diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1802 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1802')
112 files changed, 2178 insertions, 0 deletions
diff --git a/1802/CH1/EX1.1/Exa1_1.sce b/1802/CH1/EX1.1/Exa1_1.sce new file mode 100755 index 000000000..8c35656b9 --- /dev/null +++ b/1802/CH1/EX1.1/Exa1_1.sce @@ -0,0 +1,18 @@ +//Exa 1.1
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+R=4;//in ohm
+XL=3;//in ohm
+VL=400;//in volt
+Vph=VL/sqrt(3);//in volt
+Zph=sqrt(R^2+XL^2);//in ohm
+Iph=Vph/Zph;//in Ampere
+//In star connected IL=Iph
+IL=Iph;//in Ampere
+disp(IL,"Line Current (in A) :");
+cosfi=R/Zph;//unitless
+PowerConsumed=sqrt(3)*VL*IL*cosfi;//in watts
+disp(PowerConsumed,"Total power consumed by the load (in Watts)");
\ No newline at end of file diff --git a/1802/CH1/EX1.2/Exa1_2.sce b/1802/CH1/EX1.2/Exa1_2.sce new file mode 100755 index 000000000..89475af5d --- /dev/null +++ b/1802/CH1/EX1.2/Exa1_2.sce @@ -0,0 +1,20 @@ +//Exa 1.2
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+VL=440;//in volt
+IL=10;//in Ampere
+//In star connected :
+disp("In star connected :");
+Iph=IL;//in Ampere
+Vph=VL/sqrt(3);//in volt
+Rph=Vph/Iph;//in ohm
+disp(Rph,"Value of each resistor(in ohm) :");
+//In delta connected :
+disp("In delta connected :");
+Iph=IL/sqrt(3);//in Ampere
+Vph=Iph*Rph;//in volt
+disp(Vph,"Voltage in delta connection(in volt) :");
+disp("Voltage needed is 1/3rd, the voltage in star connection.")
\ No newline at end of file diff --git a/1802/CH1/EX1.3/Exa1_3.sce b/1802/CH1/EX1.3/Exa1_3.sce new file mode 100755 index 000000000..5dc71878c --- /dev/null +++ b/1802/CH1/EX1.3/Exa1_3.sce @@ -0,0 +1,22 @@ +//Exa 1.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+R=16;//in ohm
+L=38.2;//in mH
+L=38.2*10^-3;//in H
+VL=400;//in volt
+f=50;//in Hz
+XL=2*%pi*f*L;//in ohm
+Zph=sqrt(R^2+XL^2);//in ohm
+//In star connected :
+Vph=VL/sqrt(3);//in volt
+Iph=Vph/Zph;//in Ampere
+IL=Iph;//in Ampere
+disp(IL,"Line Current (in A) :");
+cosfi=R/Zph;//unitless
+disp(cosfi,"Power factor : ");
+P=sqrt(3)*VL*IL*cosfi;//in watts
+disp(P/10^3,"Total power consumed by the load (in kW)");
\ No newline at end of file diff --git a/1802/CH1/EX1.4/Exa1_4.sce b/1802/CH1/EX1.4/Exa1_4.sce new file mode 100755 index 000000000..37e494d4d --- /dev/null +++ b/1802/CH1/EX1.4/Exa1_4.sce @@ -0,0 +1,16 @@ +//Exa 1.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+R=15;//in ohm
+X=40;//in ohm
+VL=440;//in volt
+//In delta connection :
+Vph=VL;//in volt
+Zph=sqrt(R^2+X^2);//in ohm
+Iph=Vph/Zph;//in Ampere
+disp(Iph,"Phase Current(in A) :");
+IL=Iph*sqrt(3);//in Ampere
+disp(IL,"Linee Current(in A) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.1/Exa10_1.sce b/1802/CH10/EX10.1/Exa10_1.sce new file mode 100755 index 000000000..4c47af9bf --- /dev/null +++ b/1802/CH10/EX10.1/Exa10_1.sce @@ -0,0 +1,26 @@ +//Exa 10.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Load=500;//in KW
+cosfi_1=0.75;//powerfactor
+x=40;//in Rs/year/KVA
+x1=60;//cost of PF improvement equipment in Rs./KVAR
+i=12;//in % per annum
+y=x1*i/100;//in Rs.
+cosfi_2=0.98;//unitless
+KVA1=Load/cosfi_1;//in KVA(at 0.75 pf)
+KVA2=Load/cosfi_2;//in KVA(at 0.98 pf)
+AnnualSaving=x*(KVA1-KVA2);//in Rs.
+fi_1=acosd(cosfi_1);//in degree
+tanfi_1=tand(fi_1);//unitless
+Pr1=Load*tanfi_1;//in KVAR
+fi_2=acosd(cosfi_2);//in degree
+tanfi_2=tand(fi_2);//unitless
+Pr2=Load*tanfi_2;//in KVAR
+Rating=Pr1-Pr2;//in KVAR
+AnnualExpenditure=y*Rating;//in Rs.
+NetSaving=AnnualSaving-AnnualExpenditure;//in Rs./year
+disp(NetSaving,"Net saving per year(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.10/Exa10_10.sce b/1802/CH10/EX10.10/Exa10_10.sce new file mode 100755 index 000000000..0c98e6f46 --- /dev/null +++ b/1802/CH10/EX10.10/Exa10_10.sce @@ -0,0 +1,19 @@ +//Exa 10.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+P=1500;//in KW
+cosfi_1=0.75;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr1=P*tanfi_1;//in KVAR
+Pm=150;//in KW
+P=P+Pm;//in KW
+cosfi_2=0.9;//unitless
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Pr=P*tanfi_2;//in KVAR
+Prm=Pr-Pr1;//in KVAR
+Pam=sqrt(Pm^2+Prm^2)
+cosfi=Pm/Pam;//leading PF
+disp(cosfi,"P.F. of synchronous motor(leading) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.11/Exa10_11.sce b/1802/CH10/EX10.11/Exa10_11.sce new file mode 100755 index 000000000..9998f2850 --- /dev/null +++ b/1802/CH10/EX10.11/Exa10_11.sce @@ -0,0 +1,24 @@ +//Exa 10.11
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Load=100;//in KW
+LoadPF=0.75;//powerfactor
+x=100;//in Rs/KVA
+y=600*(10/100);//in Rs.
+cosfi_2=sqrt(1-(y/x)^2)
+disp(cosfi_2,"P.F.(lag) is :");
+MaxDemand1=Load/LoadPF;//in KW(at 0.75 load power factor)
+MaxDemand2=Load/cosfi_2;//in KW(at cosfi_2 power factor)
+AnnSaving=(MaxDemand1-MaxDemand2)*x;//in Rs.
+cosfi_1=0.75;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+tanfi_2=tand(acosd(cosfi_2));//unitless
+KVAR1=Load*tanfi_1;//in KVAR
+KVAR2=Load*cosfi_2;//in KVAR
+Rating=KVAR1-KVAR2;//in KVAR
+AnnualExpenditure=y*Rating;//in Rs.
+AnnualSaving=AnnSaving-AnnualExpenditure;//in Rs.
+disp(AnnualSaving,"Annual Savings(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.12/Exa10_12.sce b/1802/CH10/EX10.12/Exa10_12.sce new file mode 100755 index 000000000..b1492396b --- /dev/null +++ b/1802/CH10/EX10.12/Exa10_12.sce @@ -0,0 +1,28 @@ +//Exa 10.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+//(i)
+PHeater=50;//in KW
+cosfi_1=1;//unitless
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr1=PHeater*tanfi_1;//in KVAR
+//(ii)
+cosfi_2=0.7;//unitless
+P2=200*735.5/(1000*0.8);//in KW
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Pr2=P2*tanfi_2;//in KVAR
+//(iii)
+cosfi=0.9;//unitless New PF
+P3=200*735.5/(1000*cosfi);//in KW
+TotalActivePower=PHeater+P2+P3;//in KW
+TotalReactivePower=Pr1+Pr2;//in KW
+tanfi=tand(acosd(cosfi));//unitless
+TotalPr=TotalActivePower*tanfi;//in KVAR
+Pnn=TotalPr-TotalReactivePower;//in KVAR(ReactivePower of motor)
+tanfi_mu=Pnn/P3;//unitless
+cosfi_mu=cosd(atand(tanfi_mu));
+disp(cosfi_mu,"PF of the synchronous motor :");
+//Note : Answer in the book is wrong
\ No newline at end of file diff --git a/1802/CH10/EX10.13/Exa10_13.sce b/1802/CH10/EX10.13/Exa10_13.sce new file mode 100755 index 000000000..780c55e9d --- /dev/null +++ b/1802/CH10/EX10.13/Exa10_13.sce @@ -0,0 +1,12 @@ +//Exa 10.13
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+x=60;//in Rs./KVA
+x1=100;//in Rs/KVAR(cost of phase advancing equipment)
+InterestCepriciation=x1*10/100;//in Rs.
+y=10;//in Rs./KVAR
+cosfi_2=sqrt(1-(y/x)^2);//unitless
+disp(cosfi_2,"Most Ecomnomical PF(lag) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.14/Exa10_14.sce b/1802/CH10/EX10.14/Exa10_14.sce new file mode 100755 index 000000000..147b1f8c0 --- /dev/null +++ b/1802/CH10/EX10.14/Exa10_14.sce @@ -0,0 +1,27 @@ +//Exa 10.14
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+f=50;//in Hz
+V=240;//in Volts
+//(i)
+Imoter=20;//in Ampere
+cosfi_1=0.75;//unitless
+ReacComponent1=Imoter*sqrt(1-cosfi_1^2);//in Ampere
+//(ii)
+cosfi_2=0.9;//unitless
+P2=200*735.5/(1000*0.8);//in KW
+ReacComponent2=Imoter*sqrt(1-cosfi_2^2);//in Ampere
+Ic=ReacComponent1-ReacComponent2;//in Ampere(Leading reactive component)
+C=Ic/(2*%pi*f*V);//in Farads
+disp(round(C*10^6),"Capacitance of the capacitor(in uF) :");
+//Power of the motor=5 KW
+P=5;//in KW
+tanfi_1=tand(acosd(cosfi_1));
+tanfi_2=tand(acosd(cosfi_2));
+LeadingKVAR=P*(tanfi_1-tanfi_2);//in KVAR
+disp(round(LeadingKVAR),"Leading KVAR supplied by the capactor(in KVAR) :");
+disp(LeadingKVAR/3,"KVAR supplied per phase : ");
+//Note : Answer in the book is wrong
\ No newline at end of file diff --git a/1802/CH10/EX10.15/Exa10_15.sce b/1802/CH10/EX10.15/Exa10_15.sce new file mode 100755 index 000000000..1f5dfead4 --- /dev/null +++ b/1802/CH10/EX10.15/Exa10_15.sce @@ -0,0 +1,28 @@ +//Exa 10.15
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+f=50;//in Hz
+V=240;//in Volts
+TotalLoad=200+80;//in KW
+cosfi_1=0.8;//unitless
+tanfi_1=tand(acosd(cosfi_1));
+cosfi_2=0.9;//unitless
+tanfi_2=tand(acosd(cosfi_2));
+//(i)
+OA=200;//in KW
+OD=280;//in KW
+CM=OA*tanfi_1-OD*tanfi_2;//in KVAR
+disp(CM,"Leading KVAR supplied by the motor(in KVAR) :");
+//(ii)
+BM=80;//in KW
+CM=15.6;//in KW
+KVA_Rating=sqrt(BM^2+CM^2);//in KVA
+disp(KVA_Rating,"KVA rating(in KVA) :");
+//(iii)
+BC=KVA_Rating;//in KW
+cosfi_m=BM/BC;//unitless
+disp(cosfi_m,"P.F. Of the motor : ");
+//Note : Answer of (i) part is wrong in the book is wrong
\ No newline at end of file diff --git a/1802/CH10/EX10.16/Exa10_16.sce b/1802/CH10/EX10.16/Exa10_16.sce new file mode 100755 index 000000000..86dd9bc38 --- /dev/null +++ b/1802/CH10/EX10.16/Exa10_16.sce @@ -0,0 +1,12 @@ +//Exa 10.16
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+x=80;//in Rs./KVA
+x1=100;//in Rs/KVAR(cost of phase advancing equipment)
+i=12;//in %
+y=(i/100)*150;//in Rs./KVAR
+cosfi_2=sqrt(1-(y/x)^2);//unitless
+disp(cosfi_2,"Most Ecomnomical PF(lag) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.17/Exa10_17.sce b/1802/CH10/EX10.17/Exa10_17.sce new file mode 100755 index 000000000..6998c54c2 --- /dev/null +++ b/1802/CH10/EX10.17/Exa10_17.sce @@ -0,0 +1,21 @@ +//Exa 10.17
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+P=300;//in KW
+cosfi_1=0.7;//unitless
+tanfi_1=tand(acosd(cosfi_1));
+y=13;//in Rs./KVAR
+x=130;//in Rs./KVA
+cosfi_2=sqrt(1-(y/x)^2);//unitless
+disp(cosfi_2,"Most Ecomnomical PF :");
+tanfi_2=tand(acosd(cosfi_2));
+//(ii)
+LeadingKVAR=P*(tanfi_1-tanfi_2);//in KVAR
+AnnSavingMD=x*[P/cosfi_1-P/cosfi_2];//in Rs.
+AnnExpenditure=y*LeadingKVAR;//in Rs.
+NetSaving=AnnSavingMD-AnnExpenditure;//in Rs.
+disp(NetSaving,"Net Saving in Rs. :");
+//Note : Answer in the book is not accurate.
