diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1754 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1754')
95 files changed, 1576 insertions, 0 deletions
diff --git a/1754/CH1/EX1.1/Exa1_1.sce b/1754/CH1/EX1.1/Exa1_1.sce new file mode 100755 index 000000000..4b41d2ca2 --- /dev/null +++ b/1754/CH1/EX1.1/Exa1_1.sce @@ -0,0 +1,17 @@ +//Exa 1.1
+clc;
+clear;
+close;
+//Given data
+I=40;//in mA
+V=0.25;//in Volt
+T=20;//in degree C
+T=T+273;//in Kelvin
+ETA=1;//For Ge
+e=1.6*10^-19;//in Coulamb(electronic charge)
+k=1.38*10^-23;//in J/K(Boltzman Constant)
+//Formula : I=Io*(exp(%e*V/(ETA*k*T))-1)
+y=(e*V/(ETA*k*T));//Assumed
+y=round(y);
+Io=I*10^-3/(exp(y)-1);//in mA
+disp(Io*10^6,"Reverse saturation current in micro Ampere : ");
diff --git a/1754/CH1/EX1.10/Exa1_10.sce b/1754/CH1/EX1.10/Exa1_10.sce new file mode 100755 index 000000000..b6b39d92b --- /dev/null +++ b/1754/CH1/EX1.10/Exa1_10.sce @@ -0,0 +1,13 @@ +//Exa 1.10
+clc;
+clear;
+close;
+//Given data
+VDmin=1.5;//in Volt
+VDmax=2.3;//in Volt
+VS=5;//in Volt
+RS=270;//in Ohm
+Imin=(VS-VDmax)/RS;//in Ampere
+disp(Imin*1000,"Minimum value of LED current in mA : ");
+Imax=(VS-VDmin)/RS;//in Ampere
+disp(round(Imax*1000),"Maximum value of LED current in mA : ");
\ No newline at end of file diff --git a/1754/CH1/EX1.11/Exa1_11.sce b/1754/CH1/EX1.11/Exa1_11.sce new file mode 100755 index 000000000..d819b0426 --- /dev/null +++ b/1754/CH1/EX1.11/Exa1_11.sce @@ -0,0 +1,28 @@ +//Exa 1.11
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+C1min=10;//in pF
+C2max=50;//in pF
+L=5;//in mH
+L=L*10^-3;//in H
+//Formula : CT=C1*C2/(C1+C2)
+//Minimum
+C1=10;//in pF
+C2=10;//in pF
+CTmin=C1*C2/(C1+C2);//in pF
+CTmin=CTmin*10^-12;//in F
+//Maximum
+C1=50;//in pF
+C2=50;//in pF
+CTmax=C1*C2/(C1+C2);//in pF
+CTmax=CTmax*10^-12;//in F
+//Formula : f=1/(2*%pi*sqrt(L*C))
+//maximum :
+fmax=1/(2*%pi*sqrt(L*CTmin));
+//minimum :
+fmin=1/(2*%pi*sqrt(L*CTmax));
+disp("The frequency of tuning circuit ranges from "+string(fmin/10^6)+"MHz to "+string(fmax/10^6)+"MHz.");
+//Note : Answer in the book is wrong.
\ No newline at end of file diff --git a/1754/CH1/EX1.12/Exa1_12.sce b/1754/CH1/EX1.12/Exa1_12.sce new file mode 100755 index 000000000..76e5ef4ea --- /dev/null +++ b/1754/CH1/EX1.12/Exa1_12.sce @@ -0,0 +1,13 @@ +//Exa 1.12
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+C1=21;//in pF
+V1=4;//in volt
+V2=9;//in volt
+disp("C is proportional to 1/sqrt(V)");
+disp("So, C2/C1=sqrt(V1/V2)");
+C2=sqrt(V1/V2)*C1;//in pF
+disp(C2,"At reverse bias 9V, Diode capacitance in pF : ");
diff --git a/1754/CH1/EX1.13/Exa1_13.sce b/1754/CH1/EX1.13/Exa1_13.sce new file mode 100755 index 000000000..823ee8650 --- /dev/null +++ b/1754/CH1/EX1.13/Exa1_13.sce @@ -0,0 +1,14 @@ +//Exa 1.13
+clc;
+clear;
+close;
+//Given data
+format('v',6);
+R=0.90;//in A/W
+Pop=1;//in mW
+//Part (i)
+IP=R*Pop;//in mA
+disp(IP,"Power of incident light 1mW, Photocurrent in mA is :");
+//Part (ii)
+disp("Here IP is not proportional to Pop(for Pop>1.5mW)");
+disp("Hence Photourrent can not be calculated.");
diff --git a/1754/CH1/EX1.14/Exa1_14.sce b/1754/CH1/EX1.14/Exa1_14.sce new file mode 100755 index 000000000..26b1dd688 --- /dev/null +++ b/1754/CH1/EX1.14/Exa1_14.sce @@ -0,0 +1,16 @@ +//Exa 1.14
+clc;
+clear;
+close;
+//Given data
+format('v',7);
+ETA=70;//in %
+Eg=0.75;//in eV
+Eg=Eg*1.6*10^-19;//in Joule
+h=6.63*10^-34;//Planks constant in J-s
+c=3*10^8;//speed of light in m/s
+e=1.6*10^-19;//in coulamb
+lambda=h*c/Eg;//in meter
+disp(lambda*10^9,"Wavelength in nm :");
+R=(ETA/100)*e*lambda/(h*c);//in A/W
+disp(R,"Responsivity of InGaAs photodiode in A/W : ");
\ No newline at end of file diff --git a/1754/CH1/EX1.15/Exa1_15.sce b/1754/CH1/EX1.15/Exa1_15.sce new file mode 100755 index 000000000..7c9706c7a --- /dev/null +++ b/1754/CH1/EX1.15/Exa1_15.sce @@ -0,0 +1,9 @@ +//Exa 1.15
+clc;
+clear;
+close;
+//Given data
+W1=2.5;//in eV
+W2=1.9;//in eV
+ContactPotential=W1-W2;//in Volt
+disp(ContactPotential,"Contact potential in Volts : ");
diff --git a/1754/CH1/EX1.2/Exa1_2.sce b/1754/CH1/EX1.2/Exa1_2.sce new file mode 100755 index 000000000..c894a04bf --- /dev/null +++ b/1754/CH1/EX1.2/Exa1_2.sce @@ -0,0 +1,15 @@ +//Exa 1.2
+clc;
+clear;
+close;
+//Given data
+Io=10;//in uA
+I=1;//in Ampere
+ETA=2;//For Si
+T=27;//in degree C
+T=T+273;//in Kelvin
+e=1.6*10^-19;//in Coulamb(electronic charge)
+k=1.38*10^-23;//in J/K(Boltzman Constant)
+//Formula : I=Io*(exp(%e*V/(ETA*k*T))-1)
+V=(ETA*k*T/e)*log(I/(Io*10^-6)+1);//in Volt
+disp(V,"Forward Voltage across the diode in Volt :");
\ No newline at end of file diff --git a/1754/CH1/EX1.3/Exa1_3.sce b/1754/CH1/EX1.3/Exa1_3.sce new file mode 100755 index 000000000..2b63508ae --- /dev/null +++ b/1754/CH1/EX1.3/Exa1_3.sce @@ -0,0 +1,22 @@ +//Exa 1.3
+clc;
+clear;
+close;
+//Given data
+RL=1;//in kOhm
+//rf<<RL
+Vrms=200;//in Volt
+//Part (i)
+Vo=Vrms*sqrt(2);//in Volt
+Idc=Vo/(RL*10^3*%pi);//in Ampere
+disp(round(Idc*10^3),"DC current in load in mA :");
+//Part (ii)
+Vdc=RL*10^3*Idc;//in Volt
+disp(round(Vdc),"DC voltage across load in volt :");
+//Part (iii)
+//Gamma=sqrt((Irms/Idc)^2-1)=sqrt((Io/2)/(Io/%pi)-1)=sqrt((%pi/2)^2-1)
+Gamma=sqrt((%pi/2)^2-1);//unitless
+disp(Gamma,"Ripple factor : ");
+//Part (iv)
+PIV=Vrms*sqrt(2);//in volt
+disp(PIV,"Peak Inverse Voltage in volt :");
\ No newline at end of file diff --git a/1754/CH1/EX1.4/Exa1_4.sce b/1754/CH1/EX1.4/Exa1_4.sce new file mode 100755 index 000000000..453b58d0b --- /dev/null +++ b/1754/CH1/EX1.4/Exa1_4.sce @@ -0,0 +1,25 @@ +//Exa 1.4
+clc;
+clear;
+close;
+//Given data
+rf=20;//in ohm
+RL=980;//in Ohm
+Vrms=50;//in Volt
+Vo=Vrms*sqrt(2);//in Volt
+Io=Vo/(RL+rf);//in Ampere
+//Part (i)
+Idc=2*Io/%pi;//in Ampere
+disp(round(Idc*10^3),"Average DC current in mA :");
+//Part (ii)
+Irms=Io/sqrt(2);//in Ampere
+disp(Irms*1000,"rms value of load current in mA :")
+//Part (iii)
+Vdc=RL*Idc;//in Volt
+disp(Vdc,"DC output voltage in volt :");
+//Part (iv)
+ETA=(Idc^2*RL/(Irms^2*(RL+rf)))*100;//Rectification Efficiency in %
+disp("Rectification Efficiency is "+string(ETA)+" %")
+//Part (v)
+PIV=2*Vo;//in volt
+disp(PIV,"Peak Inverse Voltage in volt :");
\ No newline at end of file diff --git a/1754/CH1/EX1.5/Exa1_5.sce b/1754/CH1/EX1.5/Exa1_5.sce new file mode 100755 index 000000000..867f1f810 --- /dev/null +++ b/1754/CH1/EX1.5/Exa1_5.sce @@ -0,0 +1,15 @@ +//Exa 1.5
+clc;
+clear;
+close;
+//Given data
+Vin=40;//in volt
+VZ=10;//in volt
+Vo=10;//in volt
+IZmax=50;//in mA
+IL=0;//in mA
+//Formula : I=IZ+IL=IZmax+0
+I=IZmax+0;//in mA
+//Formula : VZ=Vin-R*I
+Rmin=(Vin-VZ)/(I*10^-3);//in Ohm
+disp(Rmin,"Minimum value of resistance in Ohm : ");
\ No newline at end of file diff --git a/1754/CH1/EX1.6/Exa1_6.sce b/1754/CH1/EX1.6/Exa1_6.sce new file mode 100755 index 000000000..1c022c636 --- /dev/null +++ b/1754/CH1/EX1.6/Exa1_6.sce @@ -0,0 +1,22 @@ +//Exa 1.6
+clc;
+clear;
+close;
+//Given data
+Vmin=15;//Minimum input voltage in volt
+VZ=6.8;//Voltage across zener in volt
+Vo=VZ;//output voltage in volt
+Vsr1=Vmin-Vo;//Voltage aross series resistance in volt
+disp("If R is the series esistance, Total current in series resistance in Ampere : I=Vsr/R=8.2/R ");
+ILmin=5;//in mA
+disp("current in zener diode in Ampere :IZ=I-IL=(8.2/R-IL*10-3) eqn(1)");
+Vmax=20;//mximum output voltage
+Vo=VZ;//output voltage in volt
+Vsr2=Vmax-Vo;//Voltage aross series resistance in volt
+disp("Current in series resistance circuit in Ampere : I=Vsr/R");
+ILmax=15;//in mA
+disp("current in zener diode in Ampere :IZ=I-IL=(Rs/R-IL*10-3) eqn(2)")
+disp("For Zener diode to work as voltage regulator,(1) and (2) must be same.");
+disp("(8.2/R-IL*10-3)=(13.2/R-IL*10-3)")
+R=(Vsr2-Vsr1)/(ILmax*10^-3-ILmin*10^-3);//in Ohm
+disp(R,"Required value of Series Resistor in ohm : ");
\ No newline at end of file diff --git a/1754/CH1/EX1.7/Exa1_7.sce b/1754/CH1/EX1.7/Exa1_7.sce new file mode 100755 index 000000000..a2b38107b --- /dev/null +++ b/1754/CH1/EX1.7/Exa1_7.sce @@ -0,0 +1,15 @@ +//Exa 1.7
+clc;
+clear;
+close;
+//Given data
+Vin=18;//in volt
+IZ=20;//in mA
+ILav=(5+35)/2;//in mA
+VZ=12;//in volt
+Vo=12;//in volt
+I=IZ+ILav;//in mA
+R=(Vin-Vo)/(I*10^-3);//in Ohm
