diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1757/CH14 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1757/CH14')
-rwxr-xr-x | 1757/CH14/EX14.1/EX14_1.sce | 12 | ||||
-rwxr-xr-x | 1757/CH14/EX14.10/EX14_10.sce | 70 | ||||
-rwxr-xr-x | 1757/CH14/EX14.11/EX14_11.sce | 65 | ||||
-rwxr-xr-x | 1757/CH14/EX14.12/EX14_12.sce | 19 | ||||
-rwxr-xr-x | 1757/CH14/EX14.13/EX14_13.sce | 20 | ||||
-rwxr-xr-x | 1757/CH14/EX14.2/EX14_2.sce | 14 | ||||
-rwxr-xr-x | 1757/CH14/EX14.3/EX14_3.sce | 11 | ||||
-rwxr-xr-x | 1757/CH14/EX14.4/EX14_4.sce | 10 | ||||
-rwxr-xr-x | 1757/CH14/EX14.5/EX14_5.sce | 13 | ||||
-rwxr-xr-x | 1757/CH14/EX14.6/EX14_6.sce | 11 | ||||
-rwxr-xr-x | 1757/CH14/EX14.7/EX14_7.sce | 13 | ||||
-rwxr-xr-x | 1757/CH14/EX14.8/EX14_8.sce | 18 | ||||
-rwxr-xr-x | 1757/CH14/EX14.9/EX14_9.sce | 18 |
13 files changed, 294 insertions, 0 deletions
diff --git a/1757/CH14/EX14.1/EX14_1.sce b/1757/CH14/EX14.1/EX14_1.sce new file mode 100755 index 000000000..39da23bc9 --- /dev/null +++ b/1757/CH14/EX14.1/EX14_1.sce @@ -0,0 +1,12 @@ +//Example14.1 // to determine the regulated voltage
+clc;
+clear;
+close;
+R1 = 250 ; //ohm
+R2 = 2500 ; // ohm
+Vref = 2 ; //V //reference voltage
+Iadj = 100*10^-6; // A // adjacent current
+
+//the output voltage of the adjustable voltage regulator is defined by
+Vo = (Vref*((R2/R1)+1)+(Iadj*R2)) ;
+disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');
diff --git a/1757/CH14/EX14.10/EX14_10.sce b/1757/CH14/EX14.10/EX14_10.sce new file mode 100755 index 000000000..f126d03e9 --- /dev/null +++ b/1757/CH14/EX14.10/EX14_10.sce @@ -0,0 +1,70 @@ +
+// Example14.10 // Design a video amplifier of IC 1550 circuit
+clc;
+clear;
+close;
+Vcc = 12 ; // V
+Av = -10 ;
+Vagc = 0 ; // at bandwidth of 20 MHz
+hfe = 50 ; // forward emitter parameter
+rbb = 25 ; // ohm // base resistor
+Cs = 1*10^-12 ; // F // source capacitor
+Cl = 1*10^-12 ; // F // load capacitor
+Ie1 = 1*10^-3 ; // A // emitter current of Q1
+f = 1000*10^6 ; // Hz
+Vt = 52*10^-3 ;
+Vt1 = 0.026 ;
+
+// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3
+// i.e Ic1=Ie1=Ie3
+Ie3 = 1*10^-3 ; // A // emitter current of Q3
+Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1
+
+// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite
+re2 = %inf ;
+
+// emitter resistor of Q3
+re3 = (Vt/Ie1);
+disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ( at temperature 25 degree celsius) ');
+
+// the trans conductance of transistor is
+gm = (Ie1/Vt1);
+disp('The trans conductance of transistor is = '+string(gm*1000)+' mA/V '); // Round Off Error
+
+// the base emitter resistor rbe
+rbe = (hfe/gm);
+disp('The base emitter resistor rbe is = '+string(rbe/1000)+' K ohm '); // Round Off Error
+
+// the emitter capacitor Ce
+Ce = (gm/(2*%pi*f));
+disp('The emitter capacitor Ce = '+string(Ce)+' F '); // Round Off Error
+
+// the voltage gain of video amplifier is
+// Av = (Vo/Vin) ;
+// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl))))
+ // At Avgc = 0 i.e s=0 in the above Av equation
+alpha3 = 1 ;
+s = 0 ;