\ No newline at end of file diff --git a/1802/CH10/EX10.2/Exa10_2.sce b/1802/CH10/EX10.2/Exa10_2.sce new file mode 100755 index 000000000..a516e3f1f --- /dev/null +++ b/1802/CH10/EX10.2/Exa10_2.sce @@ -0,0 +1,19 @@ +//Exa 10.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Eta=85;//in %
+P=30;//in HP
+P1=P*0.7355*Eta/100;//in KW
+cosfi_1=0.8;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr=P1*tanfi_1;//in KVAR
+//Let active power P2 : Total Active power = P1+P2
+cosfi=0.9;//overall powerfactor
+tanfi=tand(acosd(cosfi));//unitless
+//Pr1=tanfi*(P1+P2);//in KVAR
+//Putting Pr=Pr1
+P2=(Pr-P1*tanfi)/tanfi;//in KW
+disp(P2,"Rating of the heater(in KW) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.3/Exa10_3.sce b/1802/CH10/EX10.3/Exa10_3.sce new file mode 100755 index 000000000..85feb30f8 --- /dev/null +++ b/1802/CH10/EX10.3/Exa10_3.sce @@ -0,0 +1,20 @@ +//Exa 10.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+Im=50;//in Ampere
+f=50;//in Hz
+V=400;//in volts
+cosfi_1=0.6;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Ia=Im*cosfi_1;//in Ampere
+Ir1=Ia*tanfi_1;//in Ampere
+//Let the capaitor of C farads be connected to improve pf i.e., 0.9(lag)
+cosfi_2=0.9;//powerfactor
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Ir2=Ia*tanfi_2;//in Ampere
+Ic=Ir1-Ir2;//in Ampere
+C=Ic/(2*%pi*f*V);//in farads
+disp(C*10^6,"Capacity of condenser(in uF) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.4/Exa10_4.sce b/1802/CH10/EX10.4/Exa10_4.sce new file mode 100755 index 000000000..dde5c192f --- /dev/null +++ b/1802/CH10/EX10.4/Exa10_4.sce @@ -0,0 +1,17 @@ +//Exa 10.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Im=10;//in Ampere
+f=50;//in Hz
+V=240;//in volts
+cosfi_1=0.707;//powerfactor
+sinfi_1=sind(acosd(cosfi_1));//unitless
+Ir1=Im*sinfi_1;//in Ampere
+cosfi_2=1;//powerfactor
+Ir2=0;//in A(as cosfi_2=1)
+Ic=Ir1-Ir2;//in Ampere
+C=Ic/(2*%pi*f*V);//in farads
+disp(C*10^6,"Capacity of condenser(in uF) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.5/Exa10_5.sce b/1802/CH10/EX10.5/Exa10_5.sce new file mode 100755 index 000000000..19e5f46e3 --- /dev/null +++ b/1802/CH10/EX10.5/Exa10_5.sce @@ -0,0 +1,18 @@ +//Exa 10.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+Im=30;//in Ampere
+f=50;//in Hz
+V=200;//in volts
+cosfi_1=0.8;//powerfactor
+Ia=Im*cosfi_1;//in Ampere
+cosfi_2=1;//powerfactor
+Ir2=0;//in A(as cosfi_2=1)
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Ir1=Ia*tanfi_1;//in Ampere
+Ic=Ir1-Ir2;//in Ampere
+C=Ic/(2*%pi*f*V);//in farads
+disp(C*10^6,"Capacity of condenser(in uF) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.6/Exa10_6.sce b/1802/CH10/EX10.6/Exa10_6.sce new file mode 100755 index 000000000..e07b54d84 --- /dev/null +++ b/1802/CH10/EX10.6/Exa10_6.sce @@ -0,0 +1,19 @@ +//Exa 10.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Im=30;//in Ampere
+f=50;//in Hz
+V=200;//in volts
+cosfi_1=0.7;//powerfactor
+Ia=Im*cosfi_1;//in Ampere
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Ir1=Ia*tanfi_1;//in Ampere
+cosfi_2=0.85;//powerfactor
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Ir2=Ia*tanfi_2;//in Ampere
+Ic=Ir1-Ir2;//in Ampere
+C=Ic/(2*%pi*f*V);//in farads
+disp(C*10^6,"Capacity of condenser(in uF) :");
\ No newline at end of file diff --git a/1802/CH10/EX10.7/Exa10_7.sce b/1802/CH10/EX10.7/Exa10_7.sce new file mode 100755 index 000000000..697082d5b --- /dev/null +++ b/1802/CH10/EX10.7/Exa10_7.sce @@ -0,0 +1,40 @@ +//Exa 10.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+//(i)
+IMO=200;//in HP(Induction Motor output)
+IMO=IMO*0.7355;//in KW(Induction Motor output)
+LagEff=90;//in %
+LagEff=90/100;//in fraction
+MotorIn=IMO/(LagEff);//in KW
+cosfi_1=0.75;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr1=MotorIn*tanfi_1;//in KVAR
+//(ii)
+P2=300;//in KW
+cosfi_2=0.5;//unitless
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Pr2=P2*tanfi_2;//in KVAR
+//(iii)
+P3=200;//in KW
+cosfi_3=1;//unitless
+tanfi_3=0;//unitless
+Pr3=0;//in KVAR
+//(iv)
+PsynMotor=500;//in KW
+Eff=93;//in %
+Eff=93/100;//in fration
+Input=PsynMotor/Eff;//in KW
+Pa=MotorIn+P2+P3+PsynMotor;//in KW
+P1=Pr1+Pr2+Pr3;//in KVAR
+cosfi=1;//unitless
+tanfi=0;//unitless
+Pr=Pa*tanfi;//in KVAR
+Prm=Pr-P1;//in KVAR
+tanfi_m=Prm/Input
+cosfi_m=cosd(atand(tanfi_m));//unitless
+disp(cosfi_m,"P.F. of the motor(lead) :");
+//Note : Answer in the book is wrong
\ No newline at end of file diff --git a/1802/CH10/EX10.8/Exa10_8.sce b/1802/CH10/EX10.8/Exa10_8.sce new file mode 100755 index 000000000..1b69de449 --- /dev/null +++ b/1802/CH10/EX10.8/Exa10_8.sce @@ -0,0 +1,22 @@ +//Exa 10.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+f=50;//in Hz
+V=400;//in volts
+MotorOut=20;//in HP(Motor output)
+MotorOut=MotorOut*735.5;//in Watts(Induction Motor output)
+CorrectPF=0.85;//in fraction
+MotorIn=MotorOut/(CorrectPF*1000);//in KW
+cosfi_1=0.7071;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr1=MotorIn*tanfi_1;//in KVAR
+cosfi_2=0.85;//unitless
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Pr2=Pr1*tanfi_2;//in KVAR
+Prc=Pr1-Pr2;//in KVAR
+Prc_ph=Prc/3;//in KVAR
+C=Prc_ph*10^3/(2*%pi*f*V^2)
+disp(C*10^6,"Rating of each capacitor per phase(in uF)");
\ No newline at end of file diff --git a/1802/CH10/EX10.9/Exa10_9.sce b/1802/CH10/EX10.9/Exa10_9.sce new file mode 100755 index 000000000..7ac77ac4b --- /dev/null +++ b/1802/CH10/EX10.9/Exa10_9.sce @@ -0,0 +1,19 @@ +//Exa 10.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+Pa=500;//in KW
+cosfi_1=0.7071;//powerfactor
+tanfi_1=tand(acosd(cosfi_1));//unitless
+Pr1=Pa*tanfi_1;//in KVAR
+Pm=100;//in KW
+P=Pa+Pm;//in KW
+cosfi_2=0.95;//unitless
+tanfi_2=tand(acosd(cosfi_2));//unitless
+Pr=P*tanfi_2;//in KVAR
+Prm=Pr-Pr1;//in KVAR
+Pam=sqrt(Pm^2+Prm^2)
+PFsynMotor=Pm/Pam;//leading PF
+disp(PFsynMotor,"P.F. of synchronous motor(leading) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.1/Exa11_1.sce b/1802/CH11/EX11.1/Exa11_1.sce new file mode 100755 index 000000000..59d043a4c --- /dev/null +++ b/1802/CH11/EX11.1/Exa11_1.sce @@ -0,0 +1,21 @@ +//Exa 11.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+E=438000;//in kWh(Energy consumed per year)
+pf=0.8;//unitless
+cosfi=pf;//unitless
+LoadFactor=40;//in %
+//tarrif=Rs. 75/year/kw of max demand plus 3 paise per unit per reactive KVA
+h=8760;//no. of years in a year
+AvgLoad=E/h;//kw
+MaxLoad=AvgLoad/(LoadFactor/100);//in kw
+MaxLoad_KVA=MaxLoad/pf;//in KVA
+tanfi=tand(acosd(cosfi));//unitless
+ReactiveKVAR=h*tanfi*AvgLoad;//in KVA
+AnnualBill=75*MaxLoad+(3/100)*E+(1.5/100)*ReactiveKVAR;//in Rs.
+CostPerUnit=AnnualBill/E;//in Rs.
+CostPerUnit=CostPerUnit*100;//in Paisa
+disp(CostPerUnit,"Cost per unit(in Paisa) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.10/Exa11_10.sce b/1802/CH11/EX11.10/Exa11_10.sce new file mode 100755 index 000000000..d3e405dc7 --- /dev/null +++ b/1802/CH11/EX11.10/Exa11_10.sce @@ -0,0 +1,19 @@ +//Exa 11.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+MD=10;//in KW
+Energy=50000;//in kwh/year(Annual consumption)
+//(i) Rs. 100/KW/year max demand plus Rs. 0.20 paise per unit
+//(ii) Simple tarrif 0.30 Rs./unit
+C1=100;//in Rs.year/KW
+C2=0.20;//in Rs. /unit
+//Case (i)
+AnnualBill1=C1*MD+C2*Energy;//in Rs.
+disp(AnnualBill1,"Case(i) Annual Bill of tarrif 1 (in Rs.) :");
+C=0.30;//in Rs. /unit
+AnnualBill2=C*Energy;//in Rs.
+disp(AnnualBill2,"Case(ii) Annual Bill of tarrif 2 (in Rs.) :");
+disp("Naturally he will hoose the first tarrif.");
\ No newline at end of file diff --git a/1802/CH11/EX11.2/Exa11_2.sce b/1802/CH11/EX11.2/Exa11_2.sce new file mode 100755 index 000000000..2bb83d9fe --- /dev/null +++ b/1802/CH11/EX11.2/Exa11_2.sce @@ -0,0 +1,22 @@ +//Exa 11.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+//tarrif=Rs. 275/year/KVA of max demand plus 35 paise per unit
+C1=275;//in Rs.year/KVA
+C2=35;//in paisa/unit
+LoadFactor=30;//in %/year
+LoadFactor=30/100;//in fraction
+//Let MaxDemand = x KW
+//Case (i) PF=1
+cosfi=1;//unitless
+AnnualBillBYx=C1/cosfi+(C2/100)*LoadFactor*24*365;//in Rs.(Here 24*365 is for No. of hours in a year)
+AnnualBill=AnnualBillBYx*100/(LoadFactor*24*365);//in paisa/unit
+disp(AnnualBill,"Cost per unit(at unity power factor in paisa/unit) :");
+//Case (i) PF=0.8
+cosfi=0.8;//unitless
+AnnualBillBYx=C1/cosfi+(C2/100)*LoadFactor*24*365;//in Rs.(Here 24*365 is for No. of hours in a year)
+AnnualBill=AnnualBillBYx*100/(LoadFactor*24*365);//in paisa/unit
+disp(AnnualBill,"Cost per unit(at 0.8 power factor in paisa/unit) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.3/Exa11_3.sce b/1802/CH11/EX11.3/Exa11_3.sce new file mode 100755 index 000000000..75266e76e --- /dev/null +++ b/1802/CH11/EX11.3/Exa11_3.sce @@ -0,0 +1,27 @@ +//Exa 11.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+FixedLoad=200;//in kW
+PF=0.8;//unitless
+cosfi=PF;//unitless
+h=10;//in hours/day
+d=300;//in days
+Time=h*d;//in hours
+Energy=FixedLoad*Time;//in kwh/year
+// (i) tarrif=Rs. 100/KVA/Annum plus 20 paise per kwh
+C1=100;//in Rs.year/KVA
+C2=20;//in paisa/kwh
+KVA=FixedLoad/cosfi;//in KVA
+AnnualBill=KVA*C1+(C2/100)*Energy;//in Rs.
+disp(AnnualBill," Case (i) Annual Payment(in Rs.) :");
+// (ii) tarrif=Rs. 100/KW/Annum plus 20 paise per kwh plus 2 paise/KVARH
+C1=100;//in Rs./year/KW
+C2=20;//in paisa/kwh
+C3=2;//in paisa/KVARH
+tanfi=tand(acosd(cosfi));//unitless
+ReactiveKVARH=FixedLoad*tanfi*Time;//in KVARH
+AnnualBill=C1*FixedLoad+(C2/100)*Energy+(C3/100)*ReactiveKVARH;//in Rs.
+disp(AnnualBill," Case (ii) Annual Payment(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.4/Exa11_4.sce b/1802/CH11/EX11.4/Exa11_4.sce new file mode 100755 index 000000000..fbcf176e2 --- /dev/null +++ b/1802/CH11/EX11.4/Exa11_4.sce @@ -0,0 +1,19 @@ +//Exa 11.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+Energy=180000;//in kwh
+LoadFactor=45;//in %/year
+LoadFactor=45/100;//in fraction
+//Charges=Rs. 50/KW/Annum plus 8 paise per unit
+C1=50;//in Rs.year/KW
+C2=8;//in paisa/unit
+h=365*24;//no. of hours per year
+AvgLoad=Energy/h;//in KW
+MaxLoad=AvgLoad/LoadFactor;//in KW
+FixCharges=MaxLoad*C1;//in Rs.
+PlusCharges=(C2/100)*Energy;//in rs.
+TotalTarrif=FixCharges+PlusCharges;//in Rs.
+disp(TotalTarrif,"Total Annual electricity charges(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.5/Exa11_5.sce b/1802/CH11/EX11.5/Exa11_5.sce new file mode 100755 index 000000000..1636de0ef --- /dev/null +++ b/1802/CH11/EX11.5/Exa11_5.sce @@ -0,0 +1,17 @@ +//Exa 11.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+Energy=25*10^6;//in kwh
+MaxDemand=1600;//in KW
+//(i) Rs. 70/KW max demand plus 2 paise per kwh
+C1=70;//in Rs.year/KW
+C2=2;//in paisa/unit
+AnnualCost=MaxDemand*C1+(C2/100)*Energy;//in Rs.
