed, 284 insertions, 0 deletions
diff --git a/1883/CH3/EX3.3.1/Example3_1.sce b/1883/CH3/EX3.3.1/Example3_1.sce new file mode 100755 index 000000000..06e3180d1 --- /dev/null +++ b/1883/CH3/EX3.3.1/Example3_1.sce @@ -0,0 +1,9 @@ +//Chapter-3,Example3_3_1,pg 3-6
+
+NA=0.5 //Numerical aperture
+
+n1=1.54 //refractive index of core
+
+n2=sqrt(n1^2-NA^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'
+
+printf("\nThe refractive index of cladding is n2 = %.3f\n",n2)
diff --git a/1883/CH3/EX3.3.2/Example3_2.sce b/1883/CH3/EX3.3.2/Example3_2.sce new file mode 100755 index 000000000..474c8fbec --- /dev/null +++ b/1883/CH3/EX3.3.2/Example3_2.sce @@ -0,0 +1,15 @@ +//Chapter-3,Example3_3_2,pg 3-6
+
+NA=0.2 //Numerical aperture
+
+n2=1.59 //refractive index of cladding
+
+n1=sqrt(n2^2-NA^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'
+
+printf("\nThe refractive index of core is n1 = %.1f\n",n1)
+
+n0=1.33 //refractive index of medium
+
+angle_0=asind(NA/n0) //For medium numerical aperture is 'NA=n0*sin(angle_0)'
+
+printf("\nThe acceptance angle is angle_0 = %.2f Degree\n",angle_0)
diff --git a/1883/CH3/EX3.3.3/Example3_3.sce b/1883/CH3/EX3.3.3/Example3_3.sce new file mode 100755 index 000000000..0aeeb6fba --- /dev/null +++ b/1883/CH3/EX3.3.3/Example3_3.sce @@ -0,0 +1,13 @@ +//Chapter-3,Example3_3_3,pg 3-6
+
+n1=1.49 //refractive index f core
+
+n2=1.44 //refractive index of cladding
+
+NA=sqrt(n1^2 - n2^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'
+
+printf("\nThe Numerical aperture is N.A. = %.5f\n",NA)
+
+angle_0=asind(NA) //for air numerical aperture is 'NA=sin(angle_0)'
+
+printf("\nThe acceptance angle is angle_0 = %.1f Degree\n",angle_0)
diff --git a/1883/CH3/EX3.3.4/Example3_4.sce b/1883/CH3/EX3.3.4/Example3_4.sce new file mode 100755 index 000000000..d2823a894 --- /dev/null +++ b/1883/CH3/EX3.3.4/Example3_4.sce @@ -0,0 +1,17 @@ +//Chapter-3,Example3_3_4,pg 3-7
+
+n1=1.6 //refractive index f core
+
+n2=1.3 //refractive index of cladding
+
+angle_c=asind(n2/n1) //Critical angle
+
+printf("\nThe critical angle is angle_c = %.2f Degree\n",angle_c)
+
+angle_0=asind(sqrt(n1^2-n2^2)) //for air numerical aperture is 'NA=sin(angle_0)'
+
+angle_cone=2*angle_0
+
+printf("\nThe acceptance angle cone = %.3f Degree\n",angle_cone)
+
+//mistake in textbook
diff --git a/1883/CH3/EX3.3.5/Example3_5.sce b/1883/CH3/EX3.3.5/Example3_5.sce new file mode 100755 index 000000000..b3abfab2f --- /dev/null +++ b/1883/CH3/EX3.3.5/Example3_5.sce @@ -0,0 +1,9 @@ +//Chapter-3,Example3_3_5,pg 3-7
+
+angle_0=30 //acceptance angle
+
+n1=1.4 //refractive index of core
+
+n2=sqrt(n1^2-sind(angle_0)^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2' also numerical aperture is 'NA=sin(angle_0)'
+
+printf("\nThe refractive index of cladding is n2 = %.4f\n",n2)
diff --git a/1883/CH3/EX3.3.6/Example3_6.sce b/1883/CH3/EX3.3.6/Example3_6.sce new file mode 100755 index 000000000..6c063c0f8 --- /dev/null +++ b/1883/CH3/EX3.3.6/Example3_6.sce @@ -0,0 +1,9 @@ +//Chapter-3,Example3_3_6,pg 3-8
+
+n1=1.563 //refractive index f core
+
+n2=1.498 //refractive index of cladding
+
+delta=(n1-n2)/n1 //fractional index change
+
+printf("\nThe fractional index change is Delta = %.4f \n",delta)
diff --git a/1883/CH3/EX3.3.7/Example3_7.sce b/1883/CH3/EX3.3.7/Example3_7.sce new file mode 100755 index 000000000..0d58c8043 --- /dev/null +++ b/1883/CH3/EX3.3.7/Example3_7.sce @@ -0,0 +1,11 @@ +//Chapter-3,Example3_3_7,pg 3-8
+
+//as total internal reflection takes place for light travlling within 5 degree of the fibre axis
+
+angle_c=90-5 //critical angle