+disp(R,"Current limiting resistance in Ohm : ");
+P=(I*10^-3)^2*R;//in Watts
+disp(P,"Power disspation in resistance in Watt : ");
\ No newline at end of file diff --git a/1754/CH1/EX1.8/Exa1_8.sce b/1754/CH1/EX1.8/Exa1_8.sce new file mode 100755 index 000000000..d94638d52 --- /dev/null +++ b/1754/CH1/EX1.8/Exa1_8.sce @@ -0,0 +1,18 @@ +//Exa 1.8
+clc;
+clear;
+close;
+//Given data
+R=1;//in kOhm
+RL=5;//in kOhm
+VZ=10;//in volt
+Vo=10;//in volt
+P=250;//in mW
+IL=Vo/RL;//in mA
+IZmin=0;//in mA
+IZmax=P/VZ;//in mA
+Imin=IZmin+IL;//in mA
+Imax=IZmax+IL;//in mA
+Vin_min=VZ+Imin*10^-3*R*10^3;//in volt
+Vin_max=VZ+Imax*10^-3*R*10^3;//in volt
+disp("The input voltage ranges from "+string(Vin_min)+"V to "+string(Vin_max)+"V");
\ No newline at end of file diff --git a/1754/CH1/EX1.9/Exa1_9.sce b/1754/CH1/EX1.9/Exa1_9.sce new file mode 100755 index 000000000..ceb7e46f5 --- /dev/null +++ b/1754/CH1/EX1.9/Exa1_9.sce @@ -0,0 +1,24 @@ +//Exa 1.9
+clc;
+clear;
+close;
+//Given data
+R=5;//in kOhm
+R=R*1000;//in Ohm
+RL=10;//in kOhm
+RL=RL*1000;//in Ohm
+Vin=120;//in Volt
+VZ=50;//in Volt
+//Part (i)
+Vo=VZ;//in Volt
+disp(Vo,"Output voltage in volt : ");
+//Part (ii)
+VR=Vin-VZ;//in Volt
+disp(VR,"Voltage drop across series resistance in volt :");
+//Part (iii)
+IL=Vo/RL;//in Ampere
+disp(IL*1000,"Load Current in mA :");
+I=VR/R;//in Ampere
+disp(I*1000,"Current through resistance R in mA :");
+IZ=I-IL;//in Ampere
+disp(IZ*1000,"Load Current in mA :");
\ No newline at end of file diff --git a/1754/CH11/EX11.1/Exa11_1.sce b/1754/CH11/EX11.1/Exa11_1.sce new file mode 100755 index 000000000..726987884 --- /dev/null +++ b/1754/CH11/EX11.1/Exa11_1.sce @@ -0,0 +1,14 @@ +//Exa 11.1
+clc;
+clear;
+close;
+//Given data
+R1=15;//in kohm
+R2=15;//in kohm
+C1=0.005;//in uF
+C2=0.005;//in uF
+R=R1;//in Kohm
+C=C1;//in uF
+T=0.69*(R*10^3*C*10^-6+R*10^3*C*10^-6);//in second
+f=1/T;//in Hz
+disp(f*10^-3,"Frequency of oscillators in KHz : ");
\ No newline at end of file diff --git a/1754/CH2/EX2.1/Exa2_1.sce b/1754/CH2/EX2.1/Exa2_1.sce new file mode 100755 index 000000000..8fb69a02a --- /dev/null +++ b/1754/CH2/EX2.1/Exa2_1.sce @@ -0,0 +1,12 @@ +//Exa 2.1
+clc;
+clear;
+close;
+//Given data
+deltaIB=50;//in uA
+deltaIC=1;//in mA
+deltaIC=deltaIC*10^3;//in uA
+Beta=deltaIC/deltaIB;//unitless
+disp(Beta,"Current Amplification Factor,Beta :");
+Alfa=Beta/(1+Beta);//unittless
+disp("Current Amplification Factor,Alfa :"+string(Alfa)+" or 20/21");
\ No newline at end of file diff --git a/1754/CH2/EX2.10/Exa2_10.sce b/1754/CH2/EX2.10/Exa2_10.sce new file mode 100755 index 000000000..ac0501b4b --- /dev/null +++ b/1754/CH2/EX2.10/Exa2_10.sce @@ -0,0 +1,15 @@ +//Exa 2.10
+clc;
+clear;
+close;
+//Given data
+alfaF=0.99;//unitless
+alfaR=0.20;//unitless
+IC=1;//in mA
+IB=50;//in micro Ampere
+T=300;//in kelvin
+k=1.38*10^-23;//Boltzman constant
+e=1.6*10^-19;//in cooulamb
+Vth=k*T/e;//in Volt
+VCEsat=Vth*log(((IC*10^-3*(1-alfaR)+IB*10^-6)*alfaF)/((alfaF*IB*10^-6-(1-alfaF)*IC*10^-3)*alfaR));//in volt
+disp(VCEsat,"Collector-Emitter saturation voltage in volt :");
\ No newline at end of file diff --git a/1754/CH2/EX2.11/Exa2_11.sce b/1754/CH2/EX2.11/Exa2_11.sce new file mode 100755 index 000000000..53ba13844 --- /dev/null +++ b/1754/CH2/EX2.11/Exa2_11.sce @@ -0,0 +1,15 @@ +//Exa 2.11
+clc;
+clear;
+close;
+//Given data
+IES=10^-14;//in A
+alfaF=1;//unitless
+alfaR=0.1;//unitless
+//Formula : alfaF*IES=alfaR*ICS
+ICS=(alfaF/alfaR)*IES;//in Ampere
+disp(ICS,"Collector base junction saturation current in Ampere : ");
+RelativeSize=ICS/IES;//unitless
+disp("Collector is "+string(RelativeSize)+" times larger in size than emitter.");
+BetaR=alfaR/(1-alfaR);//unitless
+disp(BetaR,"Value of BetaR : ");
\ No newline at end of file diff --git a/1754/CH2/EX2.12/Exa2_12.sce b/1754/CH2/EX2.12/Exa2_12.sce new file mode 100755 index 000000000..91a61d264 --- /dev/null +++ b/1754/CH2/EX2.12/Exa2_12.sce @@ -0,0 +1,26 @@ +//Exa 2.12
+clc;
+clear;
+close;
+//Given data
+Beta=100;//unitless
+VCC=6;//in volt
+RB=530;//in kOhm
+RC=2;//in kOhm
+VBE=0.7;//in volt(For Si)
+//Part (i)
+IC1=0;//in A
+VCE1=VCC-IC1*RC;//in volt
+//If VCE=0;//in volt
+VCE2=0;//in volt
+IC2=VCC/RC;//in Ampere
+title('DC load line');
+xlabel('VCE(in volts)');
+ylabel('IC(in mA)');
+plot([VCE1,IC1],[VCE2,IC2]);//DC load line
+//Formula : VCC=VBE+IB*RB
+IB=(VCC-VBE)/(RB*10^3);//in Ampere
+IC=Beta*IB;//in Ampere
+VCE=VCC-IC*RC*10^3;//in volt
+disp("Q point coordinates are :");
+disp("IC="+string(IC*10^3)+" mA and VCE="+string(VCE)+" Volt.");
diff --git a/1754/CH2/EX2.13/Exa2_13.sce b/1754/CH2/EX2.13/Exa2_13.sce new file mode 100755 index 000000000..c212c1a68 --- /dev/null +++ b/1754/CH2/EX2.13/Exa2_13.sce @@ -0,0 +1,19 @@ +//Exa 2.13
+clc;
+clear;
+close;
+//Given data
+Beta=100;//unitless
+IC=1;//in mA
+VCC=12;//in volt
+VBE=0.3;//in volt(For Ge)
+//Prt (i)
+IB=IC/Beta;//in mA
+//Formula : VCC=VBE+IB*RB
+RB=(VCC-VBE)/(IB*10^-3);//in Ampere
+disp(RB/10^3,"Resistance RB in kOhm : ");
+//part (ii)
+Beta=50;//unitless
+IB=(VCC-VBE)/RB;//in Ampere
+IC=Beta*IB;//in Ampere
+disp(IC*10^3,"Zero signal IC in mA:");
\ No newline at end of file diff --git a/1754/CH2/EX2.14/Exa2_14.sce b/1754/CH2/EX2.14/Exa2_14.sce new file mode 100755 index 000000000..5ebf3a844 --- /dev/null +++ b/1754/CH2/EX2.14/Exa2_14.sce @@ -0,0 +1,23 @@ +//Exa 2.14
+clc;
+clear;
+close;
+//Given data :
+format('v',10);
+disp("To set the required operating point, value of RB will be find out. ")
+IC=1;//in mA
+VCE=8;//in volt
+Beta=100;//unitless
+VCC=12;//in volt
+VBE=0.3;//in volt(For Ge)
+//Prt (i)
+RC=(VCC-VCE)/(IC*10^-3);//in ohm
+IB=IC/Beta;//in mA
+RB=(VCC-VBE-Beta*(IB*10^-3)*RC)/(IB*10^-3);//in Ohm
+disp(RB/1000,"Value of RB in kOhm");
+//Part (ii)
+Beta=50;//unitless
+IB=(VCC-VBE)/(RB+Beta*RC);//in mA
+IC=Beta*IB;//in Ampere
+VCE=VCC-IC*RC;//in volt
+disp("New operating point is ("+string(VCE)+"V,"+string(IC*10^3)+"mA)");
\ No newline at end of file diff --git a/1754/CH2/EX2.15/Exa2_15.sce b/1754/CH2/EX2.15/Exa2_15.sce new file mode 100755 index 000000000..382f9b740 --- /dev/null +++ b/1754/CH2/EX2.15/Exa2_15.sce @@ -0,0 +1,18 @@ +//Exa 2.15
+clc;
+clear;
+close;
+//Given data :
+R1=50;//in kohm
+R2=10;//in kohm
+RE=1;//in kohm
+VCC=12;//in volt
+//Prt (i)
+VBE=0.1;//in volt
+VBBdash=(R2/(R1+R2))*VCC;//in volt
+IC1=(VBBdash-VBE)/(RE*1000);//in mA
+disp(IC1*1000,"At VBE=0.1V, Value of IC in mA : ");
+//Part (ii)
+VBE=0.3;//in volt
+IC2=(VBBdash-VBE)/(RE*1000);//in mA
+disp(IC2*1000,"At VBE=0.3V, Value of IC in mA : ");
diff --git a/1754/CH2/EX2.16/Exa2_16.sce b/1754/CH2/EX2.16/Exa2_16.sce new file mode 100755 index 000000000..91c920ccd --- /dev/null +++ b/1754/CH2/EX2.16/Exa2_16.sce @@ -0,0 +1,26 @@ +//Exa 2.16
+clc;
+clear;
+close;
+//Given data :
+R1=10;//in kohm
+R2=5;//in kohm
+RE=2;//in kohm
+RC=1;//in kohm
+VCC=12;//in volt
+Beta=100;//unitless
+VBE=0.7;//in volt
+//Part (i)
+//Formula : VBE=VBBdash-IB*RBdash-IE*RE
+disp("IB is ver small : VBE=VBBdash-IE*RE");
+VBBdash=(R2/(R1+R2))*VCC;//in volt
+IE=(VBBdash-VBE)/(RE*10^3);//in Ampere
+disp("As base current is very small IC=IE");
+IC=IE;//in mA
+//Formul : VCC=IC*RC+VCE+IE*RE
+VCE=VCC-IC*RC*10^3-IE*RE*10^3;//in Volt
+disp("Operating point is ("+string(VCE)+"V,"+string(IC*10^3)+"mA)");
+//Part (ii)
+RBdash=(R1*R2/(R1+R2));//in kOhm
+S=(Beta+1)/(1+Beta*(RE/(RBdash+RE)));
+disp("Staility factor S is : "+string(S));
diff --git a/1754/CH2/EX2.17/Exa2_17.sce b/1754/CH2/EX2.17/Exa2_17.sce new file mode 100755 index 000000000..d4fd03fa9 --- /dev/null +++ b/1754/CH2/EX2.17/Exa2_17.sce @@ -0,0 +1,27 @@ +//Exa 2.17
+clc;
+clear;
+close;
+//Given data :
+R1=200;//in kohm
+R2=100;//in kohm
+RE=1;//in kohm
+RC=1;//in kohm
+VCC=9;//in volt
+he=2;//in kohm
+hfe=100;//unitless
+hoe=0;//unitless
+hre=0;//unitless
+VBE=0.7;//in volt(For Si)
+//Part (i)
+RB=R1*R2/(R1+R2);//in kohm
+VBBdash=(R2/(R1+R2))*VCC;//in volt
+//Applying Kirchoff Law
+IB=(VBBdash-VBE)/(RB*10^3+RE*10^3*(1+hfe));//in Ampere
+IC=hfe*IB;//in Ampere
+disp(IC*10^3,"Value of IC in mA : ");
+//Part (ii)
+//Applying Kirchoff Law
+VCE=VCC-IC*RC*10^3-RE*1063*IB*(hfe+1);//in volt
+disp(VCE,"VCE in volt :");
+//Note : Ans of VCE is wrong in the book as VCC=10 V has been taken instead of 9 volt.