+disp(AnnualCost,"Case (i) Annual cost of energy(in Rs.) :");
+//(ii) Annual cost at a flat rate of 5p/kwh
+C=5;//in paisa/kwh
+AnnualCost=(C/100)*Energy;//in Rs.
+disp(AnnualCost,"Case (ii) Annual cost of energy(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.6/Exa11_6.sce b/1802/CH11/EX11.6/Exa11_6.sce new file mode 100755 index 000000000..ef0fdd888 --- /dev/null +++ b/1802/CH11/EX11.6/Exa11_6.sce @@ -0,0 +1,17 @@ +//Exa 11.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+MaxDemand=20;//in KW
+//(i) Rs. 180/KW/annum max demand plus 15 paise per unit
+//(ii) Flat rate tarrif 40 paise/unit
+C1=180;//in Rs.year/KW
+C2=15;//in paisa/unit
+//AnnualBill1=C1*MaxDemand+(C2/100)*x ;x is the energy consumed
+C=40;//in paisa/unit
+//AnnualBill2=(C/100)*x ;x is the energy consumed
+//Puting two bills equal gives :
+x=C1*MaxDemand/((C/100)-(C2/100));//in kwh
+disp(x,"No. of units to be consumed(or in kwh) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.7/Exa11_7.sce b/1802/CH11/EX11.7/Exa11_7.sce new file mode 100755 index 000000000..4f6530de9 --- /dev/null +++ b/1802/CH11/EX11.7/Exa11_7.sce @@ -0,0 +1,20 @@ +//Exa 11.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+MaxDemand=500;//in KW
+LoadFactor=70;//in %/year
+LoadFactor=70/100;//in fraction
+cosfi=0.8;//unitless
+//(i) Rs. 80/KVA of max demand
+//(ii) Running chargeare 5 paise/kwh
+C1=80;//in Rs./KVA
+C2=5;//in paisa/kwh
+AvgLoad=MaxDemand*LoadFactor;//in KW
+h=365*24;//no. of hours per year
+Energy=AvgLoad*h;//in kwh
+MaxDemandKVA=MaxDemand/cosfi;//in KVA
+AnnualBill=MaxDemandKVA*C1+(C2/100)*Energy;//in RS
+disp(AnnualBill,"Annual bill of consumer(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.8/Exa11_8.sce b/1802/CH11/EX11.8/Exa11_8.sce new file mode 100755 index 000000000..4dddf8f6b --- /dev/null +++ b/1802/CH11/EX11.8/Exa11_8.sce @@ -0,0 +1,16 @@ +//Exa 11.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+MD=100;//in KW
+LF=60;//in %/year
+LF=60/100;//in fraction
+//Tarrif Rs. 100/KW of max demand and Rs. 1/kwh
+C1=100;//in Rs./KW
+C2=1;//in Rs./kwh
+h=365*24*12;//no. of hours
+UnitsConsumed=MD*LF*h;//in kwh/year
+AnnualCharges=C1*MD+C2*UnitsConsumed;//in RS
+disp(AnnualCharges,"Overall Annual chrges(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH11/EX11.9/Exa11_9.sce b/1802/CH11/EX11.9/Exa11_9.sce new file mode 100755 index 000000000..0593a263d --- /dev/null +++ b/1802/CH11/EX11.9/Exa11_9.sce @@ -0,0 +1,22 @@ +//Exa 11.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+MD=250;//in KW
+PF=0.8;//power factor
+cosfi=PF;//unitless
+Energy=50000;//in units/annum
+//Tarrif Rs. 50/KVA of max demand and 0.25paisa/unit
+C1=50;//in Rs./KW
+C2=0.25;//in Paise/kwh
+MDKVA=MD/cosfi;//in KVA
+AnnualBill1=C1*MDKVA+C2*Energy;//in RS
+disp(AnnualBill1,"Annuall bill of industry(in Rs.) :");
+//Note : If consumer raised the PF to unity.
+PF=1;//power factor
+cosfi=PF;//unitless
+MDKVA=MD/cosfi;//in KVA
+AnnualBill2=C1*MDKVA+C2*Energy;//in RS
+disp(AnnualBill1-AnnualBill2,"Saving by consumer in the bill(in Rs.) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.1/Exa2_1.sce b/1802/CH2/EX2.1/Exa2_1.sce new file mode 100755 index 000000000..1a38207cc --- /dev/null +++ b/1802/CH2/EX2.1/Exa2_1.sce @@ -0,0 +1,31 @@ +//Exa 2.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+//CableCost=20+400*a;//in Rs./meter (a=cross section in cm^2)
+//Cable_cost=(20+400*a)*1000;//in Rs./meter
+l=1;//in Km
+P=1;//in MW
+V=11;//in KV
+cosfi=0.8;//powerfactor
+h=3000;//hours
+i=10;//in %
+E_cost=15;//in paisa/kwh
+rho=1.75*10^-6;//sp. resistance in ohm-cm
+//C1=CableCost*1000;//in Rs./km
+disp("Cost of 1km cable=Rs"+string(20*1000)+"+"+string(400*1000)+"a");
+//R=rho*l*10^3/(a*10^-2);//in ohm
+disp("Resistance of 1km cable(in ohm) = "+string(rho*l*10^3/(10^-2))+"/a");
+Ifl=(P*10^6)/(V*10^3*cosfi);//in Ampere
+disp(Ifl,"Full load current(in Ampere) :");
+//Ploss=2*I^2*R;//in Watts
+disp("Power loss in the cable(in watts) : "+string(2*Ifl^2*rho*l*10^3/(10^-2))+"/a");
+//Annual_cost=Ploss*10^-3*h*E_cost/100;//in Rs.
+disp("Annual cost of energy(in Rs.) : "+string(2*Ifl^2*rho*l*h*E_cost/(10^-2))+"/a");
+//AnnualCost2=400*10^3*a*i/100;//in Rs.
+disp("AnnualCost of interest and depriciation(in Rs.)="+string(400*10^3*i/100)+"a");
+disp("Using Kelvin law for most ecpnomical cross sectional area :");
+a=2032.5/40000;
+disp(a,"Most economical cross section(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.10/Exa2_10.sce b/1802/CH2/EX2.10/Exa2_10.sce new file mode 100755 index 000000000..542124560 --- /dev/null +++ b/1802/CH2/EX2.10/Exa2_10.sce @@ -0,0 +1,24 @@ +//Exa 2.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+P=20*10^6;//in VA
+cosfi=0.75;//power factor
+P=20*10^6*cosfi;//in watts
+V=33*10^3;//in Volt
+l=20*10^3;//in meter
+Eta=85;//in %
+rho=3*10^-8;//in ohm-meter
+W=P*(100-Eta)/100;//in watts
+//For single phase system :
+I=P/(V*cosfi);//in Ampere
+a1=2*I^2*rho*l/W;//in m^2
+V1=2*a1*l;//in m^3
+disp(V1,"For single phase system :Volume of the conductor material(in m^3) :");
+//For 3 phase 3 wire system :
+I=P/(sqrt(3)*V*cosfi);//in Ampere
+a2=3*I^2*rho*l/W;//in m^2
+V2=3*a2*l;//in m^3
+disp(V2,"For three phase 3-wire system :Volume of the conductor material(in m^3) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.11/Exa2_11.sce b/1802/CH2/EX2.11/Exa2_11.sce new file mode 100755 index 000000000..89ff18a34 --- /dev/null +++ b/1802/CH2/EX2.11/Exa2_11.sce @@ -0,0 +1,22 @@ +//Exa 2.11
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+l=1*10^3;//in meter
+IL=300;//in Ampere
+//CableCost=100*a;//in Rs/meter : a=cross sectional area(in cm^2)
+i=10;//in %
+Rate=10;//in Rs/kwh
+rho=1.85*10^-6;//in ohm-cm
+//R=rho*l/a;//in ohm
+disp("Resistance of cable(in ohm) = "+string(rho*l*100)+"/a");
+//Eloss=2*I^2*R*365*24/1000;//in kwh
+disp("Energy loss per annum in 2 conductors(in kwh) : "+string(2*IL^2*rho*l*100*365*24/1000)+"/a");
+//AnnualCost=Eloss/Rate;//in Rs
+//Ccost=100*a*l;//in Rs
+disp("Annual chrges on account of interest and depriciation(in Rs.) : "+string(100*l*Rate/100)+"a");
+disp("For most ecpnomic cross section :");
+a=sqrt(29170.8/10000);
+disp(a,"Most economical cross section(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.12/Exa2_12.sce b/1802/CH2/EX2.12/Exa2_12.sce new file mode 100755 index 000000000..079a14822 --- /dev/null +++ b/1802/CH2/EX2.12/Exa2_12.sce @@ -0,0 +1,28 @@ +//Exa 2.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+//Vcon=V;//in volt
+//pf=cosfi;//unitless
+//Rcon=R;//in ohm
+//Part (i) : single phase system
+disp("Single phase system :");
+P1=5*10^6;//in watt
+//I1=P1/(V*cosfi);//in Ampere
+disp("Line current,I1="+string(P1)+"/V*cosfi");
+//W1=2*I1^2*R;//in Wats(Line losses)
+disp("Line Losses,W1="+string(2*P1^2)+"R/(V*cosfi)^2");
+//Lloss_percent=W1*P1/100;//in % eqn(1)
+disp("% Line Losses="+string(2*P1^2*100/P1)+"R/(V*cosfi)^2");
+//Part (ii) : 3 phase 3 wire system
+disp("3 phase 3 wire system :");
+//I2=P2/(V*cossfi*sqrt(3));//in Ampere
+disp("Line current,I2="+string(10^6/sqrt(3))+"P2/V*cosfi");
+//W1=2*I2^2*R;//in Wats(Line losses)
+disp("Line Losses,W2="+string(2*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
+//Lloss_percent=W2*P2/100;//in % eqn(2)
+disp("% Line Losses="+string(3*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
+P2=2*P1;//in watts
+disp("3 phase load in MW :"+string(P2/10^6));
\ No newline at end of file diff --git a/1802/CH2/EX2.13/Exa2_13.sce b/1802/CH2/EX2.13/Exa2_13.sce new file mode 100755 index 000000000..41cd79888 --- /dev/null +++ b/1802/CH2/EX2.13/Exa2_13.sce @@ -0,0 +1,22 @@ +//Exa 2.13
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+disp("Assumptions : ");
+disp("Power to be transmitted is the same(say, P watts)");
+disp("Length of the line is the same(say, l meters)");
+disp("Losses in the line are the same(say, W watts)");
+//I=P/V;//in Ampere
+//a=2*I^2*R=2*(P/V)^2*rho*l/W;//in m^2
+//volume=2*a*l;//
+disp("Volume of copper required for 2 wires=K/V^2")
+//(i) When V=200 volts
+V1=200;//in volts
+disp("Vol1=K*"+string(1/V1^2));
+//(ii) When V=600 volts
+V2=600;//in volts
+disp("Vol2=K*"+string(1/V2^2));
+saving=((1/V1^2)-(1/V2^2))*100/(1/V1^2);//in
+disp(saving,"% saving in copper : ");
\ No newline at end of file diff --git a/1802/CH2/EX2.2/Exa2_2.sce b/1802/CH2/EX2.2/Exa2_2.sce new file mode 100755 index 000000000..093a2d9ff --- /dev/null +++ b/1802/CH2/EX2.2/Exa2_2.sce @@ -0,0 +1,29 @@ +//Exa 2.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+Pt=30*10^6;//in watt
+V=220*10^3;//in volt
+l=275*10^3;//in meter
+R=0.173;//in ohm/km
+Eta=90;//in %
+density=8.9;//copper density
+Loss=100-Eta;//in %
+cosfi=0.8;//powerfactor
+disp("3-phase 3 wire :");
+IL=Pt/(sqrt(3)*V*cosfi);//in Ampere
+LineLosses=(Loss/100)*Pt;//in watts
+rho=R*10^-4/(1*10^3);//in ohm-meter
+a=3*IL^2*rho*l/(LineLosses);//in m^2
+Volume=3*a*l;//in m^3
+Cu_weight=Volume*density;//in Tones
+disp(Cu_weight,"Weight of copper(in Tones) : ");
+disp("Single phase 2 wire :");
+IL=Pt/(V*cosfi);//in Ampere
+a=2*IL^2*rho*l/(LineLosses);//in m^2
+Volume=2*a*l;//in m^3
+Cu_weight=Volume*density;//in Tones
+disp(Cu_weight,"Weight of copper(in Tones) : ");
+//Note : answer is not accurate in the book.
\ No newline at end of file diff --git a/1802/CH2/EX2.3/Exa2_3.sce b/1802/CH2/EX2.3/Exa2_3.sce new file mode 100755 index 000000000..e7602d7c7 --- /dev/null +++ b/1802/CH2/EX2.3/Exa2_3.sce @@ -0,0 +1,26 @@ +//Exa 2.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+l=1;//in Km
+l=l*10^5;//in cm
+I=200;//in Ampere
+//CableCost=50*a;//in Rs./meter (a=cross section in cm^2)
+E_cost=5;//in paisa/kwh
+i=10;//in %
+rho=1.72*10^-6;//resistivity in ohm-cm
+//R=rho*l/a;//in ohm
+disp("Resistance of cable(in ohm) = "+string(rho*l)+"/a");
+//Eloss=2*I^2*R*24*365/1000;//in kwh
+disp("Power loss in the cable(in kwh) : "+string(2*I^2*rho*l*24*365/1000)+"/a");
+//AnnualCost2=(E_cost/100)*2*I^2*rho*l*24*365/1000a ;//in Rs.
+disp("AnnualCost of Energy Lost(in Rs.)="+string((E_cost/100)*2*I^2*rho*l*24*365/1000)+"/a");
+//C1=CableCost*1000;//in Rs./km
+disp("Cost of 1km cable=Rs"+string(50*1000)+"/a");
+//AnnualCharges=C1*i/100;//in Rs.
