diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1847/CH4 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1847/CH4')
26 files changed, 351 insertions, 0 deletions
diff --git a/1847/CH4/EX4.1/Ch04Ex1.sce b/1847/CH4/EX4.1/Ch04Ex1.sce new file mode 100755 index 000000000..c014233b2 --- /dev/null +++ b/1847/CH4/EX4.1/Ch04Ex1.sce @@ -0,0 +1,8 @@ +// Scilab Code Ex4.1:: Page-4.5 (2009)
+clc; clear;
+ip = 60; // Polarizing angle, degrees
+mu = tand(ip); // Refractive index of the material from Brewster's law
+printf("\nThe refractive index of the material = %5.3f", mu);
+
+// Result
+// The refractive index of the material = 1.732
diff --git a/1847/CH4/EX4.10/Ch04Ex10.sce b/1847/CH4/EX4.10/Ch04Ex10.sce new file mode 100755 index 000000000..58716a7da --- /dev/null +++ b/1847/CH4/EX4.10/Ch04Ex10.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.10:: Page-4.23 (2009)
+clc; clear;
+mu_o = 1.658; // Refractive index of ordinary wave
+mu_e = 1.486; // Refractive index of extraordinary wave
+lambda = 5893e-008; // Wavelength of light used, m
+// As (mu_o - mu_e)*t = lambda/4, solving for t
+t = lambda/(4*(mu_o - mu_e)); // Thickness of quarter-wave plate, cm
+
+printf("\nThe thickness of quarter-wave plate = %3.1e cm", t);
+
+// Result
+// The thickness of quarter-wave plate = 8.6e-005 cm
+
+
diff --git a/1847/CH4/EX4.11/Ch04Ex11.sce b/1847/CH4/EX4.11/Ch04Ex11.sce new file mode 100755 index 000000000..6b9f86d16 --- /dev/null +++ b/1847/CH4/EX4.11/Ch04Ex11.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.11:: Page-4.23 (2009)
+clc; clear;
+mu_o = 1.5442; // Refractive index of ordinary wave
+mu_e = 1.5533; // Refractive index of extraordinary wave
+lambda = 5000e-008; // Wavelength of light used, m
+// As (mu_o - mu_e)*t = lambda/4, solving for t
+t = lambda/(4*(mu_e - mu_o)); // Least thickness of plate for which emergent beam is plane polarised, cm
+
+printf("\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm", t);
+
+// Result
+// The least thickness of plate for which emergent beam is plane polarised = 1.37e-003 cm
+
+
diff --git a/1847/CH4/EX4.12/Ch04Ex12.sce b/1847/CH4/EX4.12/Ch04Ex12.sce new file mode 100755 index 000000000..ff5f86759 --- /dev/null +++ b/1847/CH4/EX4.12/Ch04Ex12.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex4.12:: Page-4.23 (2009)
+clc; clear;
+lambda = 5893e-008; // Wavelength of light used, m
+t = 0.005; // Thickness of the crystal, cm
+// As for quarter wave plate, mu_diff*t = (mu_o - mu_e)*t = lambda/4, solving for mu_diff
+mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm
+printf("\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm", mu_diff);
+
+// Result
+// The least thickness of plate for which emergent beam is plane polarised = 2.95e-003 cm
+
+
diff --git a/1847/CH4/EX4.13/Ch04Ex13.sce b/1847/CH4/EX4.13/Ch04Ex13.sce new file mode 100755 index 000000000..05828c751 --- /dev/null +++ b/1847/CH4/EX4.13/Ch04Ex13.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.13:: Page-4.24 (2009)
+clc; clear;
+mu_o = 1.54; // Refractive index of ordinary wave
+mu_e = 1.45; // Refractive index of extraordinary wave
+lambda = 5500e-008; // Wavelength of light used, m
+// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t
+t = lambda/(2*(mu_o - mu_e)); // The thickness of a half wave plate for wavelength, cm
+
+printf("\nThe thickness of a half wave plate for wavelength = %4.2e cm", t);
+
+// Result
+// The thickness of a half wave plate for wavelength = 3.06e-004 cm
+
+
diff --git a/1847/CH4/EX4.14/Ch04Ex14.sce b/1847/CH4/EX4.14/Ch04Ex14.sce new file mode 100755 index 000000000..20fa4ac64 --- /dev/null +++ b/1847/CH4/EX4.14/Ch04Ex14.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.14:: Page-4.24 (2009)