\ No newline at end of file diff --git a/1754/CH2/EX2.18/Exa2_18.sce b/1754/CH2/EX2.18/Exa2_18.sce new file mode 100755 index 000000000..2311051d3 --- /dev/null +++ b/1754/CH2/EX2.18/Exa2_18.sce @@ -0,0 +1,24 @@ +//Exa 2.18
+clc;
+clear;
+close;
+//Given data :
+RB=50;//in kohm
+RC=3;//in kohm
+VCC=10;//in volt
+VEE=5;//in volt
+hfe=100;//unitless
+VCEsat=0.2;//in volt
+VBEsat=0.8;//in volt
+VBEactive=0.7;//in volt
+VBE=0.7;//in volt(For Si)
+//Applying
+IB=(VEE-VBE)/(RB*10^3);//in Ampere: Kirchoff 2nd Law : VEE-RB*IB-VBE=0
+IC=hfe*IB;//in Ampere
+VCB=VCC-IC*RC*10^3-VBEactive;//in volt: //Applying Kirchoff 2nd Law to collector-emitter loop: VCC-IC*RC-VCB-VBEactive=0
+disp(VCB,"Collector to base voltage, VCB(in V) :");
+disp("This shows that the base collector junction is forward biased. This implies that the transistor is in saturation region.");
+IB=(VEE-VBEsat)/(RB*10^3);//in Ampere
+disp(IB*10^3,"Value of IB in mA :");
+IC=(VCC-VCEsat)/(RC*10^3);
+disp(IC*10^3,"Value of IC in mA :");
diff --git a/1754/CH2/EX2.19/Exa2_19.sce b/1754/CH2/EX2.19/Exa2_19.sce new file mode 100755 index 000000000..1c49078cd --- /dev/null +++ b/1754/CH2/EX2.19/Exa2_19.sce @@ -0,0 +1,14 @@ +//Exa 2.19
+clc;
+clear;
+close;
+//Given data :
+VCC=20;//in volt
+VBE=0.7;//in volt(For Si)
+Beta=50;//unitless
+RE=200;//in ohm
+R1=60;//in kohm
+R2=30;//in kohm
+V2=VCC*R2/(R1+R2);//in volt
+VEO=V2-VBE;//in volt
+disp(VEO,"Voltage across RE in volt : ");
\ No newline at end of file diff --git a/1754/CH2/EX2.2/Exa2_2.sce b/1754/CH2/EX2.2/Exa2_2.sce new file mode 100755 index 000000000..e64a9e9d2 --- /dev/null +++ b/1754/CH2/EX2.2/Exa2_2.sce @@ -0,0 +1,10 @@ +//Exa 2.2
+clc;
+clear;
+close;
+//Given data
+IB=25;//in uA
+Beta=40;//unitless
+IC=Beta*IB;//in uA
+IE=IB+IC;//in uA
+disp("The value of IE :"+string(IE)+" micro Ampere");
\ No newline at end of file diff --git a/1754/CH2/EX2.3/Exa2_3.sce b/1754/CH2/EX2.3/Exa2_3.sce new file mode 100755 index 000000000..aaefee787 --- /dev/null +++ b/1754/CH2/EX2.3/Exa2_3.sce @@ -0,0 +1,10 @@ +//Exa 2.3
+clc;
+clear;
+close;
+//Given data
+alfa=0.98;//unitless
+deltaIB=0.2;//in mA
+Beta=alfa/(1-alfa);//unitless
+deltaIC=Beta*deltaIB;//in mA
+disp("Change in collector curent : "+string(deltaIC)+" milli Ampere.");
\ No newline at end of file diff --git a/1754/CH2/EX2.4/Exa2_4.sce b/1754/CH2/EX2.4/Exa2_4.sce new file mode 100755 index 000000000..3c091b8dc --- /dev/null +++ b/1754/CH2/EX2.4/Exa2_4.sce @@ -0,0 +1,18 @@ +//Exa 2.4
+clc;
+clear;
+close;
+//Given data
+Beta=45;//unitless
+RL=1;//in kOhm
+deltaVCE=1;//in volt
+disp("Part (i) : CE coniguration");
+IC=deltaVCE/(RL*1000);//in Ampere
+//Formula : Beta=deltaIC/deltaIB
+IB=IC/Beta;//in Ampere
+disp("Input Base Current, IB in mA : "+string(IB*10^3));
+disp("Part (ii) : CB coniguration");
+IC=deltaVCE/(RL*1000);//in Ampere
+//Formula : Beta=deltaIC/deltaIB
+IE=IB+IC;//in Ampere
+disp("Input Emitter Current, IE in mA : "+string(IE*10^3));
diff --git a/1754/CH2/EX2.5/Exa2_5.sce b/1754/CH2/EX2.5/Exa2_5.sce new file mode 100755 index 000000000..31ca2ac2b --- /dev/null +++ b/1754/CH2/EX2.5/Exa2_5.sce @@ -0,0 +1,14 @@ +//Exa 2.5
+clc;
+clear;
+close;
+//Given data
+Ileakage=12.5;//in uA
+ICBO=12.5;//in uA
+IE=2;//in mA
+IC=1.97;//in mA
+//Formula : IC=alfa*IE+ICBO
+alfa=(IC-ICBO/10^3)/IE;//unitless
+disp(alfa,"Current Gain : ");
+IB=IE-IC;//in mA
+disp(IB,"Base current in mA : ");
\ No newline at end of file diff --git a/1754/CH2/EX2.6/Exa2_6.sce b/1754/CH2/EX2.6/Exa2_6.sce new file mode 100755 index 000000000..e2352df84 --- /dev/null +++ b/1754/CH2/EX2.6/Exa2_6.sce @@ -0,0 +1,9 @@ +//Exa 2.6
+clc;
+clear;
+close;
+//Given data
+deltaVBE=200;//in mVolt
+deltaIB=100;//in uA
+ri=deltaVBE*10^-3/(deltaIB*10^-6);//in Ohm
+disp(ri/1000,"Input resistane of transistor in kohm :");
\ No newline at end of file diff --git a/1754/CH2/EX2.7/Exa2_7.sce b/1754/CH2/EX2.7/Exa2_7.sce new file mode 100755 index 000000000..5762b924f --- /dev/null +++ b/1754/CH2/EX2.7/Exa2_7.sce @@ -0,0 +1,9 @@ +//Exa 2.7
+clc;
+clear;
+close;
+//Given data
+deltaVEB=200;//in mVolt
+deltaIE=5;//in mA
+ri=deltaVEB*10^-3/(deltaIE*10^-3);//in Ohm
+disp(ri,"Input resistane of transistor in Ohm :");
\ No newline at end of file diff --git a/1754/CH2/EX2.9/Exa2_9.sce b/1754/CH2/EX2.9/Exa2_9.sce new file mode 100755 index 000000000..7cef5b15f --- /dev/null +++ b/1754/CH2/EX2.9/Exa2_9.sce @@ -0,0 +1,21 @@ +//Exa 2.9
+clc;
+clear;
+close;
+//Given data
+format('v',10);
+Ri=500;//in Ohm
+RL=1;//in kOhm
+hie=1;//in kOhm
+hre=2*10^-4;//unitless
+hfe=50;//unitless
+hoe=25;//micro mho
+//Part (a) :
+Ai=-hfe/(1+hoe*10^-6*RL*10^3);//unitless
+disp(Ai,"Current Gain : ");
+//Part (b) :
+Rin=hie*10^3-(hre*hfe/(hoe*10^-6+1/RL*10^3));//in Ohm
+disp(Rin,"Input Resistance in Ohm :");
+//Part (c) :
+Av=Ai*RL*10^3/Ri;//unitless
+disp(Av,"Voltage Gain : ");
\ No newline at end of file diff --git a/1754/CH3/EX3.1/Exa3_1.sce b/1754/CH3/EX3.1/Exa3_1.sce new file mode 100755 index 000000000..2909faac5 --- /dev/null +++ b/1754/CH3/EX3.1/Exa3_1.sce @@ -0,0 +1,28 @@ +//Exa 3.2
+clc;
+clear;
+close;
+//Given data
+ib=10;//in uA
+ic=1;//in mA
+ic=ic*10^3;//in uA
+vi=0.02;//in Volt
+RC=5;//in kohm
+RL=10;//in kohm
+//Part (i)
+Ai=-ic/ib;//unitless
+Beta=Ai;//unitless
+disp(Ai,"Current gain : ");
+//Part (ii)
+Rie=vi/(ib*10^-6);//in Ohm
+disp(Rie*10^-3,"Input impedence in kohm :");
+//Part (iii)
+Rac=RC*RL/(RC+RL);//in kohm
+disp(Rac,"AC load in kohm : ");
+//Part (iv)
+Av=-Rac*10^3*Beta/Rie;//unitless
+disp(Av,"Voltage gain : ");
+//Part (v)
+PowerGain=Av*Ai;//unitless
+disp(PowerGain,"Power Gain is : ");
+//Note : Ans of Av and Power gain is wrong in the book.