+disp("Annual chrges on account of interest and depriciation(in Rs.) : "+string(50*1000*i/100)+"a");
+disp("For most ecpnomic cross section :");
+a=sqrt(6026.88/5000);
+disp(a,"Most economical cross section(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.4/Exa2_4.sce b/1802/CH2/EX2.4/Exa2_4.sce new file mode 100755 index 000000000..94a1fd778 --- /dev/null +++ b/1802/CH2/EX2.4/Exa2_4.sce @@ -0,0 +1,35 @@ +//Exa 2.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+l=4*10^5;//in cm
+VL=30;//in KV
+//LineCost=40000*a+7500;//in Rs/km
+i=8;//in %
+E_cost=4;//in paisa/kwh
+rho=1.72*10^-6;//in ohm-cm
+//R=rho*l/a;//in ohm
+disp("Resistance of cable(in ohm) = "+string(rho*l)+"/a");
+P1=3*10^6;//in watt
+h1=10;//in hours
+cosfi1=0.8//unitless
+I1=P1/(sqrt(3)*VL*10^3*cosfi1);//in Ampere
+P2=1.5*10^6;//in watt
+h2=6;//in hours
+cosfi2=0.9//unitless
+I2=P2/(sqrt(3)*VL*10^3*cosfi2);//in Ampere\
+P3=0.5*10^6;//in watt
+h3=8;//in hours
+cosfi3=0.9;//unitless
+I3=P3/(sqrt(3)*VL*10^3*cosfi3);//in Ampere
+//Etot=3*(I1^2*h1+I2^2*h2+I3^2*h3)*R*365/1000;//in kwh
+//Ccost_line=40000*a*4;//in Rs.
+//AnnualCharges=Ccost_line*i/100;//in Rs.
+disp("Annual chrges on account of interest and depriciation(in Rs.) : "+string(40000*4*i/100)+"a");
+//AnnualCost2=(E_cost/100)*Etot ;//in Rs.
+disp("AnnualCost of Energy Lost(in Rs.)="+string((E_cost/100)*3*(I1^2*h1+I2^2*h2+I3^2*h3)*rho*l*365/1000)+"/a");
+disp("For most ecpnomic cross section :");
+a=sqrt(1783/12800);
+disp(a,"Most economical cross section(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.5/Exa2_5.sce b/1802/CH2/EX2.5/Exa2_5.sce new file mode 100755 index 000000000..ff3b21457 --- /dev/null +++ b/1802/CH2/EX2.5/Exa2_5.sce @@ -0,0 +1,25 @@ +//Exa 2.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+P=5*10^6;//in watt
+VL=33*10^3;//in volt
+cosfi=0.8//unitless
+//LineCost=31250*a+4000;//in Rs/km
+rho=10^-6;//in ohm-cm
+i=8;//in %
+E_cost=4;//in paisa/kwh
+IL=P/(sqrt(3)*VL*cosfi);//in Ampere
+//Line_length=l*10^5;//in cm
+//R=rho*l*10^5/a;//in ohm
+disp("Resistance of cable(in ohm) = "+string(rho*10^5)+"(l/a)");
+//E_lost=3*IL^2*R*365/1000;//in kwh
+disp("Total Energy Lost per annum in 3 conductor(in kwh)="+string(3*IL^2*rho*10^5*365/1000)+"(l/a)");
+//Ccost_line=31250*a*l;//in Rs.
+//AnnualCharges=Ccost_line*i/100;//in Rs.
+disp("Annual chrges on account of interest and depriciation(in Rs.) : "+string(31250*i/100)+"(a*l)");
+disp("For most ecpnomic cross section :");
+a=sqrt(1309.33/2500);
+disp(a,"Most economical cross section(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.6/Exa2_6.sce b/1802/CH2/EX2.6/Exa2_6.sce new file mode 100755 index 000000000..be9ec7988 --- /dev/null +++ b/1802/CH2/EX2.6/Exa2_6.sce @@ -0,0 +1,27 @@ +//Exa 2.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+P=50*10^6;//in watt
+VL=220*10^3;//in volt
+cosfi=0.8//unitless
+Eta=90;//in %
+l=200*10^3;//in meter
+rho=1.75*10^-8;//in ohm-cm
+W=P*(100-Eta)/100;//in Wats(Line losses)
+//Part (i) : 3 phase 3 wire with Cu condutor
+gravity=8.9;//specific gravity
+IL=P/(sqrt(3)*VL*cosfi);//in Ampere
+a=3*IL^2*rho*l/W;//in m^2
+Vol3=3*a*l;//volume of 3 lines(in m^3)
+CuWeight=Vol3*gravity;//in Tones
+disp(CuWeight,"Weight of copper(in Tones) :");
+//Part (ii) : When Al conductor is used.
+gravity=2.7;//specific gravity
+rho=3*10^-8;//in ohm-meter
+a=3*IL^2*rho*(l/W);//in m^2
+Vol=3*a*l;//volume of 3 lines(in m^3)
+AlWeight=Vol*gravity;//in Tones
+disp(AlWeight,"Weight of Alluminium(in Tones) :");
\ No newline at end of file diff --git a/1802/CH2/EX2.7/Exa2_7.sce b/1802/CH2/EX2.7/Exa2_7.sce new file mode 100755 index 000000000..9651be370 --- /dev/null +++ b/1802/CH2/EX2.7/Exa2_7.sce @@ -0,0 +1,28 @@ +//Exa 2.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+//Vcon=V;//in volt
+//pf=cosfi;//unitless
+//Rcon=R;//in ohm
+//Part (i) : single phase system
+disp("Single phase system :");
+P1=15*10^6;//in watt
+//I1=P1/(V*cosfi);//in Ampere
+disp("Line current,I1="+string(P1)+"/V*cosfi");
+//W1=2*I1^2*R;//in Wats(Line losses)
+disp("Line Losses,W1="+string(2*P1^2)+"R/(V*cosfi)^2");
+//Lloss_percent=W1*P1/100;//in % eqn(1)
+disp("% Line Losses="+string(2*P1^2*100/P1)+"R/(V*cosfi)^2");
+//Part (ii) : 3 phase 3 wire system
+disp("3 phase 3 wire system :");
+//I2=P2/(V*cossfi*sqrt(3));//in Ampere
+disp("Line current,I2="+string(10^6/sqrt(3))+"P2/V*cosfi");
+//W1=2*I2^2*R;//in Wats(Line losses)
+disp("Line Losses,W2="+string(2*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
+//Lloss_percent=W2*P2/100;//in % eqn(2)
+disp("% Line Losses="+string(3*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
+P2=2*P1;//in watts
+disp(P2/10^6,"3 phase load in MW :");
\ No newline at end of file diff --git a/1802/CH2/EX2.8/Exa2_8.sce b/1802/CH2/EX2.8/Exa2_8.sce new file mode 100755 index 000000000..52a24b5a1 --- /dev/null +++ b/1802/CH2/EX2.8/Exa2_8.sce @@ -0,0 +1,22 @@ +//Exa 2.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+disp("Assumptions : ");
+disp("Power to be transmitted is the same(say, P watts)");
+disp("Length of the line is the same(say, l meters)");
+disp("Losses in the line are the same(say, W watts)");
+//I=P/V;//in Ampere
+//a=2*I^2*R=2*(P/V)^2*rho*l/W;//in m^2
+//volume=2*a*l;//
+disp("Volume of copper required for 2 wires=K/V^2")
+//(i) When V=220 volts
+V1=220;//in volts
+disp("Vol1=K*"+string(1/V1^2));
+//(ii) When V=500 volts
+V2=500;//in volts
+disp("Vol2=K*"+string(1/V2^2));
+saving=((1/V1^2)-(1/V2^2))*100/(1/V1^2);//in
+disp(saving,"% saving in copper : ");
\ No newline at end of file diff --git a/1802/CH2/EX2.9/Exa2_9.sce b/1802/CH2/EX2.9/Exa2_9.sce new file mode 100755 index 000000000..a0fdd7aab --- /dev/null +++ b/1802/CH2/EX2.9/Exa2_9.sce @@ -0,0 +1,17 @@ +//Exa 2.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+P=30*10^6;//in watts
+V=220*10^3;//in Volt
+l=250*10^3;//in meter
+Eta=85;//in %
+rho=3*10^-8;//in ohm-meter
+cosfi=0.8;//power factor
+W=P*(100-Eta)/100;//in watts
+I=P/(sqrt(3)*V*cosfi);//in Ampere
+a=3*I^2*rho*l/W;//in m^2
+Volume=3*a*l;//in m^3
+disp(Volume,"Volume of the conductor material(in m^3) :");
\ No newline at end of file diff --git a/1802/CH3/EX3.1/Exa3_1.sce b/1802/CH3/EX3.1/Exa3_1.sce new file mode 100755 index 000000000..3daaa258b --- /dev/null +++ b/1802/CH3/EX3.1/Exa3_1.sce @@ -0,0 +1,20 @@ +//Exa 3.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+m=1/10;//unitless
+EL=66;//in KV
+E=EL/sqrt(3);//in KV
+//Formula : E=E1+(11/10)*E1+(131/100)*E1+(1651/1000)*E1=(5061/1000)*E1
+E1=E*(1000/5061);//in KV
+disp(E1,"E1(in KV) :");
+E2=E1*(11/10);//in KV
+disp(E2,"E1(in KV) :");
+E3=E1*(131/100);//in KV
+disp(E3,"E2(in KV) :");
+E4=E1*(1651/1000);//in KV
+disp(E4,"E4(in KV) :");
+Eta=(E/(4*E4))*100;//in %
+disp(Eta,"String Efficiency(in %) :");
\ No newline at end of file diff --git a/1802/CH3/EX3.10/Exa3_10.sce b/1802/CH3/EX3.10/Exa3_10.sce new file mode 100755 index 000000000..d94d39ed4 --- /dev/null +++ b/1802/CH3/EX3.10/Exa3_10.sce @@ -0,0 +1,13 @@ +//Exa 3.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',4);
+//Applying KCL we get I1+i1=I2+ix and I2+i2=I3+iy
+//On solving we get : 1*2*E1=1*1*E2+0*1*E3 and 0*2*E1=-1*2*E2+1*3*E3
+E1byE=1/(1+(154/155)+(166/155));//assumed
+E2byE=(154/155)*E1byE;//assumed
+E3byE=(166/155)*E1byE;//assumed
+Eff=1/((3*(166/155)*E1byE));
+disp(Eff*100,"String Efficiency(in %) : ");
\ No newline at end of file diff --git a/1802/CH3/EX3.11/Exa3_11.sce b/1802/CH3/EX3.11/Exa3_11.sce new file mode 100755 index 000000000..cc894ed66 --- /dev/null +++ b/1802/CH3/EX3.11/Exa3_11.sce @@ -0,0 +1,11 @@ +//Exa 3.11
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+L=200;//in meter
+W=684/1000;//in Kg/m
+T=1450;//in Kg
+S=W*L^2/(8*T);//in meter
+disp(S,"Sag(in meter) : ");
\ No newline at end of file diff --git a/1802/CH3/EX3.12/Exa3_12.sce b/1802/CH3/EX3.12/Exa3_12.sce new file mode 100755 index 000000000..673670eb4 --- /dev/null +++ b/1802/CH3/EX3.12/Exa3_12.sce @@ -0,0 +1,14 @@ +//Exa 3.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+L=220;//in meter
+T=586;//in Kg
+Wc=0.62;//in Kg
+Ww=39.2*0.94/100;//in Kg
+Wr=sqrt(Wc^2+Ww^2);//in Kg
+cos_theta=Wc/Wr;//unitless
+Sv=Wr*L^2*cos_theta/(8*T);//in meter
+disp(Sv,"Sag(in meter) : ");
\ No newline at end of file diff --git a/1802/CH3/EX3.2/Exa3_2.sce b/1802/CH3/EX3.2/Exa3_2.sce new file mode 100755 index 000000000..0ea13e2dc --- /dev/null +++ b/1802/CH3/EX3.2/Exa3_2.sce @@ -0,0 +1,18 @@ +//Exa 3.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+W=0.85;//in Kg/meter
+L=250;//in meter
+Ww=1.4;//in Kg
+SafetyFactor=5;//unitless
+UTS=10128;//Ultimate tensile strength in Kg
+T=UTS/SafetyFactor;//in Kg
+Wi=0;//there is no ice
+Wr=sqrt((W+Wi)^2+Ww^2);//in Kg
+S=Wr*L^2/(8*T);//in meter
+Sv=(W/Wr)*S;//in meter
+disp(S,"Horizontal sag(in m) :");
+disp(Sv,"Vertical sag(in m) :");
\ No newline at end of file diff --git a/1802/CH3/EX3.3/Exa3_3.sce b/1802/CH3/EX3.3/Exa3_3.sce new file mode 100755 index 000000000..a0c6e1609 --- /dev/null +++ b/1802/CH3/EX3.3/Exa3_3.sce @@ -0,0 +1,19 @@ +//Exa 3.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+L=150;//in meter
+A=2;//in cm^2(cross sectional area)
+US=5000;//in Kg/cm^2(ultimate strength)
+g=8.9;//specific gravity
+Ww=1.5;//in Kg/m(wind pressure)
+SafetyFactor=5;//unitless
+B_strength=2*US;//in Kg
+T=B_strength/SafetyFactor;//in Kg
+Volume=A*100;//in cm^2
+Wc=1.78;//in Kg/m
+Wr=sqrt(Wc^2+Ww^2);//in Kg
+Sag=Wr*L^2/(8*T);//in meter
+disp(Sag,"Sag(in m) :");
\ No newline at end of file diff --git a/1802/CH3/EX3.4/Exa3_4.sce b/1802/CH3/EX3.4/Exa3_4.sce new file mode 100755 index 000000000..d9ed512c4 --- /dev/null +++ b/1802/CH3/EX3.4/Exa3_4.sce @@ -0,0 +1,21 @@ +//Exa 3.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',4);
+L=160;//in meter
+d=0.95;//in cm
+A=%pi*d^2/4;//in cm^2(cross sectional area)
+US=4250;//in Kg/cm^2(ultimate strength)
+g=8.9;//specific gravity
+Ww=1.5;//in Kg/m(wind pressure)
+SafetyFactor=5;//unitless
+B_strength=2*US;//in Kg
+T=B_strength/SafetyFactor;//in Kg
+Volume=A*100;//in cm^2
+Wc=1.78;//in Kg/m
+Wr=sqrt(Wc^2+Ww^2);//in Kg
+Sag=Wr*L^2/(8*T);//in meter
+disp(Sag,"Sag(in m) :");
+//Note : Answer in the book is not accurate.
