diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1752/CH6 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1752/CH6')
-rwxr-xr-x | 1752/CH6/EX6.1/exa6_1.sce | 40 | ||||
-rwxr-xr-x | 1752/CH6/EX6.2/exa6_2.sce | 25 | ||||
-rwxr-xr-x | 1752/CH6/EX6.3/exa6_3.sce | 22 | ||||
-rwxr-xr-x | 1752/CH6/EX6.4/exa6_4.sce | 39 | ||||
-rwxr-xr-x | 1752/CH6/EX6.5/exa6_5.sce | 68 | ||||
-rwxr-xr-x | 1752/CH6/EX6.6/exa6_6.sce | 36 | ||||
-rwxr-xr-x | 1752/CH6/EX6.7/exa6_7.sce | 24 | ||||
-rwxr-xr-x | 1752/CH6/EX6.8/exa6_8.sce | 26 | ||||
-rwxr-xr-x | 1752/CH6/EX6.9/exa6_9.sce | 38 |
9 files changed, 318 insertions, 0 deletions
diff --git a/1752/CH6/EX6.1/exa6_1.sce b/1752/CH6/EX6.1/exa6_1.sce new file mode 100755 index 000000000..0fedb3c11 --- /dev/null +++ b/1752/CH6/EX6.1/exa6_1.sce @@ -0,0 +1,40 @@ +//Exa 6.1
+clc;
+clear;
+close;
+//given data
+// (i) when
+x=.3;// in m
+T_s=100;// in degree C
+T_infinite=30;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Bita=1/T_f;
+// Other fluid properties at film temperature
+Pr=0.703;
+K=0.0301;// in W/mK
+T=1.8*10^-5 ;// in m^2/s
+g=9.81;
+del_T=T_s-T_infinite;
+Gr=(g*Bita*del_T*x^3)/T^2;
+Ra=Gr*Pr;
+disp("Rayleigh Number is : "+string(Ra));
+//Since Ra<10^9, hence flow is laminar, then correlation for vertical plate in laminar flow
+// Formula Nu=0.59*Ra^(1/4)=h*x/K
+h=0.59*Ra^(1/4)*K/x;// in W/m^2K
+A=2*.3*.5;
+q1=h*A*(T_s-T_infinite);
+disp("Heat transfer rate from the plate, when the vertical height is 0.3 m : "+string(q1)+" W");
+
+//(ii) when
+x=0.5;// in m
+Gr=(g*Bita*del_T*x^3)/T^2;
+Ra=Gr*Pr;
+// Formula Nu=0.59*Ra^(1/4)=h*x/K
+h=0.59*Ra^(1/4)*K/x;// in W/m^2K
+q2=h*A*(T_s-T_infinite);
+disp("Heat transfer rate from the plate, when the vertical height is 0.5 m : "+string(q2)+" W");
+PercentageDecrease=(q1-q2)/q1*100;
+disp("Percentage decreases in heat transfer rate when x=0.5 m as compared to when x=0.3 m is : "+string(PercentageDecrease)+" %")
+
+//Note : In the book ,In part (b), calculation of getting the value of h is wrong
\ No newline at end of file diff --git a/1752/CH6/EX6.2/exa6_2.sce b/1752/CH6/EX6.2/exa6_2.sce new file mode 100755 index 000000000..ecf9a93ed --- /dev/null +++ b/1752/CH6/EX6.2/exa6_2.sce @@ -0,0 +1,25 @@ +//Exa 6.2
+clc;
+clear;
+close;
+//given data
+Pr=0.694;
+K=0.0296;// in W/mK
+rho=1.029;// in kg/m^3
+miu=20.6*10^-6;// in poise
+x=.2;// in m
+T_s=110;// in degree C
+T_infinite=30;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Bita=1/T_f;
+g=9.81;
+del_T=T_s-T_infinite;
+Gr=(rho^2*g*Bita*del_T*x^3)/miu^2;
+Ra=Gr*Pr;