\ No newline at end of file diff --git a/1754/CH3/EX3.10/Exa3_10.sce b/1754/CH3/EX3.10/Exa3_10.sce new file mode 100755 index 000000000..c65ceea67 --- /dev/null +++ b/1754/CH3/EX3.10/Exa3_10.sce @@ -0,0 +1,10 @@ +//Exa 3.10
+clc;
+clear;
+close;
+//Given data :
+ZL=10;//in ohm
+ZP=1000;//in ohm
+//For max power : ZP=n^2*ZL
+n=sqrt(ZP/ZL);//turn ratio
+disp(n,"Turn ratio : ");
diff --git a/1754/CH3/EX3.11/Exa3_11.sce b/1754/CH3/EX3.11/Exa3_11.sce new file mode 100755 index 000000000..ed6d0a254 --- /dev/null +++ b/1754/CH3/EX3.11/Exa3_11.sce @@ -0,0 +1,13 @@ +//Exa 3.11
+clc;
+clear;
+close;
+//Given data :
+Po_dc=10;//in watt
+Po_ac=3.5;//in watt
+//Part (i) :
+ETAcollector=Po_ac/Po_dc;//unitless
+ETAcollector=ETAcollector*100;//collector efficiency in %
+disp(ETAcollector,"Collector Efficiency(in %) : ");
+//Part (ii)
+disp(Po_dc,"Zero signal condition represents maximum power loss. Therefore, all the 10 W power is dissipated by it. Hence Powe Rating of transistor in Watt : ")
\ No newline at end of file diff --git a/1754/CH3/EX3.12/Exa3_12.sce b/1754/CH3/EX3.12/Exa3_12.sce new file mode 100755 index 000000000..687d43ed0 --- /dev/null +++ b/1754/CH3/EX3.12/Exa3_12.sce @@ -0,0 +1,32 @@ +//Exa 3.12
+clc;
+clear;
+close;
+//Given data :
+VCC=20;//in volt
+RC=20;//in ohm
+VCEQ=10;//in volt
+ICQ=500;//in mA
+//part (i) :
+Pin_dc=VCC*ICQ*10^-3;//in watt
+disp(Pin_dc,"Total dc power taken by the circuit in Watt : ");
+//part (ii) :
+PRc_dc=ICQ^2*10^-6*RC;//in watt
+disp(PRc_dc,"dc power dissipated by the collector load in Watt : ");
+//part (iii) :
+Io=250;//in mA(maximum value of output ac current)
+Irms=Io/sqrt(2);//in mA
+Po_ac=Irms^2*10^-6*RC;//in watt
+disp(Po_ac,"Power developed across the load in Watt : ");
+//part (iv) :
+Ptr_dc=Pin_dc-PRc_dc;//in watt
+disp(Ptr_dc,"dc power dissipated by the collector load in Watt : ");
+//part (v) :
+PC_dc=Pin_dc-PRc_dc-Po_ac;//in watt
+disp(PC_dc,"dc power dissipated by the collector load in Watt : ");
+//part (vi) :
+ETAoverall=Po_ac*100/Pin_dc;//Overall Efficiency (in %)
+disp(ETAoverall,"Overall Efficiency (in %) :");
+//part (vii) :
+ETAcollector=Po_ac*100/PRc_dc;//Collector Efficiency (in %)
+disp(ETAcollector,"Collector Efficiency (in %) :");
\ No newline at end of file diff --git a/1754/CH3/EX3.13/Exa3_13.sce b/1754/CH3/EX3.13/Exa3_13.sce new file mode 100755 index 000000000..b1c5e86a4 --- /dev/null +++ b/1754/CH3/EX3.13/Exa3_13.sce @@ -0,0 +1,11 @@ +//Exa 3.13
+clc;
+clear;
+close;
+//Given data :
+n=10;//turn ratio
+RL=100;//in ohm
+ICQ=100;//in mA
+RLdash=n^2*RL;//in ohm
+MaxPowerOut=(ICQ*10^-3)^2*RLdash/2;//in watt
+disp(MaxPowerOut,"Maximum Power output in watt : ");
\ No newline at end of file diff --git a/1754/CH3/EX3.14/Exa3_14.sce b/1754/CH3/EX3.14/Exa3_14.sce new file mode 100755 index 000000000..3c9b8b0d3 --- /dev/null +++ b/1754/CH3/EX3.14/Exa3_14.sce @@ -0,0 +1,17 @@ +//Exa 3.14
+clc;
+clear;
+close;
+//Given data :
+//Part (i) : without heat sink
+ThetaMax=90;//in degree C
+Theta_o=30;//in degree C
+R=300;//in degree C/W
+Pr=(ThetaMax-Theta_o)/R;//in watt
+disp(Pr,"Without heat sink, Maximum permissible power dissipatio in watt :");
+//Part (ii) : with heat sink
+ThetaMax=90;//in degree C
+Theta_o=30;//in degree C
+R=60;//in degree C/W
+Pr=(ThetaMax-Theta_o)/R;//in watt
+disp(Pr,"With heat sink, Maximum permissible power dissipatio in watt :");
\ No newline at end of file diff --git a/1754/CH3/EX3.2/Exa3_2.sce b/1754/CH3/EX3.2/Exa3_2.sce new file mode 100755 index 000000000..072ea5b5e --- /dev/null +++ b/1754/CH3/EX3.2/Exa3_2.sce @@ -0,0 +1,29 @@ +//Exa 3.2
+clc;
+clear;
+close;
+//Given data
+RL=10;//in kohm
+RS=1;//in kohm
+hie=1.1;//in kOhm
+hre=2.5*10^-4;//unitless
+hfe=50;//unitless
+hoe=25;//in u mho
+Aie=-hfe/(1+hoe*10^-6*RL*10^3);//unitless
+Zie=hie+hre*Aie*RL;//in kOhm
+Zie=round(Zie);
+Ave=Aie*RL/Zie;//unitless
+Avs_e=Ave*Zie/(Zie+RS);//
+deltah=hoe*10^-6*hie*10^3-hfe*hre;
+Zoe=(hie*10^3+RS*10^3)/(hoe*10^-6*RS*10^3+deltah);
+Ais_e=Aie*RS/(Zie+RS);
+Ape=Ave*Aie;
+Aps_e=Avs_e*Ais_e;
+disp(Aie,"Current gain : ");
+disp(Ais_e,"Current gain with source resistance : ");
+disp(Ave,"Voltage gain : ");
+disp(Avs_e,"Voltage gain with source resistance : ");
+disp(Ape,"Power gain : ");
+disp(Aps_e,"Power gain with source resistance : ");
+disp(Zie,"Input impedence in kohm :");
+disp(Zoe/10^3,"Output impedence in kohm :");
\ No newline at end of file diff --git a/1754/CH3/EX3.3/Exa3_3.sce b/1754/CH3/EX3.3/Exa3_3.sce new file mode 100755 index 000000000..d19c3aaa6 --- /dev/null +++ b/1754/CH3/EX3.3/Exa3_3.sce @@ -0,0 +1,24 @@ +//Exa 3.3
+clc;
+clear;
+close;
+//Given data :
+InputVoltage=1;//in mV
+RL=5.6;//in kohm
+RS=600;//in ohm
+hre=6.5*10^-4;//unitless
+hie=1.7;//in kOhm
+hfe=125;//unitless
+hoe=80;//in uA/V
+deltah=hoe*10^-6*hie*10^3-hfe*hre;
+Zie=(hie*10^3+RL*10^3*deltah)/(1+hoe*10^-6*RL*10^3);//in Ohm
+Zoe=(hie*10^3+RS)/(hoe*10^-6*RS+deltah);//in Ohm
+Ave=-(hfe*RL*10^3)/(hie*10^3+RL*10^3*deltah);//unitless
+Avs_e=Ave*Zie/(Zie+RS);//
+OutputVoltage=Avs_e*InputVoltage;//in
+disp(Zie/1000,"Input impedence in kohm :");
+disp(Zoe/10^3,"Output impedence in kohm :");
+disp(Ave,"Voltage gain : ");
+disp(Avs_e,"Voltage gain with source resistance : ");
+disp(OutputVoltage,"Output Voltage in mV : ");
+//Note : Ans of output impedence is wrong in the book.
\ No newline at end of file diff --git a/1754/CH3/EX3.4/Exa3_4.sce b/1754/CH3/EX3.4/Exa3_4.sce new file mode 100755 index 000000000..19118c7f4 --- /dev/null +++ b/1754/CH3/EX3.4/Exa3_4.sce @@ -0,0 +1,14 @@ +//Exa 3.4
+clc;
+clear;
+close;
+//Given data :
+A1=100;//unitless
+A2=200;//unitless
+A3=400;//unitless
+A1=20*log10(A1);//in dB
+A2=20*log10(A2);//in dB
+A3=20*log10(A3);//in dB
+NetVoltageGain=A1+A2+A3;//in dB
+disp(NetVoltageGain,"Net Voltage Gain in decibels :");
+//Note : Answer in the book is wrong.
\ No newline at end of file diff --git a/1754/CH3/EX3.5/Exa3_5.sce b/1754/CH3/EX3.5/Exa3_5.sce new file mode 100755 index 000000000..73d858e80 --- /dev/null +++ b/1754/CH3/EX3.5/Exa3_5.sce @@ -0,0 +1,11 @@ +//Exa 3.5
+clc;
+clear;
+close;
+//Given data :
+MaxGain=1000;//unitless(at 2kHz)
+f1=50;//in Hz
+f2=10;//in KHz
+disp("Bandwidth is from "+string(f1)+"Hz to "+string(f2)+"kHz");
+disp("Lower cutoff frequency " +string(f1)+"Hz");
+disp("Upper cutoff frequency " +string(f2)+"kHz");
\ No newline at end of file diff --git a/1754/CH3/EX3.6/Exa3_6.sce b/1754/CH3/EX3.6/Exa3_6.sce new file mode 100755 index 000000000..7701e5ff2 --- /dev/null +++ b/1754/CH3/EX3.6/Exa3_6.sce @@ -0,0 +1,17 @@ +//Exa 3.6
+clc;
+clear;
+close;
+//Given data :
+RC=10;//in kohm
+hfe=330;//unitless
+hie=4.5;//in kOhm
+//RS<<hie
+AVM=hfe*RC*10^3/(hie*10^3+RC*10^3);//unitless
+AVM1=AVM;//Gain of 1st stage
+AVM2=AVM;//Gain of 2nd stage
+AVM3=hfe*RC*10^3/(hie*10^3);//unitless(//Gain of 3rd stage)
+OverallGain=AVM1*AVM2*AVM3;//unitless
+disp(AVM,"Gain in mid frequeny range : ");
+disp("This is the gain of 1st and 2nd stage.")