\ No newline at end of file diff --git a/1802/CH3/EX3.5/Exa3_5.sce b/1802/CH3/EX3.5/Exa3_5.sce new file mode 100755 index 000000000..65474b302 --- /dev/null +++ b/1802/CH3/EX3.5/Exa3_5.sce @@ -0,0 +1,21 @@ +//Exa 3.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+m=75-45;//in meter
+L=300;//in meter
+T=2500;//in Kg
+w=0.9;//in kg/meter
+x=L/2-T*m/(w*L);//in meters
+disp(x,"x=");
+disp("The negative sign of x shows that point A is on the side of O.");
+x=L/2-x;//in meter
+disp("Centre point P from O is "+string(L/2-x)+" meters.");
+y=w*x^2/(2*T);//in meter
+disp("Height of point P, y= "+string(y))
+x=L/2-T*m/(w*L);//in meters
+z=w*(L-x)^2/(2*T);//in meters
+disp("Height of B above O is, z="+string(z)+" meters.");
+disp("The mid point of the line is "+string(z-y)+" meter below point B, i.e., "+string(75-(z-y))+" meter above water level.");
\ No newline at end of file diff --git a/1802/CH3/EX3.6/Exa3_6.sce b/1802/CH3/EX3.6/Exa3_6.sce new file mode 100755 index 000000000..7c98ede1e --- /dev/null +++ b/1802/CH3/EX3.6/Exa3_6.sce @@ -0,0 +1,15 @@ +//Exa 3.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+L=60;//in meter
+S=25*10^-2;//in meter
+A=61.36;//in mm^2(cross sectional area)
+W=0.5445;//in Kg/m
+UTS=42.20;//in Kg/mm^2
+T=W*L^2/(8*S);//in Kg
+B_strength=UTS*A;//in Kg
+SafetyFactor=B_strength/T;//unitless
+disp(SafetyFactor,"Factor of safety : ");
\ No newline at end of file diff --git a/1802/CH3/EX3.7/Exa3_7.sce b/1802/CH3/EX3.7/Exa3_7.sce new file mode 100755 index 000000000..9eee8092e --- /dev/null +++ b/1802/CH3/EX3.7/Exa3_7.sce @@ -0,0 +1,13 @@ +//Exa 3.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+L=220;//in meter
+W=0.604;//in Kg/m
+T_strength=5758;//in Kg
+SafetyFactor=2;//unitless
+T=T_strength/SafetyFactor;//in Kg
+S=W*L^2/(8*T);//in meter
+disp(S,"Sag(in meter) : ");
\ No newline at end of file diff --git a/1802/CH3/EX3.8/Exa3_8.sce b/1802/CH3/EX3.8/Exa3_8.sce new file mode 100755 index 000000000..1f001a2d1 --- /dev/null +++ b/1802/CH3/EX3.8/Exa3_8.sce @@ -0,0 +1,15 @@ +//Exa 3.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+W=850/1000;//in Kg/m
+US=7950;//in kg
+L=275;//in meter
+h=8;//in meter(ground clearance)
+SafetyFactor=2;//unitless
+T=US/SafetyFactor;//in Kg
+S=W*L^2/(8*T);//in meter
+H=h+S;//in meter
+disp(H,"Height above the ground(in meter): ");
\ No newline at end of file diff --git a/1802/CH3/EX3.9/Exa3_9.sce b/1802/CH3/EX3.9/Exa3_9.sce new file mode 100755 index 000000000..4a3133036 --- /dev/null +++ b/1802/CH3/EX3.9/Exa3_9.sce @@ -0,0 +1,20 @@ +//Exa 3.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+m=1/9;//unitless
+EL=33;//in KV
+EbyE1=1+(1+m)+(1+3*m+m^2);//assumed
+E=EL/sqrt(3);//in KV
+E1=E/EbyE1;//in KV
+disp(E1,"E1(in KV) :");
+E2=(1+m)*E1;//in KV
+disp(E2,"E2(in KV) :");
+E3=(1+3*m+m^2)*E1;//in KV
+disp(E3,"E3(in KV) :");
+E=E1+E2+E3;//in KV
+disp(E);
+Eff=E/(3*E3);
+disp(Eff*100,"String Efficiency(in %) : ");
\ No newline at end of file diff --git a/1802/CH4/EX4.1/Exa4_1.sce b/1802/CH4/EX4.1/Exa4_1.sce new file mode 100755 index 000000000..0c28338cf --- /dev/null +++ b/1802/CH4/EX4.1/Exa4_1.sce @@ -0,0 +1,14 @@ +//Exa 4.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+r=1.213/2;//in cm
+f=60;//in Hz
+ds=0.77888*r;//in cm
+spacing=1.25;//in meter
+L=4*10^-7*log(spacing*100/ds);//in H/m
+disp(L*1000,"Inductance(in H/km) :");
+XL=2*%pi*f*L;//in ohm/m
+disp(XL*1000*60,"Inductive reactance for 60 km line(in ohm) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.10/Exa4_10.sce b/1802/CH4/EX4.10/Exa4_10.sce new file mode 100755 index 000000000..4d008b3fe --- /dev/null +++ b/1802/CH4/EX4.10/Exa4_10.sce @@ -0,0 +1,14 @@ +//Exa 4.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+d1=2;//in cm
+d2=2.5;//in cm
+d3=4.5;//in cm
+r=1.24/2;//in cm
+L=10^-7*[0.5+2*log((d1*d2*d3)^(1/3)/r)];//in H/m
+L=L*1000*1000;//in mH/km
+disp(L,"Inductance per km(in mH) :");
+//Note : Answer in the book is wrong(calculation mistake).
\ No newline at end of file diff --git a/1802/CH4/EX4.11/Exa4_11.sce b/1802/CH4/EX4.11/Exa4_11.sce new file mode 100755 index 000000000..06b7ba50f --- /dev/null +++ b/1802/CH4/EX4.11/Exa4_11.sce @@ -0,0 +1,12 @@ +//Exa 4.11
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+r=0.75*10;//in mm
+d=1.5*10^3;//in mm
+ds=0.7788*r;//in mm
+L=4*10^-7*log(d/ds);//in H/m
+L=L*10^6;//in mH/km
+disp(L,"Inductance of line(in mH/km) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.12/Exa4_12.sce b/1802/CH4/EX4.12/Exa4_12.sce new file mode 100755 index 000000000..a5800a6f6 --- /dev/null +++ b/1802/CH4/EX4.12/Exa4_12.sce @@ -0,0 +1,14 @@ +//Exa 4.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+d1=4*100;//in cm
+d2=5*100;//in cm
+d3=6*100;//in cm
+r=1;//in cm
+ds=0.7788*r;//in cm
+L=[0.2*log((d1*d2*d3)^(1/3)/ds)];//in mH
+disp(L*10^3,"Inductance per km(in uH) :");
+//Note : answer in the book is wrong.
\ No newline at end of file diff --git a/1802/CH4/EX4.13/Exa4_13.sce b/1802/CH4/EX4.13/Exa4_13.sce new file mode 100755 index 000000000..f6be7e8f0 --- /dev/null +++ b/1802/CH4/EX4.13/Exa4_13.sce @@ -0,0 +1,11 @@ +//Exa 4.13
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+d=300;//in cm(spacing)
+r=1;//in cm
+epsilon_o=8.854*10^-12;//constnt
+C=%pi*epsilon_o/log(d/r);//in Farad per meter
+disp(C*30*1000*10^6,"Capacitance for 30 km line(in uF) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.14/Exa4_14.sce b/1802/CH4/EX4.14/Exa4_14.sce new file mode 100755 index 000000000..e389e4192 --- /dev/null +++ b/1802/CH4/EX4.14/Exa4_14.sce @@ -0,0 +1,12 @@ +//Exa 4.14
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+d=2.5*100;//in cm(spacing)
+r=2/2;//in cm
+epsilon_o=8.854*10^-12;//constnt
+C=2*%pi*epsilon_o/log(d/r);//in Farad per meter
+disp(C*10*1000*10^6,"Capacitance for 10 km line(in uF) :");
+//Note : answer given in the book is wrong but calculated is right.
\ No newline at end of file diff --git a/1802/CH4/EX4.15/Exa4_15.sce b/1802/CH4/EX4.15/Exa4_15.sce new file mode 100755 index 000000000..825097491 --- /dev/null +++ b/1802/CH4/EX4.15/Exa4_15.sce @@ -0,0 +1,21 @@ +//Exa 4.15
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+VL=33;//in KV
+f=50;//in hz
+d1=4;//in meter
+d2=4;//in meter
+d3=8;//in meter
+d=(d1*d2*d3)^(1/3);//in meter
+epsilon_o=8.854*10^-12;//constnt
+d=d*100;//in cm
+r=0.62;//in cm
+C=2*%pi*epsilon_o/log(d/r);//in Farad per meter
+disp(C*50*1000*10^6,"Capacitance for 50 km line(in uF) :");
+Vp=VL/sqrt(3);//in KV
+Vp=Vp*10^3;//in volt
+Ic=2*%pi*f*(C*50*1000*10^6)*10^-6*Vp;//in Ampere
+disp(Ic,"The charging current(in Ampere) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.2/Exa4_2.sce b/1802/CH4/EX4.2/Exa4_2.sce new file mode 100755 index 000000000..d9ecd29ac --- /dev/null +++ b/1802/CH4/EX4.2/Exa4_2.sce @@ -0,0 +1,11 @@ +//Exa 4.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+d=2.8*100;//in cm(spacing)
+r=0.5*1.5;//in cm
+ds=0.77888*r;//in cm
+L=0.2*log(d/ds);//in H/m/phase
+disp(L*20,"Inductance per phase for a 20 km line (in mH) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.3/Exa4_3.sce b/1802/CH4/EX4.3/Exa4_3.sce new file mode 100755 index 000000000..81df12077 --- /dev/null +++ b/1802/CH4/EX4.3/Exa4_3.sce @@ -0,0 +1,16 @@ +//Exa 4.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+a=1.5;//in cm^2
+d=8;//in meter(spacing)
+r=39.8/2;//in mm
+l=1*10^5;//in cm
+rho=1.73*10^-6;//in ohm-cm
+R=rho*l/a;//in ohm/km
+disp(R,"Resistance of line(in ohm/km) :");
+ds=0.77888*r;//in cm
+L=0.2*log(d/(ds*10^-3));//in mH/km/phase
+disp(L,"Inductance per phase for a 1 km line (in mH/km) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.4/Exa4_4.sce b/1802/CH4/EX4.4/Exa4_4.sce new file mode 100755 index 000000000..f2dfe6883 --- /dev/null +++ b/1802/CH4/EX4.4/Exa4_4.sce @@ -0,0 +1,14 @@ +//Exa 4.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+Cs=1/3;//in uF
+Cc=(0.6-Cs)/2;//in uF
+//Part (a) :
+C1=(3/2)*Cc+(1/2)*Cs;//in uF(between any two conductor)
+disp(C1,"Capacitance between any two conductor(in uF) :");
+//Part (b) :
+C2=2*Cc+2*Cs/3
+disp(C2,"Capacitance between any shorted onductors(in uF) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.5/Exa4_5.sce b/1802/CH4/EX4.5/Exa4_5.sce new file mode 100755 index 000000000..d9beed8b1 --- /dev/null +++ b/1802/CH4/EX4.5/Exa4_5.sce @@ -0,0 +1,17 @@ +//Exa 4.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+d1=3;//in meter
+d2=3;//in meter
+d3=d1+d2;//in meter
+d=378;//in cm
+dia=2.5;//in cm
+r=dia/2;//in cm
+epsilon_o=8.854*10^-12;//constnt
+L=(0.5+2*log10(d/r))*10^-7;//in H/m
+disp(L*60*1000*1000,"Inductance for 60 km line(in mH) :");
+C=2*%pi*epsilon_o/log(d/r);//in F/m
+disp(C*60*10^3*10^6,"Capacitnce for 60 km line(in uF) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.6/Exa4_6.sce b/1802/CH4/EX4.6/Exa4_6.sce new file mode 100755 index 000000000..1c8a905c0 --- /dev/null +++ b/1802/CH4/EX4.6/Exa4_6.sce @@ -0,0 +1,13 @@ +//Exa 4.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+dinner=6;//in meter
+douter=12;//in meter
+d=(dinner^2*douter)^(1/3);//in meter
+r=2.8;//in meter
+ds=0.7788*r;//in cm
+L=2*log10(d*100/ds);//in mH/phase/km
+disp(L*100,"Inductance for 100 km line(in mH) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.7/Exa4_7.sce b/1802/CH4/EX4.7/Exa4_7.sce new file mode 100755 index 000000000..fc2015da1 --- /dev/null +++ b/1802/CH4/EX4.7/Exa4_7.sce @@ -0,0 +1,14 @@ +//Exa 4.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+dia=5;//in mm
+d=1.5;//in meter(spacing)
+r=dia/2;//in mm
+r=r*10^-3;//in meter
+epsilon_o=8.854*10^-12;//constnt
+C=%pi*epsilon_o/log(d/r);//in Farad per meter
+disp(C*50*1000,"Capacitance for 50 km line(in Fardas) :");
+//Note : answer is not accurate in the book.
\ No newline at end of file diff --git a/1802/CH4/EX4.8/Exa4_8.sce b/1802/CH4/EX4.8/Exa4_8.sce new file mode 100755 index 000000000..ea06574c0 --- /dev/null +++ b/1802/CH4/EX4.8/Exa4_8.sce @@ -0,0 +1,17 @@ +//Exa 4.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+d=300;//in cm(spacing)
+r=1;//in cm
+//Formula : L=10^-7*[mu_r+4*log10(d/r)];//in H/m
+//Part (i) : mu_r=1
+mu_r=1;//constant
+L=10^-4*[mu_r+4*log(d/r)];//in H/m
+disp(L*1000,"Loop inductance per km for copper(in mH) :");
+//Part (ii) : mu_r=100
+mu_r=100;//constant
+L=10^-4*[mu_r+4*log(d/r)];//in H/m
+disp(L*1000,"Loop inductance per km for steel(in mH) :");
\ No newline at end of file diff --git a/1802/CH4/EX4.9/Exa4_9.sce b/1802/CH4/EX4.9/Exa4_9.sce new file mode 100755 index 000000000..49a8e2db4 --- /dev/null +++ b/1802/CH4/EX4.9/Exa4_9.sce @@ -0,0 +1,15 @@ +//Exa 4.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+d1=100;//in cm(spacing)
+d2=100;//in cm(spacing)
+d3=100;//in cm
+r=1;//in cm
+L=10^-7*[0.5+2*log((d1*d2*d3)^(1/3)/r)];//in H/m
+L=L*1000*1000;//in mH/km
+disp(L,"Inductance per km(in mH) :");
+//Note : Answer in the book is wrong due to calculation mistake.