+//since Rayleigh number is less than 10^10, hence
+Nu=0.68*Pr^(1/2)*Gr^(1/4)/((.952+Pr)^(1/4));
+h=Nu*K/x;
+A=2*0.2*1;
+q=h*A*(T_s-T_infinite);
+disp("Heat transfer rate is : "+string(q)+" W");
diff --git a/1752/CH6/EX6.3/exa6_3.sce b/1752/CH6/EX6.3/exa6_3.sce new file mode 100755 index 000000000..36bd4a513 --- /dev/null +++ b/1752/CH6/EX6.3/exa6_3.sce @@ -0,0 +1,22 @@ +//Exa 6.3
+clc;
+clear;
+close;
+//given data
+d=7.5*10^-2;// in m
+x=2;// in m
+T_s=70;// in degree C
+T_infinite=10;// in degree C
+del_T=T_s-T_infinite;
+g=9.81;
+calculation=4.5*10^10; // value of g*Bita*rho^2*C_p/(miu*k)
+K=2.75*10^-2;// in W/mK
+// g*Bita*rho^2*C_p/(miu*k) = g*Bita*rho^2/miu^2 * miu*C_p/k = (g*Bita*del_T*x^3/T^2 * miu*C_p/k)/(del_T*x^3)
+GrxPr= calculation*del_T*x^3; // value of Gr*Pr
+Nu= 0.13*(GrxPr)^(1/3);
+// Formula Nu = h*x/k
+h= Nu*K/x;// in W/m^2K
+A=2*%pi*d;
+q=h*A*(del_T);// in W
+q=q*60*60;// in J/h
+disp("Heat transfer rate is : "+string(q)+" J/h");
diff --git a/1752/CH6/EX6.4/exa6_4.sce b/1752/CH6/EX6.4/exa6_4.sce new file mode 100755 index 000000000..2a7ae49da --- /dev/null +++ b/1752/CH6/EX6.4/exa6_4.sce @@ -0,0 +1,39 @@ +//Exa 6.4
+clc;
+clear;
+close;
+//given data
+m=15;// in kg
+C_p=420;// in J/kg K
+T_s=200;// in degree C
+T_infinite=30;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Pr=0.688;
+K=0.0321;// in W/mK
+delta=23.18*10^-6;// in m^2/s
+Bita=1/T_f;
+g=9.81;
+x=0.3;// in m
+del_T=T_s-T_infinite;
+Gr=(g*Bita*del_T*x^3)/delta^2;
+Ra=Gr*Pr;
+//Since Ra<10^9, hence it is laminar flow using the relation
+// Formula Nu=0.59*Ra^(1/4)=h*x/K
+h=0.59*Ra^(1/4)*K/x;// in W/m^2K
+disp("(i) Heat transfer coefficient is : "+string(h)+" W/m^2K")
+
+// (b) Initial rate of cooling
+// Formula h*A*(T_s-T_infinite) = m*C_p*dt_by_toh
+A=2*0.3*0.5;
+dt_by_toh = h*A*(T_s-T_infinite)/(m*C_p);// in degree C/sec
+dt_by_toh=dt_by_toh*60;// in degree C /min
+disp("(ii) Initial rate of cooling of the plate is : "+string(dt_by_toh)+" degreeC /min");
+
+//(c) Time taken by plate to cool from 200 degree C to 50 degree C
+T_i=200;// in degree C
+T=50;// in degree C
+// Formula (T-T_infinite)/(T_i-T_infinite)= %e^(-h*A*toh/(m*C_p));
+toh= -log((T-T_infinite)/(T_i-T_infinite))*m*C_p/(h*A);// in sec
+toh=toh/60;// in min
+disp("(iii) Time required to cool plate from 200 degree C to 50 degree C is : "+string(toh)+" minutes");
\ No newline at end of file diff --git a/1752/CH6/EX6.5/exa6_5.sce b/1752/CH6/EX6.5/exa6_5.sce new file mode 100755 index 000000000..f4b0853f7 --- /dev/null +++ b/1752/CH6/EX6.5/exa6_5.sce @@ -0,0 +1,68 @@ +//Exa 6.5