+disp(OverallGain,"Overall Voltage gain for mid frequency range : ");
\ No newline at end of file diff --git a/1754/CH3/EX3.7/Exa3_7.sce b/1754/CH3/EX3.7/Exa3_7.sce new file mode 100755 index 000000000..f2ae84252 --- /dev/null +++ b/1754/CH3/EX3.7/Exa3_7.sce @@ -0,0 +1,12 @@ +//Exa 3.7
+clc;
+clear;
+close;
+//Given data :
+RC=5.5;//in kohm
+hfe=330;//unitless
+hie=4.5;//in kohm
+f1=30;//in Hz
+//Formula : f1=1/(2*%pi*C*(hie+RC))
+C=1/(2*%pi*f1*(hie*10^3+RC*10^3));//in F
+disp(C*10^6,"Value of coupling capacitor in micro farad : ");
diff --git a/1754/CH3/EX3.8/Exa3_8.sce b/1754/CH3/EX3.8/Exa3_8.sce new file mode 100755 index 000000000..5a826ab10 --- /dev/null +++ b/1754/CH3/EX3.8/Exa3_8.sce @@ -0,0 +1,12 @@ +//Exa 3.8
+clc;
+clear;
+close;
+//Given data :
+RC=10;//in kohm
+Rin=1;//in kohm
+Beta=100;//unitless
+RL=100;//in ohm
+RCdash=RC*10^3*RL/(RC*10^3+RL);//in ohm
+VoltageGain=Beta*RCdash/(Rin*10^3);//in volt
+disp(VoltageGain,"Voltage Gain : ");
diff --git a/1754/CH3/EX3.9/Exa3_9.sce b/1754/CH3/EX3.9/Exa3_9.sce new file mode 100755 index 000000000..7dafab6ee --- /dev/null +++ b/1754/CH3/EX3.9/Exa3_9.sce @@ -0,0 +1,14 @@ +//Exa 3.9
+clc;
+clear;
+close;
+//Given data :
+Rout=10;//in kohm
+Rin=2.5;//in kohm
+f=200;//in Hz
+//Formula : Rout=omega*Lp=2*%pi*f*Lp
+Lp=Rout*10^3/(2*%pi*f);//in H
+disp(round(Lp),"Inductance of primary in Henry : ");
+//Formula : Rin=omega*Ls=2*%pi*f*Ls
+Ls=Rin*10^3/(2*%pi*f);//in H
+disp(round(Ls),"Inductance of seondary in Henry : ");
\ No newline at end of file diff --git a/1754/CH4/EX4.1/Exa4_1.sce b/1754/CH4/EX4.1/Exa4_1.sce new file mode 100755 index 000000000..46a103110 --- /dev/null +++ b/1754/CH4/EX4.1/Exa4_1.sce @@ -0,0 +1,11 @@ +//Exa 4.1
+clc;
+clear;
+close;
+//Given data
+Omega_Z1=0;//in Radian/sec
+Omega_Z2=10;//in Radian/sec
+Omega_P1=100;//in Radian/sec
+Omega_P2=25;//in Radian/sec
+WL=sqrt(Omega_P1^2+Omega_P2^2-2*Omega_Z1^2-2*Omega_Z2^2);//in radian/sec
+disp(WL,"Approximate value of lower 3dB Frequency in radian/sec : ");
\ No newline at end of file diff --git a/1754/CH4/EX4.2/Exa4_2.sce b/1754/CH4/EX4.2/Exa4_2.sce new file mode 100755 index 000000000..804440304 --- /dev/null +++ b/1754/CH4/EX4.2/Exa4_2.sce @@ -0,0 +1,10 @@ +//Exa 4.2
+clc;
+clear;
+close;
+//Given data
+Omega_P1=10^4;//in Radian/sec
+Omega_P2=2*10^4;//in Radian/sec
+Omega_Z1=10^5;//in Radian/sec
+omegaH=1/sqrt(1/Omega_P1^2+1/Omega_P2^2-2/Omega_Z1^2);//in radian/sec
+disp(round(omegaH),"Approximate value of lower 3dB Frequency in radian/sec : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.1/Exa5_1.sce b/1754/CH5/EX5.1/Exa5_1.sce new file mode 100755 index 000000000..4fcb5c64c --- /dev/null +++ b/1754/CH5/EX5.1/Exa5_1.sce @@ -0,0 +1,10 @@ +//Exa 5.1
+clc;
+clear;
+close;
+//Given data :
+A=50;//gain(unitless)
+Af=10;//gain(unitless)
+//Formula : Af=A/(1+A*Beta)
+Beta=(A/Af-1)/A;//feedback ratio (unitless)
+disp(Beta*100,"Percentage of output fed back(%) : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.10/Exa5_10.sce b/1754/CH5/EX5.10/Exa5_10.sce new file mode 100755 index 000000000..df7a99f33 --- /dev/null +++ b/1754/CH5/EX5.10/Exa5_10.sce @@ -0,0 +1,12 @@ +//Exa 5.10
+clc;
+clear;
+close;
+//Given data :
+format('v',5);
+A=1000;//gain(unitless)
+Beta=1/20;//feedback ratio (unitless)
+//Formula : Af=A/(1+A*Beta)
+Af=A/(1+A*Beta);//gain with feedback(unitless)
+Af=20*log10(Af);//in dB
+disp(Af,"Gain with feedback in dB : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.11/Exa5_11.sce b/1754/CH5/EX5.11/Exa5_11.sce new file mode 100755 index 000000000..872049c47 --- /dev/null +++ b/1754/CH5/EX5.11/Exa5_11.sce @@ -0,0 +1,18 @@ +//Exa 5.11
+clc;
+clear;
+close;
+//Given data :
+A=800;//gain(unitless)
+f1=40;//in Hz
+f2=16;//in kHz
+Beta=2/100;//feedback fator (unitless)
+//Formula : Af=A/(1+A*Beta)
+Af=A/(1+A*Beta);//gain with feedback(unitless)
+disp(Af,"Voltage gin with feedback : ");
+BW=f2*10^3-f1;//Bandwidth of amplifier in Hz
+disp(BW*10^-3,"Bandwidth of amplifier in kHz : ");
+f1_f=f1/(1+A*Beta);//in Hz
+f2_f=f2*(1+A*Beta);//in kHz
+BW_f=f2_f*10^3-f1_f;//Bandwith after feedback in Hz
+disp(round(BW_f*10^-3),"Bandwith after feedback in KHz : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.12/Exa5_12.sce b/1754/CH5/EX5.12/Exa5_12.sce new file mode 100755 index 000000000..417dc1dff --- /dev/null +++ b/1754/CH5/EX5.12/Exa5_12.sce @@ -0,0 +1,15 @@ +//Exa 5.12
+clc;
+clear;
+close;
+//Given data :
+A=100;//gain(unitless)
+BW=10;//in Hz
+Beta=5;//in %
+//Part (i) :
+//Formula : Af=A/(1+A*Beta)
+Af=A/(1+A*Beta/100);//gain with feedback(unitless)
+disp(Af,"Voltage gin with feedback : ");
+//Part (ii)
+BW_f=BW*(1+A*Beta/100);//Bandwith after feedback in Hz
+disp(BW_f,"Bandwith with negative feedback in KHz : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.13/Exa5_13.sce b/1754/CH5/EX5.13/Exa5_13.sce new file mode 100755 index 000000000..b3d76ad2a --- /dev/null +++ b/1754/CH5/EX5.13/Exa5_13.sce @@ -0,0 +1,20 @@ +//Exa 5.13
+clc;
+clear;
+close;
+//Given data :
+hfe=50;//unitless
+hie=1.1;//in kOhm
+hoe=0;//unitless
+hre=0;//unitless
+RL=4;//in kOhm
+Rs=10;//in kOhm
+RB=40;//in kOhm
+RLdash=RB*RL/(RB+RL);//in Kohm
+AV=-hfe*RLdash/hie;//unitless
+//Part (i) ;
+Rif=hie*(RB/(1-AV))/(hie+(RB/(1-AV)));//in kOhm
+disp(round(Rif*1000),"Input resistance with feedback in Ohm : ");
+//Part (ii) :
+AVf=AV*(Rif/(Rs+Rif));//unitless
+disp(AVf,"Voltage gin with feedback : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.2/Exa5_2.sce b/1754/CH5/EX5.2/Exa5_2.sce new file mode 100755 index 000000000..a44c05a7f --- /dev/null +++ b/1754/CH5/EX5.2/Exa5_2.sce @@ -0,0 +1,23 @@ +//Exa 5.2
+clc;
+clear;
+close;
+//Given data :
+A=1000;//gainWithoutFeedback(unitless)
+//Part (i) :
+disp("At normal collector supply :");
+disp("with feedback gain reduces by a factor 0.40");
+Af=A-A*0.40;//gainWithFeedback(unitless)
+disp(Af,"At normal collector supply, Gain with feedback : ");
+//Formula : Af=A/(1+A*Beta)
+Beta=(A/Af-1)/A;//feedback factor (unitless)
+disp("At reduced power supply :");
+Adash=800;//gainWithoutFeedback(unitless)
+Af_dash=Adash/(1+Adash*Beta)
+disp(round(Af_dash),"At Reduced collector supply, Gain with feedback : ");
+//Part (ii)
+Reduction=((A-Adash)/A)*100;//% reduction without feedback
+disp(Reduction,"percentage reduction in gain without feedback(%) :");
+Reduction1=((Af-Af_dash)/Af)*100;//% reduction without feedback
+disp(round(Reduction1),"percentage reduction in gain with feedback(%) :");
+//Note : answer of Af is wrong in the book.