+clc; clear;
+mu_o = 1.55; // Refractive index of ordinary wave
+mu_e = 1.52; // Refractive index of extraordinary wave
+lambda = 5500e-008; // Wavelength of light used, m
+// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t
+t = lambda/(4*(mu_o - mu_e)); // The thickness of a quarter wave plate for wavelength, cm
+
+printf("\nThe thickness of a quarter wave plate for wavelength = %4.2e cm", t);
+
+// Result
+// The thickness of a quarter wave plate for wavelength = 4.58e-004 cm
+
+
diff --git a/1847/CH4/EX4.15/Ch04Ex15.sce b/1847/CH4/EX4.15/Ch04Ex15.sce new file mode 100755 index 000000000..3d44e42b2 --- /dev/null +++ b/1847/CH4/EX4.15/Ch04Ex15.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.15:: Page-4.24 (2009)
+clc; clear;
+mu_o = 1.51; // Refractive index of ordinary wave
+mu_e = 1.55; // Refractive index of extraordinary wave
+lambda = 6000e-008; // Wavelength of light used, m
+// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t
+t = lambda/(2*(mu_e - mu_o)); // The thickness of a quarter wave plate for wavelength, cm
+
+printf("\nThe thickness of a half wave plate quartz = %4.2e cm", t);
+
+// Result
+// The thickness of a half wave plate quartz = 7.50e-004 cm
+
+
diff --git a/1847/CH4/EX4.16/Ch04Ex16.sce b/1847/CH4/EX4.16/Ch04Ex16.sce new file mode 100755 index 000000000..84d9dee7d --- /dev/null +++ b/1847/CH4/EX4.16/Ch04Ex16.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex4.16:: Page-4.24 (2009)
+clc; clear;
+lambda = 5890e-008; // Wavelength of light used, m
+t = 7.5e-004; // Thickness of the crystal, cm
+// As for quarter wave plate, mu_diff*t = (mu_e - mu_o)*t = lambda/4, solving for mu_diff
+mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm
+printf("\nThe difference between refractive indices = %6.4f cm", mu_diff);
+
+// Result
+// The difference between refractive indices = 0.0196 cm
+
+
diff --git a/1847/CH4/EX4.17/Ch04Ex17.sce b/1847/CH4/EX4.17/Ch04Ex17.sce new file mode 100755 index 000000000..5125e4282 --- /dev/null +++ b/1847/CH4/EX4.17/Ch04Ex17.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex4.17:: Page-4.34 (2009)
+clc; clear;
+theta = 15.2; // Angle through which plane of polarization is rotated, degrees
+c = 0.2; // Concentration of sugar, g/cc
+l = 25; // Length of sugar, cm
+S = 10*theta/(l*c); // Specific rotation of superposition, degrees
+
+printf("\nThe specific rotation of superposition = %4.1f cm", S);
+
+// Result
+// The specific rotation of superposition = 30.4 cm
+
+
diff --git a/1847/CH4/EX4.18/Ch04Ex18.sce b/1847/CH4/EX4.18/Ch04Ex18.sce new file mode 100755 index 000000000..2a46ccc3e --- /dev/null +++ b/1847/CH4/EX4.18/Ch04Ex18.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.18: : Page-4.34 (2009)
+clc; clear;
+theta = 15.2; // Angle through which plane of polarization is rotated, degrees
+S = 65; // Specific rotation of sugar solution, degrees
+l = 15; // Length of sugar, cm
+// As S = 10*theta/(l*c), solving for c
+c = 10*theta/(l*S); // Concentration of sugar, g/cc
+
+printf("\nThe strength of sugar solution = %4.2f g/cc", c);
+
+// Result
+// The strength of sugar solution = 0.16 g/cc
+
+
diff --git a/1847/CH4/EX4.19/Ch04Ex19.sce b/1847/CH4/EX4.19/Ch04Ex19.sce new file mode 100755 index 000000000..4f468f6a9 --- /dev/null +++ b/1847/CH4/EX4.19/Ch04Ex19.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.19:: Page-4.34 (2009)
+clc; clear;
+theta = 15; // Angle through which plane of polarization is rotated, degrees
+S = 69; // Specific rotation of sugar solution, degrees
+l = 10; // Length of sugar, cm
+V = 50; // Volume of the tube, cc
+// As S = 10*theta/(l*c), solving for c
+c = 10*theta/(l*S); // Concentration of sugar, g/cc