+// Rl = -((alpha3*gm)/(rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av)));
+
+// After solving above equation for Rl We get Rl Equation as
+Rl = 10/(37.8*10^-3);
+disp('The value of resistance RL is = '+string(Rl)+' ohm ');
+
+// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency
+Rl = 675 ;
+// fa = 1/(2*%pi*Rl*(Cs+Cl));
+// after putting value of Rl ,Cs and Cl we get
+fa = 1/(2*3.14*264.55*1*10^-12);
+disp('The pole frequency fa is = '+string(fa*10^-3/1000)+' M Hz '); // Round Off Error
+
+
+//fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));
+// after putting value of Ce rbb and rbe we get
+fb = 1/(2*%pi*6.05*10^-12*24.5);
+disp('The pole frequency fb is = '+string(fb*10^-3/1000)+' M Hz ');
+
+fc = 1/(2*%pi*Cs*re3);
+disp('The pole frequency fc is = '+string(fc*10^-3/1000)+' M Hz ');
+
+disp(' Hence fa is a dominant pole frequency ');
diff --git a/1757/CH14/EX14.11/EX14_11.sce b/1757/CH14/EX14.11/EX14_11.sce new file mode 100755 index 000000000..a1bb07abf --- /dev/null +++ b/1757/CH14/EX14.11/EX14_11.sce @@ -0,0 +1,65 @@ +// Example14.11 // Design a video amplifier of IC 1550 circuit
+clc;
+clear;
+close;
+Vcc = 12 ; // V
+Av = -10 ;
+Vagc = 0 ; // at bandwidth of 20 MHz
+hfe = 50 ; // forward emitter parameter
+rbb = 25 ; // ohm // base resistor
+Cs = 1*10^-12 ; // F // source capacitor
+Cl = 1*10^-12 ; // F // load capacitor
+Ie1 = 1*10^-3 ; // A // emitter current of Q1
+f = 1000*10^6 ; // Hz
+Vt = 52*10^-3 ;
+Vt1 = 0.026 ;
+
+// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3
+// i.e Ic1=Ie1=Ie3
+Ie3 = 1*10^-3 ; // A // emitter current of Q3
+Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1
+
+// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite
+re2 = %inf ;
+
+// emitter resistor of Q3
+re3 = (Vt/Ie1);
+disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ');
+
+// the trans conductance of transistor is
+gm = (Ie1/Vt1);
+disp('The trans conductance of transistor is = '+string(gm)+' A/V ');
+
+// the base emitter resistor rbe
+rbe = (hfe/gm);
+disp('The base emitter resistor rbe is = '+string(rbe)+' ohm ');
+
+// the emitter capacitor Ce
+Ce = (gm/(2*%pi*f));
+disp('The emitter capacitor is = '+string(Ce)+' F ');
+
+// the voltage gain of video amplifier is
+// Av = (Vo/Vin) ;
+// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl))))
+ // At Avgc = 0 i.e s=0 in the above Av equation
+alpha3 = 1 ;
+s = 0 ;
+Av =-10 ;
+Rl = -((alpha3*gm)/((rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av))));
+Rl = (1/Rl);
+disp('The value of resistance RL is = '+string(Rl)+' ohm ');
+
+// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency
+Rl = 265
+fa = 1/(2*%pi*Rl*(Cs));
+disp('The pole frequency fa is = '+string(fa)+' Hz ');
+
+
+fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));
+disp('The pole frequency fb is = '+string(fb)+' Hz ');
+
+fc = 1/(2*%pi*Cs*re3);
+disp('The pole frequency fc is = '+string(fc)+' Hz ');
+
+disp(' Hence fa is a dominant pole frequency ');
+