diff --git a/1754/CH5/EX5.3/Exa5_3.sce b/1754/CH5/EX5.3/Exa5_3.sce new file mode 100755 index 000000000..eae30e7bf --- /dev/null +++ b/1754/CH5/EX5.3/Exa5_3.sce @@ -0,0 +1,23 @@ +//Exa 5.3
+clc;
+clear;
+close;
+//Given data :
+A=100;//gain without feedback(unitless)
+Beta=1/25;//feedback ratio (unitless)
+Vi=50;//in mV
+//Part (i) :
+Af=A/(1+A*Beta);//gain with feedback(unitless)
+disp(Af,"(i) Gain with feedback :");
+//Part (ii) :
+FeedbackFactor=Beta*A;//unitless
+disp(FeedbackFactor,"(ii) Feedback Factor :");
+//Part (iii) :
+Vo_dash=Af*Vi*10^-3;//in volt
+disp(Vo_dash,"(iii) Output Voltage in volts :");
+//Part (iv) :
+FeedbackVoltage=Beta*Vo_dash;//in volt
+disp(FeedbackVoltage,"(iv) Feedback Voltage in volts :");
+//Part (v) :
+Vi_dash=Vi*(1+Beta*A);//in mv
+disp(Vi_dash,"(v) New Increased Input Voltage in milli volts :");
\ No newline at end of file diff --git a/1754/CH5/EX5.4/Exa5_4.sce b/1754/CH5/EX5.4/Exa5_4.sce new file mode 100755 index 000000000..1a1966b21 --- /dev/null +++ b/1754/CH5/EX5.4/Exa5_4.sce @@ -0,0 +1,14 @@ +//Exa 5.4
+clc;
+clear;
+close;
+//Given data :
+BW=200;//in kHz
+A=40;//gain without feedback(in dB)
+Beta=5;//negative feedback in %
+Beta=Beta/100;//feedback factor
+//Formula : Af=A/(1+A*Beta)
+Af=A/(1+A*Beta);//gain with feedback(in dB)
+disp("Since gain bandwidth product remains constant, A*BW=Af*BW_dash");
+BW_dash=A*BW/Af;//in kHz
+disp(BW_dash,"New Bandwidth in kHz : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.5/Exa5_5.sce b/1754/CH5/EX5.5/Exa5_5.sce new file mode 100755 index 000000000..2fc55d962 --- /dev/null +++ b/1754/CH5/EX5.5/Exa5_5.sce @@ -0,0 +1,10 @@ +//Exa 5.5
+clc;
+clear;
+close;
+//Given data :
+A=140;//gain without feedback(unitless)
+Af=17.5;//gain with feedback(unitless)
+//Formula : Af=A/(1+A*Beta)
+Beta=(A/Af-1)/A;//feedback ratio (unitless)
+disp("Fraction of output fed back to input : "+string(Beta)+" or 1/20");
\ No newline at end of file diff --git a/1754/CH5/EX5.6/Exa5_6.sce b/1754/CH5/EX5.6/Exa5_6.sce new file mode 100755 index 000000000..b1d0a56c8 --- /dev/null +++ b/1754/CH5/EX5.6/Exa5_6.sce @@ -0,0 +1,17 @@ +//Exa 5.6
+clc;
+clear;
+close;
+//Given data :
+A=200;//gain without feedback(unitless)
+Beta=0.25;//fraction ratio(unitless)
+disp("We have, Af=A/(1+Beta*A) eqn(1)");
+disp("Differentiating it with respect to A, we get");
+disp("dAf/dA=((1+Beta*A)-Beta*A)/(1+Beta*A)^2=1/(1+Beta*A)^2");
+disp("dAf=dA/(1+Beta*A)^2 eqn(2)");
+disp("Dividing eqn(2) by eqn(1),");
+disp("dAf/Af=(dA/((1+Beta*A)^2))*((1+Beta*A)/A)=(1/(1+Beta*A))*(dA/A)");
+//Given : Normal gain changes by 10 %, it means dA/A=10/100
+dABYA=10/100;//change in gain
+dAfBYAf=(1/(1+Beta*A))*(dABYA);//change in gain
+disp(dAfBYAf,"Change in gain : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.7/Exa5_7.sce b/1754/CH5/EX5.7/Exa5_7.sce new file mode 100755 index 000000000..7038aa61f --- /dev/null +++ b/1754/CH5/EX5.7/Exa5_7.sce @@ -0,0 +1,19 @@ +//Exa 5.7
+clc;
+clear;
+close;
+//Given data :
+A=200;//gain without feedback(unitless)
+Dn=10;//Distortion in %
+Vi=0.5;//Initial input voltage in volt
+Beta=0.05;//feedback ratio (unitless)
+//Formula : Af=A/(1+A*Beta)
+Af=A/(1+A*Beta);//gain with feedback(unitless)
+disp(Af,"New gain :");
+Dn_dash=Dn/(1+A*Beta);//new distortion in %
+disp(Dn_dash,"Distortion with negative feedback in % : ");
+InitialOutputVoltage=A*Vi;//in Volt
+disp(InitialOutputVoltage,"Initial Output Voltage in volt:");
+NewInputVoltage=InitialOutputVoltage/Af;//in volt
+disp(NewInputVoltage,"New Input Voltage in volts :");
+//Note :Ans of Af and NewInputVoltage is not acurate in the book.
\ No newline at end of file diff --git a/1754/CH5/EX5.8/Exa5_8.sce b/1754/CH5/EX5.8/Exa5_8.sce new file mode 100755 index 000000000..64807fd57 --- /dev/null +++ b/1754/CH5/EX5.8/Exa5_8.sce @@ -0,0 +1,27 @@ +//Exa 5.8
+clc;
+clear;
+close;
+//Given data :
+A=10000;//gain without feedback(unitless)
+Zi=10;//in kOhm
+Zo=100;//in Ohm
+R1=2;//in Ohm
+R2=18;//in Ohm
+//Part (i) :
+Beta=R1/(R1+R2);//feedback fraction(unitless)
+disp(Beta,"(i) Feedback Fraction :");
+//Part (ii) :
+Af=A/(1+A*Beta);//Gain with negative feedback(unitless)
+disp(round(Af),"(ii) Gain with negative feedback :");
+//Part (iii) :
+inputVoltge=0.5;//in mV
+outputVoltge=Af*inputVoltge;//in mV
+disp(round(outputVoltge),"(iii) Output Voltage in milli volts :");
+//Part (iv) :
+Zif=Zi*(1+Beta*A);//in kOhm
+disp(Zif*10^-3,"(iv) Input impedance of feedback amplifier in Mohm : ");
+//Part (v) :
+Zof=Zo/(1+Beta*A);//in kOhm
+format('v',4);
+disp(Zof,"(v) Output impedance with feedback in Ohm : ");
\ No newline at end of file diff --git a/1754/CH5/EX5.9/Exa5_9.sce b/1754/CH5/EX5.9/Exa5_9.sce new file mode 100755 index 000000000..859a3a7c0 --- /dev/null +++ b/1754/CH5/EX5.9/Exa5_9.sce @@ -0,0 +1,18 @@ +//Exa 5.9
+clc;
+clear;
+close;
+//Given data :
+A=200;//gain without feedback(unitless)
+Ri=2;//in kOhm
+Ro=12;//in kOhm
+Beta=0.02;//feedbak ratio(unitless)
+//Part (i) :
+Af=A/(1+A*Beta);//gain with feedback(unitless)
+disp(Af,"(i) Gain with Negative Feedback :");
+//Part (ii) :
+Rif=Ri*(1+A*Beta);//in kOhm
+disp(Rif,"(ii) Input resistance with feedback in kOhm :");
+//Part (ii) :
+Rof=Ro/(1+A*Beta);//in kOhm
+disp(Rof,"(ii) Output resistance with feedback in kOhm :");
\ No newline at end of file diff --git a/1754/CH6/EX6.1/Exa6_1.sce b/1754/CH6/EX6.1/Exa6_1.sce new file mode 100755 index 000000000..768ee2420 --- /dev/null +++ b/1754/CH6/EX6.1/Exa6_1.sce @@ -0,0 +1,13 @@ +//Exa 6.1
+clc;
+clear;
+close;
+//given data
+VGS1=-3.1;//in Volt
+VGS2=-3;//in Volt
+ID1=1;//in mA
+ID2=1.3;//in mA
+delVGS=VGS2-VGS1;//in Volts
+delID=ID2-ID1;//in mA
+gm=delID*10^-3/delVGS;//in mhos
+disp(gm,"Transconductance in mhos : ");
\ No newline at end of file diff --git a/1754/CH6/EX6.10/Exa6_10.sce b/1754/CH6/EX6.10/Exa6_10.sce new file mode 100755 index 000000000..4c22bbf74 --- /dev/null +++ b/1754/CH6/EX6.10/Exa6_10.sce @@ -0,0 +1,20 @@ +//Exa 6.10
+clc;
+clear;
+close;
+//given data
+VP=-6;//in Volt
+IDSS=8;//in mA
+disp("We have ID=IDSS*[1-VGS/VP]^2");
+disp("Mutual conductance, gm=(delID/delVGS)=IDSS*2*[1-VGS/VP]*(-1/VP)=(-2*IDSS/VP)*[1-VGS/VP]");
+//For VGS=0
+VGS=0;//in Volt
+IDSS=1:8;//in mA
+for i=1:8
+ gm(i)=-2*IDSS(i)/VP
+end
+title('gm versus IDSS');
+xlabel('gm(in mS)');
+ylabel('IDSS(in mA)');
+plot2d(gm,IDSS);
+disp("Clearly the plot of gm vs IDSS for VD=-6V, IDSS=8mA is a straight line of slope=-2/VP=-(2/-6)=1/3");
diff --git a/1754/CH6/EX6.11/Exa6_11.sce b/1754/CH6/EX6.11/Exa6_11.sce new file mode 100755 index 000000000..a69c3d293 --- /dev/null +++ b/1754/CH6/EX6.11/Exa6_11.sce @@ -0,0 +1,14 @@ +//Exa 6.11
+clc;
+clear;
+close;
+//given data
+L=1.25;//in um
+mu_n=0.065;//in m^2/V-s
+Cox=6.9*10^-4;//in F/m^2
+VT=0.65//in Volt
+ID_sat=4;//in mA
+VGS=5;//in Volt
+//Formula : ID_sat=W*mu_n*Cox*(VGS-VT)^2/(2*L)
+W=ID_sat*10^-3*2*L*10^-6/(mu_n*Cox*(VGS-VT)^2);//in meter
+disp(W*10^6,"Channel Width in micro meter :");
\ No newline at end of file diff --git a/1754/CH6/EX6.2/Exa6_2.sce b/1754/CH6/EX6.2/Exa6_2.sce new file mode 100755 index 000000000..763a50a6d --- /dev/null +++ b/1754/CH6/EX6.2/Exa6_2.sce @@ -0,0 +1,24 @@ +//Exa 6.2
+clc;
+clear;
+close;
+//given data
+VGS1=0;//in Volt
+VGS2=0;//in Volt
+VGS3=-0.2;//in Volt
+VDS1=7;//in Volt
+VDS2=15;//in Volt
+VDS3=15;//in Volt
+ID1=10;//in mA
+ID2=10.25;//in mA
+ID3=9.65;//in mA
+delVDS=VDS2-VDS1;//in Volts
+delID=ID2-ID1;//in mA
+rd=delVDS/delID;//in Kohm
+disp(rd,"AC drain resistance in Kohm : ");
+delVGS=VGS3-VGS2;//in Volts
+delID=ID3-ID2;//in mA
+gm=delID*10^-3/delVGS;//in mhos
+disp(gm,"Transconductance in mhos : ");
+mu=rd*10^3*gm;//unitless
+disp(mu,"Amplification factor : ");
diff --git a/1754/CH6/EX6.5/Exa6_5.sce b/1754/CH6/EX6.5/Exa6_5.sce new file mode 100755 index 000000000..0421f0f6c --- /dev/null +++ b/1754/CH6/EX6.5/Exa6_5.sce @@ -0,0 +1,10 @@ +//Exa 6.5
+clc;
+clear;
+close;
+//given data
+gm=2;//in milli-mho
+RL=10;//in Kohm
+disp("assuming rd>>RL");
+Av=gm*10^-3*RL*10^3;//unitless
+disp(Av,"Voltage amplification : ");