+
+n1=1.50 //refractive index of core
+
+n2=n1*sind(angle_c)
+
+printf("\nThe maximum refractive index of cladding is n2 = %.4f\n",n2)
diff --git a/1883/CH3/EX3.3.8/Example3_8.sce b/1883/CH3/EX3.3.8/Example3_8.sce new file mode 100755 index 000000000..6b89fec6f --- /dev/null +++ b/1883/CH3/EX3.3.8/Example3_8.sce @@ -0,0 +1,14 @@ +//Chapter-3,Example3_3_8,pg 3-8
+
+//In air
+
+angle_0_air=30 //acceptance angle of an optical fibre
+
+NA=sind(angle_0_air) //Numerical aperture is 'NA^2 = n1^2 - n2^2' also numerical aperture is 'NA=sin(angle)'
+
+n0=1.33 //refractive index of medium
+
+angle_0=asind(NA/n0) //For medium numerical aperture is 'NA=n0*sin(angle_0)'
+
+printf("\nThe acceptance angle in medium is angle_0 = %.2f Degree\n",angle_0)
+
diff --git a/1883/CH3/EX3.4.1/Example3_9.sce b/1883/CH3/EX3.4.1/Example3_9.sce new file mode 100755 index 000000000..29e32a9e2 --- /dev/null +++ b/1883/CH3/EX3.4.1/Example3_9.sce @@ -0,0 +1,17 @@ +//Chapter-3,Example3_4_1,pg 3-10
+
+d=29*10^-6 //diameter of core of step index fibre
+
+wavelength=1.3*10^-6 //wavelength of light
+
+n1=1.52 //refractive index of core
+
+n2=1.5189 //refractive index of cladding
+
+V=%pi*d*sqrt(n1^2-n2^2)/wavelength //Normalized frequency of the fibre
+
+printf("\nThe normalised frequency of fibre is V = %.3f\n",V)
+
+N=V^2/2 //The number of modes
+
+printf("\nThe number of modes = %.f\n",N)
diff --git a/1883/CH3/EX3.4.2/Example3_10.sce b/1883/CH3/EX3.4.2/Example3_10.sce new file mode 100755 index 000000000..3a854d3f0 --- /dev/null +++ b/1883/CH3/EX3.4.2/Example3_10.sce @@ -0,0 +1,17 @@ +//Chapter-3,Example3_4_2,pg 3-10
+
+//For single mode fibre, V < 2.405
+
+V=2.405 //normalized frequency of fibre
+
+n1=1.47 //refractive index of core
+
+n2=1.46 //refractive index of cladding
+
+wavelength=1.3 //wavelength
+
+d=V*wavelength/(%pi*sqrt(n1^2-n2^2)) //diameter of core
+
+r=(d/2)
+
+printf("\nThe maximum radius for fibre = %.3f um\n",r)
diff --git a/1883/CH3/EX3.4.3/Example3_11.sce b/1883/CH3/EX3.4.3/Example3_11.sce new file mode 100755 index 000000000..3e4176c03 --- /dev/null +++ b/1883/CH3/EX3.4.3/Example3_11.sce @@ -0,0 +1,32 @@ +//Chapter-3,Example3_4_3,pg 3-11
+
+wavelength=1*10^-6 //wavelength of light
+
+r=50*10^-6 //radius of core
+
+delta=0.055 //relative refractive index of fibre
+
+n1=1.48 //refractive index of core
+
+n2=n1*(1-delta) //as 'delta= (n1-n2)/n1'
+
+printf("\nThe refractive index of cladding n2 = %.4f \n",n2)
+
+NA=sqrt(n1^2-n2^2) //numerical aperture
+
+printf("\nThe numerical aperture N.A. = %.3f \n",NA)
+
+angle_0=asind(NA) // as N.A.=sin(angle_0)
+
+printf("\nThe acceptance angle is angle_0 = %.2f Degree\n",angle_0)
+
+d=2*r
+
+V=%pi*d*NA/wavelength //Normalized frequency of the fibre
+
+printf("\nThe normalised frequency of fibre is V = %.2f\n",V)
+
+N=V^2/2 //The number of modes
+
+printf("\nThe number of modes = %.f \n",N)
+
diff --git a/1883/CH3/EX3.4.4/Example3_12.sce b/1883/CH3/EX3.4.4/Example3_12.sce new file mode 100755 index 000000000..f01b5ce0b --- /dev/null +++ b/1883/CH3/EX3.4.4/Example3_12.sce @@ -0,0 +1,23 @@ +//Chapter-3,Example3_4_4,pg 3-12
+
+wavelength=1*10^-6 //wavelength of light
+
+d=6*10^-6 //diameter of core
+
+n1=1.45 //refractive index of core
+
+n2=1.448 //refractive index of cladding
+
+angle_c=asind(n2/n1) //critical angle is 'sin(angle_c) = n2/n1'
+
+printf("\nThe critical angle is angle_c = %.f Degree\n",angle_c)
+
+NA=sqrt(n1^2-n2^2)
+
+angle_0=asind(NA) //acceptance angle is 'sin(angle_0) = NA = sqrt(n1^2-n2^2)'
+
+printf("\nThe acceptance angle is angle_0 = %.3f Degree\n",angle_0)
+