+M = c*V; // Mass of sugar in solution, g
+
+printf("\nThe quantity of sugar contained in the tube in the form of solution = %5.2f g", M);
+
+// Result
+// The quantity of sugar contained in the tube in the form of solution = 10.87 g
+
+
diff --git a/1847/CH4/EX4.2/Ch04Ex2.sce b/1847/CH4/EX4.2/Ch04Ex2.sce new file mode 100755 index 000000000..4db57a79b --- /dev/null +++ b/1847/CH4/EX4.2/Ch04Ex2.sce @@ -0,0 +1,8 @@ +// Scilab Code Ex4.2:: Page-4.6 (2009)
+clc; clear;
+ip = 57; // Polarizing angle, degrees
+mu = tand(ip); // Refractive index of the material from Brewster's law
+printf("\nThe refractive index of the material = %4.2f", mu);
+
+// Result
+// The refractive index of the material = 1.54
diff --git a/1847/CH4/EX4.20/Ch04Ex20.sce b/1847/CH4/EX4.20/Ch04Ex20.sce new file mode 100755 index 000000000..da6261d32 --- /dev/null +++ b/1847/CH4/EX4.20/Ch04Ex20.sce @@ -0,0 +1,15 @@ +// Scilab Code Ex4.20:: Page-4.35 (2009)
+clc; clear;
+theta = 8; // Angle through which plane of polarization is rotated, degrees
+M = 10; // Amount of sugar, g
+l = 14; // Length of the tube, cm
+V = 44; // Volume of sugar solution, cc
+c = M/V; // Concentration of sugar, g/cc
+S = 10*theta/(l*c); // Specific rotation of sugar solution from the given data, degrees
+
+printf("\nThe specific rotation of sugar solution from the given data = %4.1f degrees", S);
+
+// Result
+// The specific rotation of sugar solution from the given data = 25.1 degrees
+
+
diff --git a/1847/CH4/EX4.21/Ch04Ex21.sce b/1847/CH4/EX4.21/Ch04Ex21.sce new file mode 100755 index 000000000..d20d8b815 --- /dev/null +++ b/1847/CH4/EX4.21/Ch04Ex21.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.21:: Page-4.35 (2009)
+clc; clear;
+m = 15; // Amount of sugar, g
+S = 66; // Specific rotation of sugar solution from the given data, degrees
+l = 20; // Length of the tube, cm
+V = 100; // Volume of sugar solution, cc
+c = m/V; // Concentration of sugar, g/cc
+// As S = 10*theta/(l*c), solving for theta
+theta = S*l*c/10; // Angle of rotation of the plane of polarization, degrees
+
+printf("\nThe angle of rotation of the plane of polarization = %4.1f degrees", theta);
+
+// Result
+// The angle of rotation of the plane of polarization = 19.8 degrees
+
+
diff --git a/1847/CH4/EX4.22/Ch04Ex22.sce b/1847/CH4/EX4.22/Ch04Ex22.sce new file mode 100755 index 000000000..f3da649ab --- /dev/null +++ b/1847/CH4/EX4.22/Ch04Ex22.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.22: : Page-4.35 (2009)
+clc; clear;
+l = 5; // Length of the tube, dm
+m = 50; // Amount of sugar, g
+S = 50; // Specific rotation of sugar solution, degrees
+V = 150; // Volume of sugar solution, cc
+c = m/V; // Concentration of sugar, g/cc
+// As S = theta/(l*c), solving for theta
+theta = S*l*c; // Angle of rotation of the optically active solution
+
+printf("\nThe angle of rotation of the optically active solution = %4.1f degrees", theta);
+
+// Result
+// The angle of rotation of the optically active solution = 83.3 degrees
+
+
diff --git a/1847/CH4/EX4.23/Ch04Ex23.sce b/1847/CH4/EX4.23/Ch04Ex23.sce new file mode 100755 index 000000000..0cb4e71fd --- /dev/null +++ b/1847/CH4/EX4.23/Ch04Ex23.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.23:: Page-4.35 (2009)
+clc; clear;
+l = 3; // Length of the tube, dm
+theta = 17.0; // Angle of rotation of the plane of polarization, degrees
+c = 1.0; // For simplicity assume concentration of solution to be unity, g/cc
+l_prime = 2.5; // New length of the tube, dm
+c_prime = 1.25*c; // Concentration of solution with 25 cm length of tube, g/cc
+theta_prime = theta*l_prime*c_prime/(l*c); // Angle of rotation in a tube of new length
+
+
+printf("\nThe angle of rotation in a tube of new length of %3.1f cm = %4.1f degrees", l_prime, theta_prime);