+//Note : In the last line it should be multiply by 10^6 to convert from H/m to mH/km instead of 10^8.
\ No newline at end of file diff --git a/1802/CH5/EX5.1/Exa5_1.sce b/1802/CH5/EX5.1/Exa5_1.sce new file mode 100755 index 000000000..fa6293645 --- /dev/null +++ b/1802/CH5/EX5.1/Exa5_1.sce @@ -0,0 +1,23 @@ +//Exa 5.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+Load=100;//in MW
+V=380;//in KV
+d=100;//in km
+rho=0.045;//in ohm/cm^2/km
+w=0.01;//in kg/cm^3
+Eff=90;//in %
+IL=Load*10^6/(sqrt(3)*V*10^3);//in Ampere
+P_loss=Load*(100-Eff)/100;//in MW
+P_loss=P_loss*10^6;//in Watt
+P_loss=P_loss/3;//in watt/conductor
+R_con=P_loss/IL^2;//in ohm/conductor
+//R_con=R_con/d;//in ohm/conductor/km
+a=rho*d/R_con;//in cm^2
+vol=a*d;//in cm^3
+W_cu=vol*w;//in Kg
+disp(W_cu*100*10^3*3,"Weight of Cu for 3 onductors of 100 km length(in Kg) :");
+//Note : answer in the book is not accurate.
\ No newline at end of file diff --git a/1802/CH5/EX5.10/Exa5_10.sce b/1802/CH5/EX5.10/Exa5_10.sce new file mode 100755 index 000000000..49495ed0d --- /dev/null +++ b/1802/CH5/EX5.10/Exa5_10.sce @@ -0,0 +1,23 @@ +//Exa 5.10
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+Pt=4000*10^3;//in watt(power to be transmitted)
+VR=11000;//in volt
+cos_fir=0.9;//unitless
+R=1;//in ohm
+X=2.5;//in ohm
+I=Pt/VR;//in Ampere
+Vs=VR+I*R*cos_fir+I*X*sqrt(1-cos_fir^2);//in volt
+disp(Vs,"Sending end voltage(in volts) : ");
+Reg=(Vs-VR)*100/VR;//in %
+disp(Reg,"% Regulation : ");
+cos_fis=(VR*cos_fir+I*R)/Vs;//unitless
+disp(cos_fis,"Sending end pf(lag) : ");
+losses=I^2*R;//in watts
+Pr=Pt*cos_fir;//in wats(Receiving end power)
+Psend=Pr+losses;//in watts
+Eff=Pr*100/Psend;//unitless
+disp(Eff,"Transmission efficiency (in %) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.11/Exa5_11.sce b/1802/CH5/EX5.11/Exa5_11.sce new file mode 100755 index 000000000..fdc297fe2 --- /dev/null +++ b/1802/CH5/EX5.11/Exa5_11.sce @@ -0,0 +1,24 @@ +//Exa 5.11
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+L=20;//in Km(length of the line)
+Pdev=3000*10^3;//in watt(power delivered)
+cos_fir=0.8;//unitless
+VR=11*1000;//in volt
+R=0.15*L;//in ohm
+X=0.4*L;//in ohm
+I=Pdev/VR;//in Ampere
+Vs=VR+I*R*cos_fir-I*X*sqrt(1-cos_fir^2);//in volt
+disp(Vs,"Sending end voltage(in volts) : ");
+Reg=(VR-Vs)*100/VR;//in %
+disp(Reg,"% Regulation : ");
+cos_fis=(VR*cos_fir+I*R)/Vs;//unitless
+disp(cos_fis,"Sending end pf(lag) : ");
+losses=I^2*R;//in watts
+Pr=Pdev*cos_fir;//in wats(Receiving end power)
+Psend=Pr+losses;//in watts
+Eff=Pr*100/Psend;//unitless
+disp(Eff,"Transmission efficiency (in %) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.12/Exa5_12.sce b/1802/CH5/EX5.12/Exa5_12.sce new file mode 100755 index 000000000..6c7651f41 --- /dev/null +++ b/1802/CH5/EX5.12/Exa5_12.sce @@ -0,0 +1,20 @@ +//Exa 5.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+R=2;//in ohm
+X=3;//in ohm
+VR=10*1000;//in volt
+P=1000*10^3;//in watt(power delivered)
+cos_fir=0.8;//unitless
+I=P/(VR*cos_fir);//in Ampere
+Vs=sqrt((VR*cos_fir+I*R)^2+(VR*sqrt(1-cos_fir^2)+I*X)^2);//in volt
+Reg=(Vs-VR)*100/VR;//in %
+disp(Reg,"% Regulation : ");
+losses=I^2*R;//in watts
+Pr=P*cos_fir;//in wats(Receiving end power)
+Psend=Pr+losses;//in watts
+Eff=Pr*100/Psend;//unitless
+disp(Eff,"Transmission efficiency (in %) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.13/Exa5_13.sce b/1802/CH5/EX5.13/Exa5_13.sce new file mode 100755 index 000000000..922b0ca73 --- /dev/null +++ b/1802/CH5/EX5.13/Exa5_13.sce @@ -0,0 +1,22 @@ +//Exa 5.12
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+R=1.5;//in ohm
+X=4;//in ohm
+VR=11*1000;//in volt
+VRphase=VR/sqrt(3);//in volt/phase
+P=6000;//in KVA(power delivered)
+cos_fir=0.8;//unitless
+I=P*1000/(3*VRphase);//in Ampere
+Vs=VRphase+cos_fir*I*R+sqrt(1-cos_fir^2)*I*X;//in volt
+Vs=Vs*sqrt(3);//in volt(not phase)
+Reg=(Vs-VR)*100/VR;//in %
+disp(Reg,"% Regulation : ");
+losses=3*I^2*R/1000;//in Kw
+Pr=P*cos_fir;//in wats(Receiving end power)
+Psend=Pr+losses;//in watts
+Eff=Pr*100/Psend;//unitless
+disp(Eff,"Transmission efficiency (in %) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.2/Exa5_2.sce b/1802/CH5/EX5.2/Exa5_2.sce new file mode 100755 index 000000000..7ee4eef9d --- /dev/null +++ b/1802/CH5/EX5.2/Exa5_2.sce @@ -0,0 +1,16 @@ +//Exa 5.2
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+R=2;//in ohm
+X=6;//in ohm
+P=10000*10^3;//in watts
+cos_fir=0.8;//unitless
+VR=22*10^3;//in volt
+I=P/(sqrt(3)*VR*cos_fir);//in Ampere
+VR_phase=VR/sqrt(3);//in volt
+Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-cos_fir^2)+I*X)^2);
+disp(Vs,"Sending end voltage Vs(phase) :");
+disp(((Vs-VR_phase)/VR_phase)*100,"% Regulation : ");
\ No newline at end of file diff --git a/1802/CH5/EX5.3/Exa5_3.sce b/1802/CH5/EX5.3/Exa5_3.sce new file mode 100755 index 000000000..0ff948fde --- /dev/null +++ b/1802/CH5/EX5.3/Exa5_3.sce @@ -0,0 +1,24 @@ +//Exa 5.3
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+l=10*10^3;//in meter
+P_del=4000;//in KVA
+cos_fir=0.9;//unitless
+VL=11*10^3;//in volt
+R=0.2*10;//in ohm/phase/10km
+X=0.3*10;//in ohm/phase/10km
+I=P_del*10^3/(sqrt(3)*VL);//in Ampere
+VR_phase=VL/sqrt(3);//in volt
+Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-cos_fir^2)+I*X)^2);
+disp(Vs*sqrt(3)/1000,"Sending end voltage Vs(line in KV) :");
+disp(((Vs-VR_phase)/VR_phase)*100,"% Regulation : ");
+Losses3line=3*I^2*R;//in watt
+P_rec=P_del*cos_fir;//in KW
+Pin=P_rec+Losses3line/1000;//in KW
+ETA=P_rec/Pin;//unitless
+disp(ETA*100,"Transmission Efficiency(in %) :")
+cos_fis=(VR_phase*cos_fir+I*R)/Vs;//unitless
+disp(cos_fis,"Sending end PF(lag) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.4/Exa5_4.sce b/1802/CH5/EX5.4/Exa5_4.sce new file mode 100755 index 000000000..1878e72d1 --- /dev/null +++ b/1802/CH5/EX5.4/Exa5_4.sce @@ -0,0 +1,19 @@ +//Exa 5.4
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+l=15*10^3;//in meter
+Pt=10000;//in KW
+cos_fir=0.8;//unitless
+VL=33*10^3;//in volt
+R=0.2*15;//in ohm/phase/15km
+X=0.4*15;//in ohm/phase/15km
+I=Pt*10^3/(sqrt(3)*VL*cos_fir);//in Ampere
+VR_phase=VL/sqrt(3);//in volt
+Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-cos_fir^2)-I*X)^2);
+disp(Vs*sqrt(3)/1000,"Sending end voltage Vs(line) in KV :");
+cos_fis=(VR_phase*cos_fir+I*R)/Vs;//unitless
+disp(cos_fis,"Sending end PF(leading) :");
+disp(((Vs-VR_phase)/VR_phase)*100,"% Regulation : ");
\ No newline at end of file diff --git a/1802/CH5/EX5.5/Exa5_5.sce b/1802/CH5/EX5.5/Exa5_5.sce new file mode 100755 index 000000000..bd80d23e0 --- /dev/null +++ b/1802/CH5/EX5.5/Exa5_5.sce @@ -0,0 +1,32 @@ +//Exa 5.5
+clc;
+clear;
+close;
+//Given Data :
+format('v',9);
+Vs_line=33*10^3;//in volt
+cos_fir=0.8;//unitless
+P_KVA=6000;//in KVA
+P_KW=P_KVA*cos_fir;//in KW
+cos_fir=0.8;//unitless
+impedence=2+%i*6;//in ohm
+R=real(impedence);//in ohm
+X=imag(impedence);//in ohm
+Vs_phase=Vs_line/sqrt(3);//in volt
+disp("Sending end Voltage, Vs(in Volt) = VR+I*R*cos_fir+I*X*sin_fir ");
+disp("It gives polynomial p = [1 -Vs_phase P_KVA*10^3*R*cos_fir/sqrt(3)+P_KVA*10^3*X*sin_fir/sqrt(3)].")
+sin_fir=sqrt(1-cos_fir^2);
+p=[1 -Vs_phase P_KVA*10^3*R*cos_fir/sqrt(3)+P_KVA*10^3*X*sin_fir/sqrt(3)];
+VR=roots(p);
+VR=VR(1);//(root calculated using -ve sign is discarded in shreedharacharya method)
+VR_line=VR*sqrt(3);//in volt
+disp(VR_line/1000,"Line voltage at receiving end(in KV) :");
+Regulation=((Vs_line-VR_line)/VR_line)*100;//unitless
+disp(Regulation,"% Regulation : ");
+I=P_KVA*10^3/(sqrt(3)*VR_line)
+//I=P*10^3/(sqrt(3)*VR_line);//in Ampere
+TotalLoss=3*I^2*R;//in watt
+Pout=P_KVA*cos_fir;//in KW
+Pin=Pout+TotalLoss/1000;//in KW
+ETA=Pout/Pin;//unitless
+disp(ETA*100,"Transmission Efficiency(in %) :");
diff --git a/1802/CH5/EX5.6/Exa5_6.sce b/1802/CH5/EX5.6/Exa5_6.sce new file mode 100755 index 000000000..c326ced20 --- /dev/null +++ b/1802/CH5/EX5.6/Exa5_6.sce @@ -0,0 +1,14 @@ +//Exa 5.6
+clc;
+clear;
+close;
+//Given Data :
+format('v',6);
+P_del=10000*10^3;//in Watts
+cos_fir=0.8;//unitless
+R=0.95;//in ohm/km
+VR=132*10^3;//in volt
+IL=P_del/(sqrt(3)*VR*cos_fir);//in Ampere
+//TotalLosses=3*I^2*R and should be equal to (7.5/100)*P_del;//in watt
+l=(7.5/100)*P_del/(3*IL^2*R);//in km
+disp(l,"Distance (in km) :");
\ No newline at end of file diff --git a/1802/CH5/EX5.7/Exa5_7.sce b/1802/CH5/EX5.7/Exa5_7.sce new file mode 100755 index 000000000..285bf0c4f --- /dev/null +++ b/1802/CH5/EX5.7/Exa5_7.sce @@ -0,0 +1,17 @@ +//Exa 5.7
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+I=180;//in Ampere
+cos_fir=0.8;//unitless
+R=0.7;//in ohm/phase
+X=1.2;//in ohm/phase
+ETA=90;//in %
+Pdev_BY_VR=3*I*cos_fir;//in KW
+Psending_BY_VR=Pdev_BY_VR/(ETA/100);//in kW
+Losses=3*I^2*R;//in watt
+VR=Losses/(Psending_BY_VR-Pdev_BY_VR);//in volt
+Vs=sqrt((VR*cos_fir+I*R)^2+(VR*sqrt(1-cos_fir^2)+I*X)^2);
+disp(Vs*sqrt(3),"Sending end voltage Vs(line) in volts :");
\ No newline at end of file diff --git a/1802/CH5/EX5.8/Exa5_8.sce b/1802/CH5/EX5.8/Exa5_8.sce new file mode 100755 index 000000000..32773744e --- /dev/null +++ b/1802/CH5/EX5.8/Exa5_8.sce @@ -0,0 +1,30 @@ +//Exa 5.8
+clc;
+clear;
+close;
+//Given Data :
+format('v',7);
+d=1*100;//in cm
+dia=1;//in cm
+r=dia/2;//in cm
+Length=20;//in km
+V=33;//in KV
+P=10;//in MW
+cosfi=0.8;//unitless
+f=50;//in Hz
+R=0.19;//in ohm/km/phase
+//Part (i) :
+L=2*10^-7*log(d/r);//in H/m
+L20=L*Length*10^3;//in H
+XL=2*%pi*f*L20;//in ohm
+R20=R*Length;//in ohm
+Z=sqrt(R20^2+XL^2);//in ohm
+IR=P*10^3/(sqrt(3)*V*cosfi)
+Losses=3*IR^2*R20;//in watt
+ETA=P/(P+Losses/10^6);//unitless
+disp(ETA*100,"Efficiency of line(in %) :");
+//Part (ii) :
+VR=V*1000/sqrt(3);//in volt
+Vs=((VR*cosfi+IR*R20)+(VR*sqrt(1-cosfi^2)+IR*XL));
+disp(((Vs-VR)/VR)*100,"% Regulation : ");
+//Note : Answer in the book is wrong. In second last line of the solution in the book 16079+12885 is taken as 20605 instead of 28964.