+clc;
+clear;
+close;
+//given data
+rho=0.8;// in kg/m^3;
+C_p=1.01;// in KJ/kg K
+Pr=0.684;
+d=15*10^-2;// diameter in meter
+K=0.035;// in W/mK
+delta=2.78*10^-5;// in m^2/s
+g=9.81;
+x=2;// in m
+T_s=250;// in degree C
+T_infinite=30;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Bita=1/T_f;
+del_T=T_s-T_infinite;
+disp("Heat Transfer (loss) from plate= heat loss from vertical part + heat transfer from horizontal part by convection + heat transfer by radiation ")
+
+//Heat loss from vertical part by free convection
+
+Gr=(g*Bita*del_T*x^3)/delta^2;
+Ra=Gr*Pr;
+//Since Ra>10^9, hence turbulent flow
+// Formula Nu= h*x/K =0.13*Ra^(1/3)
+h=0.13*Ra^(1/3)*K/x;// in W/m^2K
+A=2*%pi*d;
+q1=h*A*del_T;// w
+q1=q1*10^-3;// in kW
+disp("Heat loss from vertical part is : "+string(q1)+" kW")
+
+//Heat loss for Horizontal part
+// here
+x=d;
+Gr=(g*Bita*del_T*x^3)/delta^2;
+Ra=Gr*Pr;
+//Since Ra<10^9, hence laminar fluid flow
+// Formula Nu= h*x/K =0.53*Ra^(1/4)
+h=0.53*Ra^(1/4)*K/x;// in W/m^2K
+A=%pi*d*8;
+q2=h*A*del_T;// w
+q2=q2*10^-3;// in kW
+disp("Heat loss for horizontal part is : "+string(q2)+" kW")
+
+//Heat loss by radiation
+sigma=5.67*10^-8;
+epsilon=0.65;// emissivity of steel
+A=%pi*d*10;
+T_s=T_s+273;// in K
+T_infinite=T_infinite+273;// in K
+q3=sigma*A*epsilon*(T_s^4-T_infinite^4);// in w
+q3=q3*10^-3;// in kW
+disp("Heat loss by radiation is : "+string(q3)+" kW")
+
+//Total heat loss
+theta=q1+q2+q3;
+disp("Total heat loss is : "+string(theta)+" kW");
+
+
+//Note : value of q3 and theta in the book is wrong so answer in the book is wrong
+
+
+
+
+
+
diff --git a/1752/CH6/EX6.6/exa6_6.sce b/1752/CH6/EX6.6/exa6_6.sce new file mode 100755 index 000000000..806fd210b --- /dev/null +++ b/1752/CH6/EX6.6/exa6_6.sce @@ -0,0 +1,36 @@ +//Exa 6.6
+clc;
+clear;
+close;
+//given data
+rho=1.205;// in kg/m^3;
+C_p=1006;// in J/kg K
+Pr=0.71;
+K=0.0256;// in W/mK
+delta=1.506*10^-5;// in m^2/s
+T_s=35;// in degree C
+T_infinite=5;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Bita=1/T_f;
+del_T=T_s-T_infinite;
+g=9.81;
+// Formula 1/x= 1/Lh + 1/Lv
+Lh=50;// in cm
+Lv=50;// in cm
+x=Lh*Lv/(Lh+Lv);// in cm
+x=x*10^-2;// in m
+
+// Formula Gr=(g*Bita*del_T*x^3)/delta^2;
+Gr=(g*Bita*del_T*x^3)/delta^2;
+Ra=Gr*Pr;
+// Formula Nu= h*x/K =0.53*Ra^(1/4)
+h=0.53*Ra^(1/4)*K/x;// in W/m^2K
+A=2*(0.5+0.5);
+q=h*A*del_T;// w
+disp("Heat loss per meter length of pipe is : "+string(q)+" watt")
+
+// Note: In the book, value of h is wrong due to place miss value of x, so the answer in the book is wrong