+
+// Result
+// The angle of rotation in a tube of new length of 2.5 cm = 17.7 degrees
+
+
diff --git a/1847/CH4/EX4.24/Ch04Ex24.sce b/1847/CH4/EX4.24/Ch04Ex24.sce new file mode 100755 index 000000000..ec8935fbd --- /dev/null +++ b/1847/CH4/EX4.24/Ch04Ex24.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.24:: Page-4.36 (2009)
+clc; clear;
+l = 17; // Length of the tube, cm
+V = 37; // Volume of sugar solution, cc
+theta = 15; // Angle of rotation of the plane of polarization, degrees
+S = 68; // Specific rotation of sugar solution, degrees
+// As S = 10*theta/(l*c), solving for c
+c = 10*theta/(l*S); // Concentration of sugar solution, g/cc
+m = c*V; // Mass of sugar in the solution contained in the tube, g
+
+printf("\nThe mass of sugar in the solution contained in the tube = %3.1f g", m);
+
+// Result
+// The mass of sugar in the solution contained in the tube = 4.8 g
+
+
diff --git a/1847/CH4/EX4.25/Ch04Ex25.sce b/1847/CH4/EX4.25/Ch04Ex25.sce new file mode 100755 index 000000000..645e56193 --- /dev/null +++ b/1847/CH4/EX4.25/Ch04Ex25.sce @@ -0,0 +1,16 @@ +// Scilab Code Ex4.25:: Page-4.36 (2009)
+clc; clear;
+m = 80; // Mass of sugar in the solution, g
+theta = 9.9; // Angle of rotation of the plane of polarization, degrees
+l = 20; // Length of the tube, cm
+S_pure = 66; // Specific rotation of pure sugar solution, degrees per dm per (g/cc)
+c = 0.08; // Concentration of sugar solution, g/cc
+S = 10*theta/(l*c); // calculated specific rotation of sugar solution, degrees per dm per (g/cc)
+percent_purity = S/S_pure*100; // Percentage purity of sugar sample, percent
+
+printf("\nThe percentage purity of the sugar sample = %5.2f percent", percent_purity);
+
+// Result
+// The percentage purity of the sugar sample = 93.75 percent
+
+
diff --git a/1847/CH4/EX4.26/Ch04Ex26.sce b/1847/CH4/EX4.26/Ch04Ex26.sce new file mode 100755 index 000000000..2c2ecda1a --- /dev/null +++ b/1847/CH4/EX4.26/Ch04Ex26.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex4.26:: Page-4.42 (2009)
+clc; clear;
+lambda = 6600e-010; // Wavelength of circularly polarized light, cm
+mu_R = 1.53914; // Refractive index of right-handed circularly polarized light
+mu_L = 1.53920; // Refractive index of left-handed circularly polarized light
+t = 0.0005; // Thickness of polarimeter plate, m
+theta = %pi/lambda*(mu_L-mu_R)*t; // Angle of rotation produced by the polarimeter plate, radian
+
+printf("\nThe angle of rotation produced by the polarimeter plate = %4.2f degrees", theta*180/%pi);
+
+// Result
+// The angle of rotation produced by the polarimeter plate = 8.18 degrees
+
+
diff --git a/1847/CH4/EX4.3/Ch04Ex3.sce b/1847/CH4/EX4.3/Ch04Ex3.sce new file mode 100755 index 000000000..57facf757 --- /dev/null +++ b/1847/CH4/EX4.3/Ch04Ex3.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex4.3:: Page-4.6 (2009)
+clc; clear;
+mu = 1.53; // Refractive index of the material from Brewster's law
+// As mu = tand(ip), solving for ip
+ip = atand(mu); // Polarizing angle, degrees
+// But mu = sind(ip)/sind(r), solving for r
+r = asind(sind(ip)/mu); // Angle of refraction, degrees
+
+printf("\nThe angle of refraction of the ray = %4.1f degrees", r);
+
+// Result
+// The angle of refraction of the ray = 33.2 degrees
diff --git a/1847/CH4/EX4.4/Ch04Ex4.sce b/1847/CH4/EX4.4/Ch04Ex4.sce new file mode 100755 index 000000000..fbfe47889 --- /dev/null +++ b/1847/CH4/EX4.4/Ch04Ex4.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex4.4:: Page-4.6 (2009)
+clc; clear;
+ip = 60; // Polarizing angle, degrees
+A = 60; // Angle of equilateral prism, degrees
+mu = tand(ip); // Refractive index of the material from Brewster's law