diff --git a/1754/CH6/EX6.6/Exa6_6.sce b/1754/CH6/EX6.6/Exa6_6.sce new file mode 100755 index 000000000..3a8b16a0d --- /dev/null +++ b/1754/CH6/EX6.6/Exa6_6.sce @@ -0,0 +1,19 @@ +//Exa 6.6
+clc;
+clear;
+close;
+//given data
+RL=20;//in Kohm
+RS=1;//in Kohm
+RG=1;//in Mohm
+Cs=25;//in uF
+mu=20;//unitless
+rd=100;//in Kohm
+Vs=2;//in Volt
+f=1;//in KHz
+Xc=1/(2*%pi*f*Cs);//in Ohm
+disp(Xc,"Xc in Ohm : ");
+disp("As Xc<<Rs, therefore Cs bypasses all ac components. ");
+Av=mu*RL/(rd+RL);//unitless
+Vo=Av*Vs;//in Volt
+disp(Vo,"Output voltage in volt : ");
diff --git a/1754/CH6/EX6.7/Exa6_7.sce b/1754/CH6/EX6.7/Exa6_7.sce new file mode 100755 index 000000000..273dbda8e --- /dev/null +++ b/1754/CH6/EX6.7/Exa6_7.sce @@ -0,0 +1,43 @@ +//Exa 6.7
+clc;
+clear;
+close;
+//given data
+R1=2.1;//in Mohm
+R2=270;//in Kohm
+RD=4.7;//in Kohm
+RS=1.5;//in Kohm
+VDD=20;//in Volt
+VP=-4;//in Volt
+IDSS=8;//in mA
+//step 1 : Find VGS :
+VG=R2*10^3*VDD/(R1*10^6+R2*10^3);//in Volt
+disp("VS=ID*RS-VGS Volt");
+disp("VGS=VG-VS=2.28-1.5*ID")
+//step 2 : Find ID :
+disp("ID=IDSS*[1-VGS/VP]^2 mA");
+disp("ID=8*[1-(2.28-1.5*ID)/4]^2 mA");
+disp("2*ID=39.44-18.84*ID+2.25*ID^2");
+disp("2.25*ID^2-20.84*ID39.44=0")
+disp("ID=6.6mA or 2.65mA");
+disp("For ID =6.6mA VDS=-ve");
+disp("So discard the value so IDQ = 2.65mA.");
+ID=2.65;//in mA
+//step 3 : Find VGSQ :
+IDQ=ID;//in mA
+VGS=2.28;//in Volt
+VGSQ=VGS-1.5*IDQ;///in Volt
+//step 4 : Find VDSQ :
+VDSQ=VDD-IDQ*(RD+RS);//in Volt
+//step 5 : Find VD,VS and VDG :
+VDS=VDSQ;//in Volt
+VG=VGS;//in Volt
+VS=ID*RS;//in Volt
+VD=VS+VDS'//in Volt
+VDG=VD-VG;//in Volt
+disp(IDQ,"IDQ in mA : ");
+disp(VGSQ,"VGSQ in Volt :");
+disp(VD,"VD in Volt :");
+disp(VS,"VS in Volt :");
+disp(VDS,"VDS in Volt :");
+disp(VDG,"VDG in Volt :");
diff --git a/1754/CH6/EX6.8/Exa6_8.sce b/1754/CH6/EX6.8/Exa6_8.sce new file mode 100755 index 000000000..8630173dc --- /dev/null +++ b/1754/CH6/EX6.8/Exa6_8.sce @@ -0,0 +1,14 @@ +//Exa 6.8
+clc;
+clear;
+close;
+//given data
+a=5.6*10^-6/2;//in meter
+k=12;//unitless
+epsilon_o=8.86*10^-12;//in F/m
+epsilon=k*epsilon_o;//in F/m
+ND=10^15;//in cm^-3
+ND=10^15*10^6;//in m^-3
+e=1.6*10^-19;//in Coulamb
+VP=e*ND*a^2/(2*epsilon);//in Volt
+disp(VP,"Pinch off voltage in volts : ");
\ No newline at end of file diff --git a/1754/CH7/EX7.1/Exa7_1.sce b/1754/CH7/EX7.1/Exa7_1.sce new file mode 100755 index 000000000..943accba7 --- /dev/null +++ b/1754/CH7/EX7.1/Exa7_1.sce @@ -0,0 +1,9 @@ +//Exa 7.1
+clc;
+clear;
+close;
+//Given data
+Bo=1.7*10^-5;//in weber/m^2
+meu_o=4*%pi*10^-7;//permeability of free space in weber/amp-meter
+H=Bo/meu_o;//in A/m
+disp(H,"Horizontal component of magnetic filed intensity in A/m : ");
\ No newline at end of file diff --git a/1754/CH7/EX7.2/Exa7_2.sce b/1754/CH7/EX7.2/Exa7_2.sce new file mode 100755 index 000000000..b805ea5a0 --- /dev/null +++ b/1754/CH7/EX7.2/Exa7_2.sce @@ -0,0 +1,13 @@ +//Exa 7.2
+clc;
+clear;
+close;
+//Given data
+H=5*10^3;//in Ampere-turns/m
+l=10;//in cm
+l=l*10^-2;//in meter
+N=50;//no. of turns
+n=N/l;//no. of turns per unit length
+//Formula : H=n*i
+i=H/n;//in Ampere
+disp(i,"Current should be sent through solenoid in Ampere : ");
\ No newline at end of file diff --git a/1754/CH7/EX7.3/Exa7_3.sce b/1754/CH7/EX7.3/Exa7_3.sce new file mode 100755 index 000000000..412e947d6 --- /dev/null +++ b/1754/CH7/EX7.3/Exa7_3.sce @@ -0,0 +1,13 @@ +//Exa 7.3
+clc;
+clear;
+close;
+//Given data
+meu_r=1000;//relative permeability
+n=5;//turns/cm
+n=n*10^2;//turns/meter
+i=0.5;//in Ampere
+Volume=10^-4;//in m^3
+I=(meu_r-1)*n*i;//in Ampere
+MagneticMoment=I*Volume;//in Ameter^2
+disp(round(MagneticMoment),"Magnetic moment of the rod in Ampere-meter^2 : ");
\ No newline at end of file diff --git a/1754/CH7/EX7.4/Exa7_4.sce b/1754/CH7/EX7.4/Exa7_4.sce new file mode 100755 index 000000000..3a7a8d696 --- /dev/null +++ b/1754/CH7/EX7.4/Exa7_4.sce @@ -0,0 +1,22 @@ +//Exa 7.4
+clc;
+clear;
+close;
+//Given data
+l=30;//in cm
+l=l*10^-2;//in meter
+A=1;//in cm^2
+A=A*10^-4;//in meter^2
+N=300;//turns of wire
+i=0.032;//in Ampere
+FI_B=2*10^-6;//in weber
+meu_o=4*%pi*10^-7;//permeability of free space in weber/amp-meter
+B=FI_B/A;//in weber/meter^2
+disp(B,"Flux Density in weber/meter^2 : ");
+H=N*i/l;//in amp-turn/meter
+disp(H,"magnetic Intensity in amp-turn/meter : ");
+meu=B/H;//in weber/Amp-meter
+disp(meu,"Permeability in weber/amp-meter :");
+meu_r=meu/meu_o;//Relative Permeability
+disp(meu_r,"Relative Permeability : ");
+//Answer of relative permeability is wrong in the book.
\ No newline at end of file diff --git a/1754/CH7/EX7.5/Exa7_5.sce b/1754/CH7/EX7.5/Exa7_5.sce new file mode 100755 index 000000000..815dfaf21 --- /dev/null +++ b/1754/CH7/EX7.5/Exa7_5.sce @@ -0,0 +1,10 @@ +//Exa 7.5
+clc;
+clear;
+close;
+//Given data
+format('v',15);
+Xci_m=9.48*10^-9;//usceptibility of medium(unitless)
+meu_r=1+Xci_m;//relative permeability(unitless)
+disp(meu_r,"Relative Permeability : ");
+disp("i.e, Relative Permeability is sligtly greater than 1.");
\ No newline at end of file diff --git a/1754/CH7/EX7.6/Exa7_6.sce b/1754/CH7/EX7.6/Exa7_6.sce new file mode 100755 index 000000000..0b9336e35 --- /dev/null +++ b/1754/CH7/EX7.6/Exa7_6.sce @@ -0,0 +1,17 @@ +//Exa 7.6
+clc;
+clear;
+close;
+//Given data
+n=10;//turns/cm
+n=n*10^2;//turns/meter
+i=2;//in Ampere
+B=1;//in weber/meter^2
+meu_o=4*%pi*10^-7;//permeability of free space in weber/amp-meter
+H=n*i;//in amp-turn/meter
+disp(H,"Magnetising Force in amp-turn/meter : ");0
+//Formula : B=meu_o*(H+I)
+I=B/meu_o-H;//in amp-turn/meter
+disp(I,"Magnetisation of material in amp-turn/meter :");
+meu_r=B/(meu_o*H);//relative permeability(unitless)
+disp(meu_r,"Relative Permeability : ");
\ No newline at end of file diff --git a/1754/CH8/EX8.1/Exa8_1.sce b/1754/CH8/EX8.1/Exa8_1.sce new file mode 100755 index 000000000..881a0dc6c --- /dev/null +++ b/1754/CH8/EX8.1/Exa8_1.sce @@ -0,0 +1,9 @@ +//Exa 8.1
+clc;
+clear;
+close;
+//Given data
+A=50;//unitless
+disp("Barkhausen criterion for oscillator : Beta*A=1");
+Beta=1/A;//unitless
+disp(Beta,"Feedback Factor to make oscillator : ");
diff --git a/1754/CH8/EX8.10/Exa8_10.sce b/1754/CH8/EX8.10/Exa8_10.sce new file mode 100755 index 000000000..7d1535ca5 --- /dev/null +++ b/1754/CH8/EX8.10/Exa8_10.sce @@ -0,0 +1,13 @@ +//Exa 8.10
+clc;
+clear;
+close;
+//Given data :
+L=0.5;//in H
+C=0.05;//in pF
+R=1;//in kohm
+Cm=1;//in pF
+fs=1/(2*%pi*sqrt(L*C*10^-12));//in Hz
+disp(fs/10^6,"Series resonant frequency in MHz :");
+fp=1/(2*%pi*sqrt((L*C*10^-12*Cm*10^-12)/(C*10^-12+Cm*10^-12)));//in Hz
+disp(fp/10^6,"Parallel resonant frequency in MHz :");
\ No newline at end of file diff --git a/1754/CH8/EX8.2/Exa8_2.sce b/1754/CH8/EX8.2/Exa8_2.sce new file mode 100755 index 000000000..268c4e001 --- /dev/null +++ b/1754/CH8/EX8.2/Exa8_2.sce @@ -0,0 +1,16 @@ +//Exa 8.2
+clc;
+clear;
+close;
+//Given data
+format('v',5);
+L=100;//in uH
+L=L*10^-6;//in H
+f1=500;//in kHz
+f1=f1*10^3;//in Hz
+f2=1500;//in kHz
+f2=f2*10^3;//in Hz
+//Formula : f=1/(2*%pi*sqrt(L*C))
+C1=1/(4*%pi^2*f1^2*L);//in F
+C2=1/(4*%pi^2*f2^2*L);//in F
+disp("Range of capacitor : "+string(C2*10^12)+" pF to "+string(C1*10^12)+" pF");
\ No newline at end of file diff --git a/1754/CH8/EX8.3/Exa8_3.sce b/1754/CH8/EX8.3/Exa8_3.sce new file mode 100755 index 000000000..9b4e71a94 --- /dev/null +++ b/1754/CH8/EX8.3/Exa8_3.sce @@ -0,0 +1,18 @@ +//Exa 8.3
+clc;
+clear;
+close;
+//Given data
+format('v',9);
+L=100;//in mH
+L=L*10^-3;//in H
+C1=0.1;//in uF
+C1=C1*10^-6;//in F
+f=100;//in kHz
+f=f*10^3;//in Hz
+//Formula : f=1/(2*%pi*sqrt(L*C))
+C=1/(4*%pi^2*f^2*L);//in F
+//Formula : C=C1*C2/(C1+C2)
+C2=C*C1/(C1-C);
+disp(C2,"C2 in micro farad : ");
+//Note : Answer in the book is wrong.
\ No newline at end of file diff --git a/1754/CH8/EX8.4/Exa8_4.sce b/1754/CH8/EX8.4/Exa8_4.sce new file mode 100755 index 000000000..f79c550d6 --- /dev/null +++ b/1754/CH8/EX8.4/Exa8_4.sce @@ -0,0 +1,12 @@ +//Exa 8.4
+clc;
+clear;
+close;
+//Given data
+R=100;//in kOhm
+R=R*10^3;//in Ohm
+C=0.01;//in uF
+C=C*10^-6;//in F
+fo=sqrt(6)/(2*%pi*R*C);//in Hz
+disp(fo,"Frequency of oscillation in Hz : ");
+//Note : Answer in the book is not accurate.