\ No newline at end of file diff --git a/1802/CH5/EX5.9/Exa5_9.sce b/1802/CH5/EX5.9/Exa5_9.sce new file mode 100755 index 000000000..af4e47b9f --- /dev/null +++ b/1802/CH5/EX5.9/Exa5_9.sce @@ -0,0 +1,13 @@ +//Exa 5.9
+clc;
+clear;
+close;
+//Given Data :
+format('v',8);
+R=2.5;//in ohm
+X=4.33;//in ohm
+I=120;//in Ampere
+Vr=3300;//in volt
+cos_fir=0.8;//unitless
+Vs=Vr+I*R*cos_fir+I*X*sqrt(1-cos_fir^2);//in volt
+disp(Vs,"Sending end voltage(in volts) : ");
\ No newline at end of file diff --git a/1802/CH7/EX7.1/Exa7_1.sce b/1802/CH7/EX7.1/Exa7_1.sce new file mode 100755 index 000000000..6f5e6d551 --- /dev/null +++ b/1802/CH7/EX7.1/Exa7_1.sce @@ -0,0 +1,22 @@ +//Exa 7.1
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+l=1;//in km
+I=100;//in Ampere
+cosfi=0.8;//Power factor(lag) unitless
+VC=200;//in volt
+IL=60;//in Ampere
+cosfi_load=0.9;//Power factor(lag) unitless
+R=0.6;//in ohm
+XL=0.08;//in ohm
+IC=I*(0.8-%i*0.6);//in Ampere
+z=(0.06+%i*0.08)/2;//in ohm
+VD_BC=z*IC;//in volt
+VB=VC+VD_BC;//in volt
+IB=IL*(0.9-%i*0.4357)+IC;//in Ampere
+VD_AB=z*IB;//in volt
+disp(VD_AB,"V.D. from sending end to mid point(in volt) : ");
+disp(VD_BC,"V.D. from mid point to the far end(in volt) : ");
\ No newline at end of file diff --git a/1802/CH7/EX7.10/Exa7_10.sce b/1802/CH7/EX7.10/Exa7_10.sce new file mode 100755 index 000000000..b03fe917c --- /dev/null +++ b/1802/CH7/EX7.10/Exa7_10.sce @@ -0,0 +1,14 @@ +//Exa 7.10
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+l=300;//in meter
+I=0.75;//in A/m
+R=0.00018;//in ohm/m
+x=200;//in meter
+Vs=250;//in volt
+VD=I*R*(l*x-x^2/2);//in volt
+V_A=Vs-VD;//in volt(Voltage at 200m from end A)
+disp(V_A,"Voltage as 200m from supply end A(in volts) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.11/Exa7_11.sce b/1802/CH7/EX7.11/Exa7_11.sce new file mode 100755 index 000000000..1a08627cb --- /dev/null +++ b/1802/CH7/EX7.11/Exa7_11.sce @@ -0,0 +1,20 @@ +//Exa 7.11
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+l=600;//in meter
+VA=440;//in volt
+VB=400;//in volt
+R=0.01;//in ohm/100m
+RAC=(R/100)*300;//in ohm
+RCD=(R/100)*300;//in ohm
+RDE=(R/100)*100;//in ohm
+REF=(R/100)*200;//in ohm
+RFB=(R/100)*300;//in ohm
+//VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
+IA=(VA-VB+42.5)/(0.12);//in Ampere
+IAC=IA;ICD=IA-100;IDE=IA-300;IFE=IA-550;IFB=IA-850;//in Ampere
+disp(IAC,"Current fed at A, IA(in A):");
+disp(-IFB,"Current fed at B, IB(in A):");
\ No newline at end of file diff --git a/1802/CH7/EX7.12/Exa7_12.sce b/1802/CH7/EX7.12/Exa7_12.sce new file mode 100755 index 000000000..7ac103441 --- /dev/null +++ b/1802/CH7/EX7.12/Exa7_12.sce @@ -0,0 +1,19 @@ +//Exa 7.12
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+VA=220;//in volt
+VB=200;//in volt
+R=0.1;//in ohm/km
+I=1;//in A/m
+l=500;//in meter
+R=2*R/1000;//in ohm/m
+x=(VA-VB)/(I*R*l)+l/2;//in meter
+Vmin=VA-I*R*x^2/2;//in volts
+disp(Vmin,"Value of minimum potential(in V) :");
+IA=I*x;//in A
+disp(IA,"Current supplied from end A(in A) :");
+IB=I*(l-x);//in A
+disp(IB,"Current supplied from end B(in A) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.13/Exa7_13.sce b/1802/CH7/EX7.13/Exa7_13.sce new file mode 100755 index 000000000..11889dfb1 --- /dev/null +++ b/1802/CH7/EX7.13/Exa7_13.sce @@ -0,0 +1,17 @@ +//Exa 7.13
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+VL=240;//in volt
+Router=0.2;//in ohm
+I1=VL/5;//in Ampere
+I2=VL/6;//in Ampere
+Ineutral=I1-I2;//in Ampere
+//Applying KVL on +ve side
+V1=VL+I1*0.2+8*0.4;//in volt
+disp(V1,"Voltage at +ve side(in V): ");
+//Applying KVL on +ve side
+V2=VL-(8*0.4)+I2*0.2;//in volt
+disp(V2,"Voltage at -ve side(in V): ");
\ No newline at end of file diff --git a/1802/CH7/EX7.14/Exa7_14.sce b/1802/CH7/EX7.14/Exa7_14.sce new file mode 100755 index 000000000..b45c9579b --- /dev/null +++ b/1802/CH7/EX7.14/Exa7_14.sce @@ -0,0 +1,13 @@ +//Exa 7.14
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+//Applying KVL on +ve side
+V1=200-(600*0.015)-(100)*0.03;//in volt
+disp(V1,"Voltage at +ve side(in V): ");
+//Applying KVL on -ve side
+V2=200-(-100*0.03)-500*0.0015;//in volt
+disp(V2,"Voltage at -ve side(in V): ");
+//Note : answer of 2nd part is wrong in the book.
\ No newline at end of file diff --git a/1802/CH7/EX7.15/Exa7_15.sce b/1802/CH7/EX7.15/Exa7_15.sce new file mode 100755 index 000000000..6385f3f3e --- /dev/null +++ b/1802/CH7/EX7.15/Exa7_15.sce @@ -0,0 +1,18 @@ +//Exa 7.15
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+//VD in section AC from RHS: VD1=(40+x)*0.02+0.17*x
+//VD in section AC from LHS: VD2=(350-x)*0.015+(150-x)*0.03
+//Equating two VDs we get
+//x*0.02+0.17*x+0.015*x+x*0.03=350*0.015+150*0.03-40*0.02
+x=(350*0.015+150*0.03-40*0.02)/0.082;//in A
+VB=500-(x+40)*0.02;//in volts
+disp(VB,"Potential at point B(in V) :");
+VC=VB-(x*0.017);//in volts
+disp(VC,"Potential at point C(in V) :");
+VD=500-(350-x)*0.015;//in volts
+disp(VD,"Potential at point D(in V) :");
+//Note : Answer of 3rd part is given wrong in the book.
\ No newline at end of file diff --git a/1802/CH7/EX7.16/Exa7_16.sce b/1802/CH7/EX7.16/Exa7_16.sce new file mode 100755 index 000000000..4f04181d8 --- /dev/null +++ b/1802/CH7/EX7.16/Exa7_16.sce @@ -0,0 +1,15 @@ +//Exa 7.16
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+//Applying KVL in loop AFEDA: (0.016*x)+0.09*(x-30)+0.14*(x-17)-0.1*y=0
+//Applying KVL in loop ADCBA: 0.1*y-0.12*(95-x-y)-.01*(145-x-y)-0.008*(165-x-y)=0
+//Equating two equtions we get
+//3.9*x-125=97.75-0.75*x
+x=(97.75+125)/(3.9+0.75);//in A
+y=97.75-0.75*x;//in A
+disp(x,"x(in A)=");
+disp(y,"y(in A)=");
+disp("Thus the point of minimum ppotential is E.");
\ No newline at end of file diff --git a/1802/CH7/EX7.17/Exa7_17.sce b/1802/CH7/EX7.17/Exa7_17.sce new file mode 100755 index 000000000..2c79823ad --- /dev/null +++ b/1802/CH7/EX7.17/Exa7_17.sce @@ -0,0 +1,15 @@ +//Exa 7.17
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+V=200;//in volt
+I=1;//in A/m
+R=2*0.05/1000;//in ohm/m
+l=1*1000;//in meter
+IT=I*l;//in Ampere
+RT=R*l;//in ohm
+VD=IT*RT/8;//in volt
+Vmin=V-VD;//in volt
+disp(Vmin,"Minimum potential occurs at the mid point & is(in V) : ");
\ No newline at end of file diff --git a/1802/CH7/EX7.18/Exa7_18.sce b/1802/CH7/EX7.18/Exa7_18.sce new file mode 100755 index 000000000..5dbd30fbc --- /dev/null +++ b/1802/CH7/EX7.18/Exa7_18.sce @@ -0,0 +1,17 @@ +//Exa 7.18
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+VB=400;//in volt
+ZAC=0.04+%i*0.08;//in ohm
+ZCB=0.08+%i*0.12;//in ohm
+I1=60*(0.8-%i*0.6);
+I2=120*(0.8-%i*0.6);
+VCB=I2*ZCB;//in Volt
+VAC=(I1+I2)*ZAC;//in volt
+VC=VB+I2*ZCB;//in Volt
+disp(VC,"Voltage at C(in Volt) :");
+VA=VC+(I1+I2)*ZAC;//in volt
+disp(VA,"Voltage at A(in Volt) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.2/Exa7_2.sce b/1802/CH7/EX7.2/Exa7_2.sce new file mode 100755 index 000000000..6c5303f6e --- /dev/null +++ b/1802/CH7/EX7.2/Exa7_2.sce @@ -0,0 +1,24 @@ +//Exa 7.2
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+l=500;//in meter
+i=1;//in Ampere/meter
+IL1=200; IL2=150; IL3=50; IL4=100;//in Ampere
+l1=100; l2=200; l3=300; l4=400;//in meter
+r=0.1;//in ohm/km
+Vd=250;//in volt
+//Drop_AC=100*(r/10^3)*(I-i*l1/2);
+//Drop_CD=I;
+//Drop_DE=100*r*(I-550)-I*100/2;
+//Drop_EF=100*r*(I-700-I*100/2);
+//Drop_FB=100*r*(I-900-I*100/2);
+//VD_tot=0.05*I-27;//in volts
+disp("As the both ends are fed with same voltage, VD should be equal to zero.");
+I=27/0.05;//in Ampere
+disp(I,"Curent(in Ampere) :");
+Drop_AD=(0.01*I-0.5)+(0.01*I-3.5);
+disp(Vd-Drop_AD,"Value at minimum potential at D(in V) :");
+//Note : Ans in the book is wrong as 27/0.05 gives 540 instead of 54.
\ No newline at end of file diff --git a/1802/CH7/EX7.3/Exa7_3.sce b/1802/CH7/EX7.3/Exa7_3.sce new file mode 100755 index 000000000..9ff1e4676 --- /dev/null +++ b/1802/CH7/EX7.3/Exa7_3.sce @@ -0,0 +1,28 @@ +//Exa 7.3
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+l=250;//in meter
+VA=230;//in volt
+VB=232;//in volt
+r=0.5;//in ohm/km
+r=0.5/10^3;//in ohm/m
+RAC=r*50*2;//in ohm
+RCD=RAC;RDE=RAC;REF=RAC;RFB=RAC;//in ohm
+//VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
+Ia=(VA-VB+15)/(5*RAC);//in Ampere
+IAC=Ia;ICD=IAC-20;IDE=IAC-60;IED=-IDE;IEF=IAC-100;IFE=-IEF;IFB=IAC-120;IBF=-IFB;//in Ampere
+disp(IAC,"IAC(in A):");
+disp(ICD,"ICD(in A):");
+disp(IDE,"IDE(in A):");
+disp(IED,"IED(in A):");
+disp(IEF,"IEF(in A):");
+disp(IFE,"IFE(in A):");
+disp(IFB,"IFB(in A):");
+disp(IBF,"IBF(in A):");
+VAC=IAC*RAC;//in volt
+VCD=ICD*RCD;//in volt
+VD=VA-VAC-VCD;//in volt
+disp(VD,"The minimum potential(in Volt) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.4/Exa7_4.sce b/1802/CH7/EX7.4/Exa7_4.sce new file mode 100755 index 000000000..e9958c0a9 --- /dev/null +++ b/1802/CH7/EX7.4/Exa7_4.sce @@ -0,0 +1,27 @@ +//Exa 7.4
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+VA=235;//in volt
+VB=236;//in volt
+l=200;//in meter
+IL1=20; IL2=40; IL3=25; IL4=30;//in Ampere
+l1=50; l2=75; l3=100; l4=50;//in meter
+r=0.4;//in ohm/km
+r=0.4/10^3;//in ohm/m
+RAC=r*l1*2;//in ohm
+RCD=r*(l2-l1)*2*RAC;RDE=r*(l2-l1)*2*RAC;REF=r*l1*2*RAC;RFB=r*l1*2*RAC;//in ohm
+//VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
+IA=(VA-VB+9.6)/(0.16);//in Ampere
+IAC=IA;ICD=IA-IL1;IDE=IA-IL1-IL2;IEF=IA-IL1-IL2-IL3;IFB=IA-IL1-IL2-IL3-IL4;//in Ampere
+disp(IAC,"IAC(in A):");
+disp(ICD,"ICD(in A):");
+disp(-IDE,"IED(in A):");
+disp(-IEF,"IFE(in A):");
+disp(-IFB,"IBF(in A):");
+VAC=IAC*RAC;//in volt
+VCD=ICD*RCD;//in volt
+VD=VA-VAC-VCD;//in volt
+disp(VD,"The minimum potential(in Volt) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.5/Exa7_5.sce b/1802/CH7/EX7.5/Exa7_5.sce new file mode 100755 index 000000000..0234d2b16 --- /dev/null +++ b/1802/CH7/EX7.5/Exa7_5.sce @@ -0,0 +1,24 @@ +//Exa 7.5
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+VA=400;//in volt
+r=0.03;//in ohm/km
+r=0.03/1000;//in ohm/m
+RAB=r*500*2;//in ohm
+RBC=r*300*2;//in ohm
+RAB=r*700*2;//in ohm
+RAB=r*500*2;//in ohm
+//VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
+IA=(17.4)/(0.09);//in Ampere
+VAB=(RAB)*IA;//in volt
+VB=VA-VAB;//in volt
+disp(VB,"Voltage at B(in volts) :");
+VBC=(RBC)*(IA-150);//in volt
+VC=VB-VBC;//in volt
+disp(VC,"Voltage at C(in volts) :");
+IBC=IA-150;//in A
+disp(IBC,"Current in section BC(in A) :");
+//Note : answer of VB is wrong in the book.