+// For angle of minimum deviation in prism, delta_m, refractive index
+// mu = sind((A+delta_m)/2)/sind(A/2), solving for delta_m
+delta_m = 2*asind(mu*sind(A/2))-A; // Angle of minimum deviation, degrees
+
+printf("\nThe angle of minimum deviation for green light = %2d degrees", ceil(delta_m));
+
+// Result
+// The angle of minimum deviation for green light = 60 degrees
diff --git a/1847/CH4/EX4.5/Ch04Ex5.sce b/1847/CH4/EX4.5/Ch04Ex5.sce new file mode 100755 index 000000000..3b427e1dc --- /dev/null +++ b/1847/CH4/EX4.5/Ch04Ex5.sce @@ -0,0 +1,13 @@ +// Scilab Code Ex4.5:: Page-4.7 (2009)
+clc; clear;
+mu = [1.33 1.65 1.55]; // Refractive indices of the material
+// As mu = tand(ip), solving for ip
+ip = atand(mu); // Brewster's law gives polarizing angle, degrees
+for i =1:1:3
+printf("\nmu = %4.2f, ip = %4.1f degrees", mu(i), ip(i));
+end
+
+// Result
+// mu = 1.33, ip = 53.1 degrees
+// mu = 1.65, ip = 58.8 degrees
+// mu = 1.55, ip = 57.2 degrees
diff --git a/1847/CH4/EX4.6/Ch04Ex6.sce b/1847/CH4/EX4.6/Ch04Ex6.sce new file mode 100755 index 000000000..913f0b27c --- /dev/null +++ b/1847/CH4/EX4.6/Ch04Ex6.sce @@ -0,0 +1,10 @@ +// Scilab Code Ex4.6:: Page-4.8 (2009)
+clc; clear;
+E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit
+E = 1/6*E0; // One-sixth of the maximum intensity, unit
+// From Malus law, E = E0*cosd(theta)^2, solving for theta
+theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees
+printf("\nThe angle of rotation of analyser = %4.1f degrees", theta);
+
+// Result
+// The angle of rotation of analyser = 65.9
diff --git a/1847/CH4/EX4.7/Ch04Ex7.sce b/1847/CH4/EX4.7/Ch04Ex7.sce new file mode 100755 index 000000000..6c556b9fd --- /dev/null +++ b/1847/CH4/EX4.7/Ch04Ex7.sce @@ -0,0 +1,17 @@ +// Scilab Code Ex4.7:: Page-4.8 (2009)
+clc; clear;
+E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit
+light_fraction = [0.25 0.45 0.65 0.75 0.0];
+for i = 1:1:5
+E = light_fraction(i)*E0; // Light fraction of the maximum intensity, unit
+// From Malus law, E = E0*cosd(theta)^2, solving for theta
+theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees
+printf("\nE = %4.2fE0, theta = %4.1f degrees", light_fraction(i), theta);
+end
+
+// Result
+// E = 0.25E0, theta = 60.0 degrees
+// E = 0.45E0, theta = 47.9 degrees
+// E = 0.65E0, theta = 36.3 degrees
+// E = 0.75E0, theta = 30.0 degrees
+// E = 0.00E0, theta = 90.0 degrees
diff --git a/1847/CH4/EX4.8/Ch04Ex8.sce b/1847/CH4/EX4.8/Ch04Ex8.sce new file mode 100755 index 000000000..27a99a461 --- /dev/null +++ b/1847/CH4/EX4.8/Ch04Ex8.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex4.8:: Page-4.9 (2009)
+clc; clear;
+ip = 60; // Polarizing angle, degrees
+mu = tand(ip); // Brewster's law giving refractive index
+A = 60; // Angle of prism, degrees
+d = (mu - 1)*A; // Angle of minimum deviation for green light, degrees
+
+printf("\nThe angle of minimum deviation for green light = %5.2f degrees", d);
+
+// Result
+// The angle of minimum deviation for green light = 43.92 degrees
+
diff --git a/1847/CH4/EX4.9/Ch04Ex9.sce b/1847/CH4/EX4.9/Ch04Ex9.sce new file mode 100755 index 000000000..679814534 --- /dev/null +++ b/1847/CH4/EX4.9/Ch04Ex9.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex4.9:: Page-4.9 (2009)
+clc; clear;
+theta = 30; // Angle which the plane of vibration makes with the incident beam, degrees
+// As intensity of ordinary and extraordinary ray are
+// E_E = A^2*cosd(theta)^2 and E_O = A^2*sind(theta)^2, solving for E_E/E_O
+EE_ratio_EO = cotd(30)^2; // Ratio of ordinary and extraordinary ray intensities
+
+printf("\nThe ratio of ordinary to extraordinary ray intensities = %d", EE_ratio_EO);
+
+// Result
+// The ratio of ordinary to extraordinary ray intensities = 3
+
|