+N=%pi^2*d^2*NA^2/(2*wavelength^2) //the number of modes propogating through fibre
+
+printf("\nthe number of modes propogating through fibre is N = %.f\n",N)
diff --git a/1883/CH3/EX3.4.5/Example3_13.sce b/1883/CH3/EX3.4.5/Example3_13.sce new file mode 100755 index 000000000..cbedee7d4 --- /dev/null +++ b/1883/CH3/EX3.4.5/Example3_13.sce @@ -0,0 +1,17 @@ +//Chapter-3,Example3_4_5,pg 3-12
+
+wavelength=1*10^-6 //wavelength of light
+
+r=50*10^-6 //radius of core
+
+n1=1.50 //refractive index of core
+
+n2=1.48 //refractive index of cladding
+
+NA=sqrt(n1^2-n2^2) //numerical aperture
+
+d=2*r //diameter of core
+
+N=%pi^2*d^2*NA^2/(2*wavelength^2) //the number of modes propogating through fibre
+
+printf("\nthe number of modes propogating through fibre is N = %.f\n",N)
diff --git a/1883/CH3/EX3.4.6/Example3_14.sce b/1883/CH3/EX3.4.6/Example3_14.sce new file mode 100755 index 000000000..d970b07e2 --- /dev/null +++ b/1883/CH3/EX3.4.6/Example3_14.sce @@ -0,0 +1,21 @@ +//Chapter-3,Example3_4_6,pg 3-13
+
+wavelength=1.4*10^-6 //wavelength of light
+
+d=40*10^-6 //diameter of core
+
+n1=1.55 //refractive index of core
+
+n2=1.50 //refractive index of cladding
+
+NA=sqrt(n1^2-n2^2) //numerical aperture
+
+printf("\nThe numerical aperture N.A. = %.4f \n",NA)
+
+delta=(n1-n2)/n1 //Fractional index change
+
+printf("\nThe fractional index change Delta = %.5f\n",delta)
+
+V=%pi*d*NA/wavelength //Normalized frequency of the fibre
+
+printf("\nthe V-number is V = %.2f \n",V)
diff --git a/1883/CH3/EX3.6.1/Example3_17.sce b/1883/CH3/EX3.6.1/Example3_17.sce new file mode 100755 index 000000000..fa50390ef --- /dev/null +++ b/1883/CH3/EX3.6.1/Example3_17.sce @@ -0,0 +1,13 @@ +//Chapter-3,Example3_6_1,pg 3-17
+
+Pin=1 //Input power in mW
+
+Pout=0.3 //output power in mW
+
+Pl=(-10)*log10(Pout/Pin) //Power loss or attenuation
+
+L=0.1 //Length of cable in km
+
+a=Pl/L //fibre attenuation
+
+printf("\nThe fibre attenuation is a = %.2f dB/km\n",a)
diff --git a/1883/CH3/EX3.6.2/Example3_16.sce b/1883/CH3/EX3.6.2/Example3_16.sce new file mode 100755 index 000000000..53181b2dc --- /dev/null +++ b/1883/CH3/EX3.6.2/Example3_16.sce @@ -0,0 +1,13 @@ +//Chapter-3,Example3_6_2,pg 3-18
+
+L=3 //length of fibre in km
+
+a=1.5 //Loss specification in dB/km
+
+Pin=9.0 //input power in uW
+
+Pl=a*L //Power loss
+
+Pout=Pin*10^(-Pl/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)
+
+printf("\nThe output power Pout = %.3f uW\n",Pout)
diff --git a/1883/CH3/EX3.6.3/Example3_18.sce b/1883/CH3/EX3.6.3/Example3_18.sce new file mode 100755 index 000000000..8e21496b2 --- /dev/null +++ b/1883/CH3/EX3.6.3/Example3_18.sce @@ -0,0 +1,21 @@ +//Chapter-3,Example3_6_3,pg 3-18
+
+a=2.2
+
+//ratio= Pout/Pin
+
+//For a length of L=2 km
+
+Pl1=a*2
+
+ratio_1=10^(-Pl1/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)
+
+printf("\nThe fractional initial intensity after 2 km is %.3f \n",ratio_1)
+
+//For a length of L=6 km
+
+Pl2=a*6
+
+ratio_2=10^(-Pl2/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)
+
+printf("\nThe fractional initial intensity after 6 km is %.3f \n",ratio_2)
diff --git a/1883/CH3/EX3.6.4/Example3_15.sce b/1883/CH3/EX3.6.4/Example3_15.sce new file mode 100755 index 000000000..a15acabf3 --- /dev/null +++ b/1883/CH3/EX3.6.4/Example3_15.sce @@ -0,0 +1,13 @@ +//Chapter-3,Example3_6_4,pg 3-19
+
+Pin=8.6 //Input power in mW
+
+Pout=7.5 //output power in mW
+
+Pl=(-10)*log10(Pout/Pin) //Power loss or attenuation
+
+L=0.5 //Length of cable in km
+
+a=Pl/L //Loss secification
+
+printf("\nThe loss specification in cable is a = %.3f dB/km\n",a)
|