diff --git a/1757/CH14/EX14.12/EX14_12.sce b/1757/CH14/EX14.12/EX14_12.sce new file mode 100755 index 000000000..8d6f1555a --- /dev/null +++ b/1757/CH14/EX14.12/EX14_12.sce @@ -0,0 +1,19 @@ +// Example14.12 // Determine the output voltage of an isolation amplifier IC ISO100
+clc;
+clear;
+close;
+Vin = 5 ; // V
+Rin = 10*10^3 ;
+Rf = 55*10^3 ; // ohm // feedback resistance
+
+// the input voltage of an amplifier 1
+// Vin = Rin*Iin
+Iin = Vin/Rin ;
+disp('The input current is = '+string(Iin)+' A ');
+
+// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction
+// Iin = -Iout
+// the output of an op-amp
+// Vo = -Rf*Iout
+Vo = Rf*Iin;
+disp('The output of an op-amp is = '+string(Vo)+' V ');
diff --git a/1757/CH14/EX14.13/EX14_13.sce b/1757/CH14/EX14.13/EX14_13.sce new file mode 100755 index 000000000..bb3ebb7d1 --- /dev/null +++ b/1757/CH14/EX14.13/EX14_13.sce @@ -0,0 +1,20 @@ +// Example14.13 // Determine the output voltage of an isolation amplifier IC ISO100
+clc;
+clear;
+close;
+Vin = 12 ; // V
+Rin = 1*10^3 ;
+Rf = 17*10^3 ; // ohm // feedback resistance
+
+// the input voltage of an amplifier 1
+// Vin = Rin*Iin
+Iin = Vin/Rin ;
+disp('The input current is = '+string(Iin)+' A ');
+
+// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction
+// Iin = -Iout
+// the output of an op-amp
+// Vo = -Rf*Iout
+Vo = Rf*Iin;
+disp('The output of an op-amp is = '+string(Vo)+' V ');
+
diff --git a/1757/CH14/EX14.2/EX14_2.sce b/1757/CH14/EX14.2/EX14_2.sce new file mode 100755 index 000000000..6177ca441 --- /dev/null +++ b/1757/CH14/EX14.2/EX14_2.sce @@ -0,0 +1,14 @@ +//Example14.2 // to determine the current drawn from the dual power supply
+clc;
+clear;
+close;
+V = 10 ; // V
+P = 500 ; // mW
+
+// we assume that each power supply provides half power supply to IC
+P1 = (P/2);
+
+// the total power dissipation of the IC
+// P1 = V*I ;
+I = P1/V ;
+disp('the total power dissipation of the IC is = '+string(I)+' mA ');
diff --git a/1757/CH14/EX14.3/EX14_3.sce b/1757/CH14/EX14.3/EX14_3.sce new file mode 100755 index 000000000..7307a6bd2 --- /dev/null +++ b/1757/CH14/EX14.3/EX14_3.sce @@ -0,0 +1,11 @@ +//Example14.3 // to determine the output voltage
+clc;
+clear;
+close;
+R1 = 100*10^3 ; //ohm
+R2 = 500*10^3 ; // ohm
+Vref = 1.25 ; //V //reference voltage
+
+//the output voltage of the adjustable voltage regulator is defined by
+Vo = Vref*(R1+R2)/R1;
+disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');
diff --git a/1757/CH14/EX14.4/EX14_4.sce b/1757/CH14/EX14.4/EX14_4.sce new file mode 100755 index 000000000..2650dbe68 --- /dev/null +++ b/1757/CH14/EX14.4/EX14_4.sce @@ -0,0 +1,10 @@ +//Example14.4 // determine the output voltage of the switching regulator circuit
+clc;
+clear;
+close;
+d = 0.7 ; // duty cycle
+Vin = 5 ; // V // input voltage
+
+// The output voltage of switching regulator circuit is given by
+Vo = d*Vin ;
+disp('The output voltage of switching regulator circuit is = '+string(Vo)+' V ');
diff --git a/1757/CH14/EX14.5/EX14_5.sce b/1757/CH14/EX14.5/EX14_5.sce new file mode 100755 index 000000000..3219e5954 --- /dev/null +++ b/1757/CH14/EX14.5/EX14_5.sce @@ -0,0 +1,13 @@ +//Example14.5 // determine the duty cycle of the switching regulator circuit