\ No newline at end of file diff --git a/1802/CH7/EX7.6/Exa7_6.sce b/1802/CH7/EX7.6/Exa7_6.sce new file mode 100755 index 000000000..03efc7722 --- /dev/null +++ b/1802/CH7/EX7.6/Exa7_6.sce @@ -0,0 +1,21 @@ +//Exa 7.6
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+VA=240;//in volt
+MAxVDrop=VA*5/100;//in volt
+rho=2.87*10^-6;//in ohm-cm
+//VAB+VBC+VCA=0;//in volt
+IA=(3200)/(26);//in Ampere
+IAB=IA;//in Ampere
+IBC=IA-100;//in Ampere
+//Allowed voltage drop: IAB*RAB+IBC*RBC=12
+R=12/(1015.26);//in ohm
+RAB=R*300*2/100;//in ohm
+RBC=R*600*2/100;//in ohm
+RCA=R*400*2/100;//in ohm
+//formula : R=rho*l/a
+a=rho*(100*100)/R;//in cm^2
+disp(a,"Cross section area(in cm^2) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.7/Exa7_7.sce b/1802/CH7/EX7.7/Exa7_7.sce new file mode 100755 index 000000000..d1d9f3b38 --- /dev/null +++ b/1802/CH7/EX7.7/Exa7_7.sce @@ -0,0 +1,18 @@ +//Exa 7.7
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+R=0.2;//in ohm/km
+X=0.1;//in ohm/km
+ZAM=((R+%i*X)/1000)*200;//in ohm
+ZMB=((R+%i*X)/1000)*100;//in ohm
+I1=100*(0.707-0.707*%i);//in A
+I2=200*(0.8-0.6*%i);//in A
+IAM=I1+I2;//in Ampere
+VAM=ZAM*IAM;//in volts
+VMB=ZMB*I2;//in volts
+VAB=VAM+VMB;//in volts
+magVAB=sqrt(real(VAB)^2+imag(VAB)^2);
+disp(magVAB,"Total voltage drop(in volts) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.8/Exa7_8.sce b/1802/CH7/EX7.8/Exa7_8.sce new file mode 100755 index 000000000..068af063b --- /dev/null +++ b/1802/CH7/EX7.8/Exa7_8.sce @@ -0,0 +1,29 @@ +//Exa 7.8
+clc;
+clear;
+close;
+//Given data :
+format('v',6);
+VB=200;//in volts
+R=0.2;//in ohm/km
+X=0.3;//in ohm/km
+I=100;//in Ampere
+ZAB=(R+%i*X);//in ohm
+ZMB=ZAB/2;//in ohm
+ZAM=ZMB;//in ohm
+cosfi_1=0.6;//unitless
+cosfi_2=0.8;//unitless
+IMB=I*(cosfi_2-%i*cosfi_1);//in A
+I2=IMB;//in Ampere
+VMB=IMB*ZMB;//in volts
+VM=VB+VMB;//in volts
+disp(VM,"Voltage at M(in volt)");
+fi=atand(imag(VM)/real(VM));//in degree
+fi_1=acosd(cosfi_1);//in degree
+fi_VBandI1=fi_1-fi;//in degree
+I1=I*(cosd(fi_VBandI1)-%i*sind(fi_VBandI1));//in Ampere
+IAM=I1+I2;//inA Ampere
+VAM=ZAM*IAM;//in volts
+VA=VM+VAM;//in volts
+magVA=sqrt(real(VA)^2+imag(VA)^2);
+disp(magVA,"Voltage at A, standing end voltage(in volts) :");
\ No newline at end of file diff --git a/1802/CH7/EX7.9/Exa7_9.sce b/1802/CH7/EX7.9/Exa7_9.sce new file mode 100755 index 000000000..c4305f394 --- /dev/null +++ b/1802/CH7/EX7.9/Exa7_9.sce @@ -0,0 +1,16 @@ +//Exa 7.9
+clc;
+clear;
+close;
+//Given data :
+format('v',7);
+l=500;//in meter
+VA=200;//in volt
+MAxVDrop=6;//in % of declared voltage
+rho=0.014;//in ohm/m
+//VD in the distributor=53*10^3*r
+AllowedVD=VA*(6/100);//in volts
+r=AllowedVD*10^6/(53*10^3);//in ohm/meter
+//formula : R=rho*l/a
+a=rho*(2*l)/r;//in m^2
+disp(a,"Cross section area(in m^2) :");
\ No newline at end of file diff --git a/1802/CH8/EX8.1/Exa8_1.sce b/1802/CH8/EX8.1/Exa8_1.sce new file mode 100755 index 000000000..951618534 --- /dev/null +++ b/1802/CH8/EX8.1/Exa8_1.sce @@ -0,0 +1,18 @@ +//Exa 8.1
+clc;
+clear;
+close;
+//given data
+R=500;//in Mohm/Km
+R=R*10^6;//in ohm
+r1=2.5/2;//in cm
+r1=r1*10^-2;//in meter
+rho=4.5*10^16;//in ohm/cm
+rho=rho*10^-2;//in ohm/m
+l=1;//in Km
+l=l*1000;//in meter
+//Formula : R=(rho/(2*%pi*l))*log(r2/r1)
+r2=(exp(R/(rho/(2*%pi*l))))*r1;//in meter
+thickness=r2-r1;//in meter
+thickness=thickness*100;//in cm
+disp(thickness,"Thickness of Insulation in cm :");
\ No newline at end of file diff --git a/1802/CH8/EX8.2/Exa8_2.sce b/1802/CH8/EX8.2/Exa8_2.sce new file mode 100755 index 000000000..b9ed7f348 --- /dev/null +++ b/1802/CH8/EX8.2/Exa8_2.sce @@ -0,0 +1,12 @@ +//Exa 8.2
+clc;
+clear;
+close;
+//given data
+d=1;//in cm
+d=d*10^-2;//in meter
+D=1.8;//in cm
+D=D*10^-2;//in meter
+epsilon_r=4;//permittivity of insulation
+C=0.024*epsilon_r/log10(D/d);//in uF/Km
+disp(C,"Capacitance/km of the fibre in uF : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.3/Exa8_3.sce b/1802/CH8/EX8.3/Exa8_3.sce new file mode 100755 index 000000000..37059182f --- /dev/null +++ b/1802/CH8/EX8.3/Exa8_3.sce @@ -0,0 +1,14 @@ +//Exa 8.3
+clc;
+clear;
+close;
+//given data
+V=33;//in KV
+d=1;//in cm
+D=4;//in cm
+//Part (a) :
+gmax=2*V/(d*log(D/d));//in KV/cm
+disp(gmax,"Maximum Stress in KV/cm");
+//Part (b) :
+gmin=2*V/(D*log(D/d));//in KV/cm
+disp(round(gmin),"Minimum Stress in KV/cm");
\ No newline at end of file diff --git a/1802/CH8/EX8.4/Exa8_4.sce b/1802/CH8/EX8.4/Exa8_4.sce new file mode 100755 index 000000000..378d8812d --- /dev/null +++ b/1802/CH8/EX8.4/Exa8_4.sce @@ -0,0 +1,16 @@ +//Exa 8.4
+clc;
+clear;
+close;
+//given data
+Vrms=66;//in KV
+gmax=40;;//in KV/cm
+V=sqrt(2)*Vrms;//in Volt
+//Part (a) :
+d=2*V/gmax;//in cm
+disp(d,"The most economical diameter in cm : ");
+//Part (b) :
+PeakVoltage=sqrt(2)*Vrms/sqrt(3);//in Volt
+V=PeakVoltage;//in Volt
+d=2*V/gmax;//in cm
+disp(d,"The most economical diameter for 3 phase system in cm : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.5/Exa8_5.sce b/1802/CH8/EX8.5/Exa8_5.sce new file mode 100755 index 000000000..92947a36e --- /dev/null +++ b/1802/CH8/EX8.5/Exa8_5.sce @@ -0,0 +1,12 @@ +//Exa 8.5
+clc;
+clear;
+close;
+//given data
+d=2;//in cm
+D=2.5*2;//in cm
+d1=(5/4)*d;//in cm
+d2=(5/3)*d;//in cm
+gmax=40;//in KV/cm
+PeakVoltage=(gmax/2)*[d*log(d1/d)+d1*log(d2/d1)+d2*log(D/d2)];//in KV
+disp(PeakVoltage/sqrt(2),"The safe Working Potential in KV : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.6/Exa8_6.sce b/1802/CH8/EX8.6/Exa8_6.sce new file mode 100755 index 000000000..21dcfaced --- /dev/null +++ b/1802/CH8/EX8.6/Exa8_6.sce @@ -0,0 +1,16 @@ +//Exa 8.6
+clc;
+clear;
+close;
+//given data
+CN=0.4;//in uF
+V=33;//in KV
+VP=V/sqrt(3);//in KV
+f=25;//in Hz
+//Capacitance between 2 cores for 15 Km length
+CN_1=15*CN;//in uF
+//Capacitance of each core to neutral
+CN=2*CN_1;//in uF
+//Charging current per phase
+I=2*%pi*f*VP*1000*CN*10^-6;//in Ampere
+disp(round(I),"Charging current per phase in Ampere : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.7/Exa8_7.sce b/1802/CH8/EX8.7/Exa8_7.sce new file mode 100755 index 000000000..c12580d4d --- /dev/null +++ b/1802/CH8/EX8.7/Exa8_7.sce @@ -0,0 +1,16 @@ + //Exa 8.7
+clc;
+clear;
+close;
+//given data
+format('v',9);
+l=10;//in Km
+C=0.3;//in uF
+V=22;//in KV
+VP=V/sqrt(3);//in KV
+VP=VP*1000;//in Volt
+f=50;//in Hz
+Capacitance=C*l;//in uF
+CN=2*Capacitance;//in uF
+KVA_Taken=3*VP*2*%pi*f*VP*CN*10/1000;//in KVA
+disp(KVA_Taken,"KVA taken by the 10 Km cable(KVA) : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.8/Exa8_8.sce b/1802/CH8/EX8.8/Exa8_8.sce new file mode 100755 index 000000000..b662ee8a8 --- /dev/null +++ b/1802/CH8/EX8.8/Exa8_8.sce @@ -0,0 +1,15 @@ +//Exa 8.8
+clc;
+clear;
+close;
+//given data
+format('v',9);
+P=10;//in Ohm
+Q=80;//in Ohm
+S2=3400;//in Ohm
+S1=2400;//in Ohm
+X=P*(S2-S1)/(P+Q);//in Ohm
+LoopResistance=P*S2/Q;//in Ohm
+ResistancePerKm=LoopResistance/10;//in Ohm
+Distance=X/ResistancePerKm;//in Km
+disp(Distance,"Distance of fault from testing end in Km : ");
\ No newline at end of file diff --git a/1802/CH8/EX8.9/Exa8_9.sce b/1802/CH8/EX8.9/Exa8_9.sce new file mode 100755 index 000000000..867c2f9bf --- /dev/null +++ b/1802/CH8/EX8.9/Exa8_9.sce @@ -0,0 +1,14 @@ +//Exa 8.9
+clc;
+clear;
+close;
+//given data
+format('v',9);
+Resistance=1.6;//in ohm/Km
+l=1000;//in meter
+PbyQ=3;//unitless
+PplusQbyQ=4;//unitless
+LoopResistance=(Resistance/1000)*2*l;//in Ohm
+X=(1/PplusQbyQ)*LoopResistance;//in Ohm
+Distance=X/(Resistance/1000);//in meter
+disp(Distance,"Distance of Fault from testing end in meters : ");
\ No newline at end of file diff --git a/1802/CH9/EX9.1/Exa9_1.sce b/1802/CH9/EX9.1/Exa9_1.sce new file mode 100755 index 000000000..8d81f2c78 --- /dev/null +++ b/1802/CH9/EX9.1/Exa9_1.sce @@ -0,0 +1,13 @@ +//Exa 9.1
+clc;
+clear;
+close;
+//Given Data :
+format('v',5);
+V=250;//in volt
+f=50;//in Hz
+l=300;//in km
+C_earth=0.03;//in uF
+C=l*C_earth*10^-6;//in F
+XL=1/(3*2*%pi*f*C);//in ohm
+disp(XL,"Reactance required for the Peterson coil(in ohm) :");
\ No newline at end of file |