+
+
+
diff --git a/1752/CH6/EX6.7/exa6_7.sce b/1752/CH6/EX6.7/exa6_7.sce new file mode 100755 index 000000000..c7130ca23 --- /dev/null +++ b/1752/CH6/EX6.7/exa6_7.sce @@ -0,0 +1,24 @@ +//Exa 6.7
+clc;
+clear;
+close;
+//given data
+L=3;// in m
+delta=0;
+hx='10*x^(-1/4)'
+// (a) Average heat transfer coefficient
+h=1/L*integrate(hx,'x',delta,L);
+disp("(a) Average heat transfer coefficient is : "+string(h)+" W/m^2K")
+
+// (b) Heat transfer rate
+A=3*.3;// in m^2
+Tp=170;// plate temp. in degree C
+Tg=30;// gas temp. in degree C
+del_T=Tp-Tg;
+q=h*A*del_T;// in W
+disp("(b) Heat transfer rate is : "+string(q)+" W")
+
+// (c)
+x=2;// in m
+qx_by_A= 10*x^(-1/4)*(Tp-Tg);
+disp("Local heat flux 2 m from the leading edge is : "+string(qx_by_A)+" W/m^2");
diff --git a/1752/CH6/EX6.8/exa6_8.sce b/1752/CH6/EX6.8/exa6_8.sce new file mode 100755 index 000000000..a4c6782ec --- /dev/null +++ b/1752/CH6/EX6.8/exa6_8.sce @@ -0,0 +1,26 @@ +//Exa 6.8
+clc;
+clear;
+close;
+//given data
+Pr=0.712;
+K=0.026;// in W/mK
+delta=1.57*10^-5;// in m^2/s
+T_s=320;// in K
+T_infinite=280;// in K
+del_T=T_s-T_infinite;
+T_f=(T_s+T_infinite)/2;// in K
+Bita=1/T_f;
+d1=20;// in cm
+d2=30;// in cm
+x=(d2-d1)/2;// in cm
+x=x*10^-2;// in m
+g=9.81;
+Gr=(g*Bita*del_T*x^3)/delta^2;
+Ra=Gr*Pr;
+
+// Formula Nu= h*x/K =0.228*Ra^(0.226)
+h=0.228*Ra^(0.226)*K/x;// in W/m^2K
+A=%pi*(d1*10^-2)^2;
+q=h*A*del_T;// w
+disp("Heat transfer rate is : "+string(q)+" watt");
diff --git a/1752/CH6/EX6.9/exa6_9.sce b/1752/CH6/EX6.9/exa6_9.sce new file mode 100755 index 000000000..6bdae90ce --- /dev/null +++ b/1752/CH6/EX6.9/exa6_9.sce @@ -0,0 +1,38 @@ +//Exa 6.9
+clc;
+clear;
+close;
+//given data
+K=0.0278;// in W/mK
+rho=1.092;// in kg/m^3
+miu=19.57*10^-6;// in kg/ms
+Cp=1007;// in kg/kg degree C
+epsilon=0.9;
+sigma=5.67*10^-8;
+d=75+2*25;// in mm
+d=d*10^-3;// in meter
+T_s=80;// in degree C
+T_infinite=20;// in degree C
+T_f=(T_s+T_infinite)/2;// in degree C
+T_f=T_f+273;// in K
+Bita=1/T_f;
+g=9.81;
+del_T=T_s-T_infinite;
+Pr=miu*Cp/K;
+Gr=(rho^2*g*Bita*del_T*d^3)/miu^2;
+
+// Formula Nu= h*d/K = 0.53*(Gr*Pr)^(1/4);
+h= 0.53*(Gr*Pr)^(1/4)*K/d;
+
+//(a) Heat loss from 6 m length of pipe
+A=%pi*d*6;
+Q_conv=h*A*del_T;
+Q_rad=epsilon*sigma*A*((T_s+273)^4-(T_infinite+273)^4);
+//total heat transfer rate
+Q=Q_conv+Q_rad;
+disp("Total heat transfer rate is : "+string(Q)+" W");
+
+// (b) Overall heat transfer coefficient
+// Formula Q=U*A*del_T
+U=Q/(A*del_T);
+disp("Overall heat transfer coefficient is : "+string(U)+" W/m^2 degree C");
|