\ No newline at end of file diff --git a/1754/CH8/EX8.5/Exa8_5.sce b/1754/CH8/EX8.5/Exa8_5.sce new file mode 100755 index 000000000..77a686728 --- /dev/null +++ b/1754/CH8/EX8.5/Exa8_5.sce @@ -0,0 +1,12 @@ +//Exa 8.5
+clc;
+clear;
+close;
+//Given data
+disp("Put alfa=sqrt(6) to find the gain");
+alfa=sqrt(6);//unitless
+Beta=1/(1-5*alfa^2);
+//Barkhausen critera : A*|Beta|>=1
+Beta=-Beta;//
+A=1/Beta;//unitless
+disp(A,"Minimum Gain of Amplifier must be : ");
diff --git a/1754/CH8/EX8.6/Exa8_6.sce b/1754/CH8/EX8.6/Exa8_6.sce new file mode 100755 index 000000000..8d06778d6 --- /dev/null +++ b/1754/CH8/EX8.6/Exa8_6.sce @@ -0,0 +1,20 @@ +//Exa 8.6
+clc;
+clear;
+close;
+//Given data :
+R1=50;//in kohm
+R1=R1*10^3;//in ohm
+C1=0.001;//in uF
+C1=C1*10^-6;//in F
+R2=1;//in kohm
+R2=R2*10^3;//in ohm
+C2=0.01;//in uF
+C2=C2*10^-6;//in F
+//Part (i)
+//Formula : f=1/(2*%pi*sqrt(C1*C2*R1*R2))
+f=1/(2*%pi*sqrt(C1*C2*R1*R2));//in Hz
+disp(f/1000,"Frequency of oscillations in kHz : ");
+//Part (ii)
+CurrentGain=1+C2/C1+R1/R2;//unitless
+disp(CurrentGain,"Current Gain : ");
\ No newline at end of file diff --git a/1754/CH8/EX8.7/Exa8_7.sce b/1754/CH8/EX8.7/Exa8_7.sce new file mode 100755 index 000000000..85f082a58 --- /dev/null +++ b/1754/CH8/EX8.7/Exa8_7.sce @@ -0,0 +1,13 @@ +//Exa 8.7
+clc;
+clear;
+close;
+//Given data :
+fmin=20;//in Hz
+fmax=20;//in kHz
+Cmin=30;//in pF
+Cmax=300;//in pF
+//Formula : fo=1/(2*%pi*R*C))
+disp("Minimum Fequeny correspond to maximum capacitance.")
+R=1/(2*%pi*fmin*Cmax*10^-12)
+disp(R/10^6,"Required resistance in Mohm : ");
\ No newline at end of file diff --git a/1754/CH8/EX8.8/Exa8_8.sce b/1754/CH8/EX8.8/Exa8_8.sce new file mode 100755 index 000000000..fb69fe684 --- /dev/null +++ b/1754/CH8/EX8.8/Exa8_8.sce @@ -0,0 +1,13 @@ +//Exa 8.8
+clc;
+clear;
+close;
+//Given data :
+f=500;//in kHz
+T1=50;//in degree C
+T2=60;//in degree C
+TC=-20;//in ppm/degree C
+ChangeInFreq=TC*(f*10^-3)*(T1-T2);//in Hz
+ResonantFreq=f*1000-ChangeInFreq;//in Hz
+disp(ResonantFreq/1000,"Resonant frequency in kHz : ");
+//Note : answer in the book is wrong.
\ No newline at end of file diff --git a/1754/CH8/EX8.9/Exa8_9.sce b/1754/CH8/EX8.9/Exa8_9.sce new file mode 100755 index 000000000..c23348416 --- /dev/null +++ b/1754/CH8/EX8.9/Exa8_9.sce @@ -0,0 +1,14 @@ +//Exa 8.9
+clc;
+clear;
+close;
+//Given data :
+f=450;//in kHz
+T1=30;//in degree C
+T2=50;//in degree C
+TC=-10;//in ppm/degree C
+PercentChange=-TC*100/10^6;//in %
+TotalChangeInFreq=(PercentChange/100)*(f*10^3)*(T2-T1);//in Hz
+ResonantFreq=f*1000-TotalChangeInFreq;//in Hz
+disp(ResonantFreq/1000,"Resonant frequency in kHz : ");
+//Note : answer in the book is wrong.
\ No newline at end of file diff --git a/1754/CH8/EX8.m.1/ExaMisc8_1.sce b/1754/CH8/EX8.m.1/ExaMisc8_1.sce new file mode 100755 index 000000000..2e9e7b4a0 --- /dev/null +++ b/1754/CH8/EX8.m.1/ExaMisc8_1.sce @@ -0,0 +1,11 @@ +//Exa Misc 8.1
+clc;
+clear;
+close;
+//given data
+format('v',5);
+L2=0.4;//in mH
+C=0.004;//in µF
+f=120;//in KHz
+L1=1/(4*%pi^2*(f*10^3)^2*C*10^-6)-L2*10^-3;//in H
+disp(L1*10^3,"Value of L1(in mH) :");
diff --git a/1754/CH8/EX8.m.2/ExaMisc8_2.sce b/1754/CH8/EX8.m.2/ExaMisc8_2.sce new file mode 100755 index 000000000..c94814bdb --- /dev/null +++ b/1754/CH8/EX8.m.2/ExaMisc8_2.sce @@ -0,0 +1,16 @@ +//Exa Misc 8.2
+clc;
+clear;
+close;
+//given data
+format('v',6);
+fo=10;//in KHz
+R1=25;//in kohm
+R2=60;//in kohm
+Rc=40;//in kohm
+R=7.1;//in kohm
+hie=1.8;//in kohm
+C=1/(2*%pi*fo*10^3*R*10^3*sqrt(6+4*Rc/R));//in F
+disp(C*10^9,"Value of Capacitor(in nF) :");
+hfe=23+29*R/Rc+4*Rc/R;//unitless
+disp("Value of hfe is ≥ "+string(hfe));
diff --git a/1754/CH8/EX8.m.3/ExaMisc8_3.sce b/1754/CH8/EX8.m.3/ExaMisc8_3.sce new file mode 100755 index 000000000..d53e89d07 --- /dev/null +++ b/1754/CH8/EX8.m.3/ExaMisc8_3.sce @@ -0,0 +1,10 @@ +//Exa Misc 8.3
+clc;
+clear;
+close;
+//given data
+format('v',5);
+R=100;//in kohm
+fo=10;//in KHz
+C=1/(2*%pi*fo*10^3*R*10^3);//in F
+disp(C*10^12,"Value of Capacitor(in pF) :");
diff --git a/1754/CH8/EX8.m.4/ExaMisc8_4.sce b/1754/CH8/EX8.m.4/ExaMisc8_4.sce new file mode 100755 index 000000000..1deb6466e --- /dev/null +++ b/1754/CH8/EX8.m.4/ExaMisc8_4.sce @@ -0,0 +1,22 @@ +//Exa Misc 8.4
+clc;
+clear;
+close;
+//given data
+format('v',5);
+L=40;//in mH
+C1=100;//in pF
+C2=500;//in pF
+Vout=10;//in volt
+fo=1/(2*%pi*sqrt(L*10^-3*C1*10^-12*C2*10^-12/(C1*10^-12+C2*10^-12)))
+disp(fo*10^-3,"Frequency of oscillation (in KHz) :");
+Vf=Vout*C1/C2;//in volt
+disp(Vf,"Feedback voltage in volt :");
+Gain=C2/C1;//unitless
+disp(Gain,"Minimum Gain is ");
+//if Gain=10
+Gain=10;//given
+C1=C2/Gain;//in pF
+disp(C1,"For a gain of 10 C1 in pF is :");
+fo=1/(2*%pi*sqrt(L*10^-3*C1*10^-12*C2*10^-12/(C1*10^-12+C2*10^-12)))
+disp(fo*10^-3,"New frequency of oscillation (in KHz) :");
diff --git a/1754/CH8/EX8.m.5/ExaMisc8_5.sce b/1754/CH8/EX8.m.5/ExaMisc8_5.sce new file mode 100755 index 000000000..37f513a03 --- /dev/null +++ b/1754/CH8/EX8.m.5/ExaMisc8_5.sce @@ -0,0 +1,18 @@ +//Exa Misc 8.5
+clc;
+clear;
+close;
+//given data
+format('v',6);
+L=0.5;//in H
+Cs=0.06;//in pF
+Cp=1;//in pF
+R=5;//in Kohm
+fs=1/(2*%pi*sqrt(L*Cs*10^-12));//in Hz
+Q=2*%pi*fs*L/(R*10^3);//Q-factor
+disp(fs/10^3,"Seies resonance frequency(in KHz)")
+disp(round(Q),"Q-factor f the crystal at fs is ");
+fp=(1/(2*%pi))*sqrt((Cs*10^-12+Cp*10^-12)/(L*Cs*10^-12*Cp*10^-12));//in Hz
+Q=2*%pi*fp*L/(R*10^3);//Q-factor
+disp(fp/10^3,"Seies resonance frequency(in KHz)")
+disp(round(Q),"Q-factor f the crystal at fs is ");
diff --git a/1754/CH9/EX9.1/Exa9_1.sce b/1754/CH9/EX9.1/Exa9_1.sce new file mode 100755 index 000000000..aa6acfa99 --- /dev/null +++ b/1754/CH9/EX9.1/Exa9_1.sce @@ -0,0 +1,14 @@ +//Exa 9.1
+clc;
+clear;
+close;
+//Given data :
+VBB=20;//in volt
+VB=0.7;//in volt(For Si)
+ETA=0.6;//intrinsic stand off ratio
+//Part (i)
+StandOffVoltage=ETA*VBB;//in volt
+disp(StandOffVoltage,"Stand Off Voltage in volts :");
+//Part (ii)
+VP=ETA*VBB+VB;//in volts
+disp(VP,"Peak point Voltage in volts : ");
\ No newline at end of file diff --git a/1754/CH9/EX9.2/Exa9_2.sce b/1754/CH9/EX9.2/Exa9_2.sce new file mode 100755 index 000000000..4da62e972 --- /dev/null +++ b/1754/CH9/EX9.2/Exa9_2.sce @@ -0,0 +1,12 @@ +//Exa 9.2
+clc;
+clear;
+close;
+//Given data :
+VP=10;//in volt
+R=100;//in Kohm
+C=1000;//in pF
+VBB=20;//in Volts
+ETA=VP/VBB;//intrinsic stand off ratio
+T=R*10^3*C*10^-12*log(1/(1-ETA));//in sec
+disp(T*10^6,"Time period of sawtooth wave in miro seconds : ")
\ No newline at end of file diff --git a/1754/CH9/EX9.3/Exa9_3.sce b/1754/CH9/EX9.3/Exa9_3.sce new file mode 100755 index 000000000..a9f7856ce --- /dev/null +++ b/1754/CH9/EX9.3/Exa9_3.sce @@ -0,0 +1,11 @@ +//Exa 9.3
+clc;
+clear;
+close;
+//Given data :
+RBB=10;//in Kohm
+ETA=0.6;//intrinsic stand off ratio
+RB1=ETA*RBB;//in Kohm
+RB2=RBB-RB1;//in Kohm
+disp(RB1,"Resistance RB1 in Kohm :");
+disp(RB2,"Resistance RB2 in Kohm :");
\ No newline at end of file |