+clc;
+clear;
+close;
+Vo = 4.8 ; // V // output voltage
+Vin = 5 ; // V // input voltage
+
+// The output voltage of switching regulator circuit is given by
+// Vo = d*Vin ;
+
+// Duty cycle is given as
+d =Vo/Vin ;
+disp('The output voltage of switching regulator circuit is = '+string(d)+' ');
diff --git a/1757/CH14/EX14.6/EX14_6.sce b/1757/CH14/EX14.6/EX14_6.sce new file mode 100755 index 000000000..24df19d45 --- /dev/null +++ b/1757/CH14/EX14.6/EX14_6.sce @@ -0,0 +1,11 @@ +//Example14.6 // determine the duty cycle of the switching regulator circuit
+clc;
+clear;
+close;
+T =120 ; //msec // total pulse time
+// T = ton + toff ;
+ton = T/2 ;
+
+// The duty cycle of switching regulator circuit is given by
+d = ton/T;
+disp('The output voltage of switching regulator circuit is = '+string(d)+' ');
diff --git a/1757/CH14/EX14.7/EX14_7.sce b/1757/CH14/EX14.7/EX14_7.sce new file mode 100755 index 000000000..f5210eec0 --- /dev/null +++ b/1757/CH14/EX14.7/EX14_7.sce @@ -0,0 +1,13 @@ +//Example14.7 // determine the duty cycle of the switching regulator circuit
+clc;
+clear;
+close;
+ton = 12 ; //msec // on time of pulse
+// ton = 2*toff ; given
+// T = ton + toff ;
+toff = ton/2 ;
+T = ton+toff ; // total time
+
+// The duty cycle of switching regulator circuit is given by
+d = ton/T;
+disp('The output voltage of switching regulator circuit is = '+string(d)+' ');
diff --git a/1757/CH14/EX14.8/EX14_8.sce b/1757/CH14/EX14.8/EX14_8.sce new file mode 100755 index 000000000..e88959693 --- /dev/null +++ b/1757/CH14/EX14.8/EX14_8.sce @@ -0,0 +1,18 @@ +// Example14.8 // determine the output voltage of the audio power amplifier IC LM380
+clc;
+clear;
+close;
+Vcc = 12 ; // V
+Ic3 = 12*10^-6 ; // A // collector current of the transistor Q3
+Ic4 = 12*10^-6 ; // A // collector current of the transistor Q4
+R11 = 25*10^3 ; // ohm
+R12 = 25*10^3 ; // ohm
+
+// the collector current of Q3 is defined as
+ // Ic3 = (Vcc-3*Veb)/(R11+R12);
+Veb = (Vcc-(R11+R12)*Ic3)/3 ;
+disp('The emitter bias voltage is = '+string(Veb)+' V ');
+
+// the output voltage of the IC LM380
+Vo = (1/2)*Vcc+(1/2)*Veb;
+disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');
diff --git a/1757/CH14/EX14.9/EX14_9.sce b/1757/CH14/EX14.9/EX14_9.sce new file mode 100755 index 000000000..b8dfec1c4 --- /dev/null +++ b/1757/CH14/EX14.9/EX14_9.sce @@ -0,0 +1,18 @@ +// Example14.9 // determine the output voltage of the audio power amplifier IC LM380
+clc;
+clear;
+close;
+Vcc = 10 ; // V
+Ic3 = 0.01*10^-6 ; // A // collector current of the transistor Q3
+Ic4 = 0.01*10^-6 ; // A // collector current of the transistor Q4
+R11 = 25*10^3 ; // ohm
+R12 = 25*10^3 ; // ohm
+
+// the collector current of Q3 is defined as
+ // Ic3 = (Vcc-3*Veb)/(R11+R12);
+Veb = (Vcc-(R11+R12)*Ic3)/3 ;
+disp('The emitter bias voltage is = '+string(Veb)+' V ');
+
+// the output voltage of the IC LM380
+Vo = (1/2)*Vcc+(1/2)*Veb;
+disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');
|