summaryrefslogtreecommitdiff
path: root/1775/CH2/EX2.14
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1775/CH2/EX2.14
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1775/CH2/EX2.14')
-rwxr-xr-x1775/CH2/EX2.14/Chapter2_Example14.sce47
1 files changed, 47 insertions, 0 deletions
diff --git a/1775/CH2/EX2.14/Chapter2_Example14.sce b/1775/CH2/EX2.14/Chapter2_Example14.sce
new file mode 100755
index 000000000..3f9e798d5
--- /dev/null
+++ b/1775/CH2/EX2.14/Chapter2_Example14.sce
@@ -0,0 +1,47 @@
+//Chapter-2, Illustration 14, Page 70
+//Title: Gas Power Cycles
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+d=0.2;//Bore in m
+L=0.3;//Stroke in m
+c=0.04;//Cut-off percentage
+y=1.4;//Ratio of specific heats
+rv=8;//Compression ratio
+P1=1;//Pressure at point 1 in bar
+P3=60;//Pressure at point 3 in bar
+T1=298;//Temperature at point 1 in K
+R=287;//Universal gas constant in J/kg
+Cv=0.718;//Speific heat at constant volume in kJ/kg-K
+Cp=1.005;//Speific heat at constant pressure in kJ/kg-K
+
+//CALCULATIONS
+Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3
+V2=Vs/(rv-1);//Specific volume at point 2 in m^3
+V3=V2;//Specific volume at point 3 in m^3
+V1=V2+Vs;//Specific volume at pont 1 in m^3
+V5=V1;//Specific volume at pont 5 in m^3
+P2=P1*(rv^y);//Pressure at point 2 in bar
+T2=T1*(rv^(y-1));//Temperature at point 2 in K
+T3=T2*(P3/P2);//Temperature at point 3 in K
+V4=V3+(c*(V1-V2));//Specific volume at point 4 in m^3
+T4=T3*(V4/V3);//Temperature at point 4 in K
+T5=T4*((V4/V5)^(y-1));//Temperature at point 5 in K
+q1=(Cv*(T3-T2))+(Cp*(T4-T3));//Heat added in kJ/kg
+q2=Cv*(T5-T1);//Heat rejected in kJ/kg
+nth=(1-(q2/q1))*100;//Thermal efficiency
+m=(P1*V1*(10^5))/(R*T1);//Mass of air supplied in kg
+W=m*(q1-q2);//Workdone in kJ/cycle
+
+//OUTPUT
+mprintf('Amount of heat added is %3.1f kJ/kg \n Amount of heat rejected is %3.2f kJ/kg \n Workdone per cycle is %3.2f kJ/cycle \n Thermal efficiency is %3.2f percent',q1,q2,W,nth)
+
+
+
+
+
+
+
+//==============================END OF PROGRAM=================================