diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1736/CH9 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1736/CH9')
-rwxr-xr-x | 1736/CH9/EX9.1/Ch09Ex1.sce | 10 | ||||
-rwxr-xr-x | 1736/CH9/EX9.10/Ch09Ex10.sce | 11 | ||||
-rwxr-xr-x | 1736/CH9/EX9.11/Ch09Ex11.sce | 15 | ||||
-rwxr-xr-x | 1736/CH9/EX9.12/Ch09Ex12.sce | 11 | ||||
-rwxr-xr-x | 1736/CH9/EX9.13/Ch09Ex13.sce | 11 | ||||
-rwxr-xr-x | 1736/CH9/EX9.15/Ch09Ex15.sce | 10 | ||||
-rwxr-xr-x | 1736/CH9/EX9.16/Ch09Ex16.sce | 31 | ||||
-rwxr-xr-x | 1736/CH9/EX9.17/Ch09Ex17.sce | 12 | ||||
-rwxr-xr-x | 1736/CH9/EX9.2/Ch09Ex2.sce | 10 | ||||
-rwxr-xr-x | 1736/CH9/EX9.3/Ch09Ex3.sce | 11 | ||||
-rwxr-xr-x | 1736/CH9/EX9.4/Ch09Ex4.sce | 12 | ||||
-rwxr-xr-x | 1736/CH9/EX9.6/Ch09Ex6.sce | 14 | ||||
-rwxr-xr-x | 1736/CH9/EX9.7/Ch09Ex7.sce | 12 | ||||
-rwxr-xr-x | 1736/CH9/EX9.8/Ch09Ex8.sce | 21 | ||||
-rwxr-xr-x | 1736/CH9/EX9.9/Ch09Ex9.sce | 11 |
15 files changed, 202 insertions, 0 deletions
diff --git a/1736/CH9/EX9.1/Ch09Ex1.sce b/1736/CH9/EX9.1/Ch09Ex1.sce new file mode 100755 index 000000000..162366788 --- /dev/null +++ b/1736/CH9/EX9.1/Ch09Ex1.sce @@ -0,0 +1,10 @@ +// Scilab code Ex9.1 Page:278 (2006)
+clc; clear;
+H_c0 = 0.0803; // Critical field at absolute zero, Tesla
+T_c = 7.19; // Transition temperature of specimen lead, Kelvin
+T = 5; // Temperature at which destruction of superconductivity is to be found, Kelvin
+H_c = H_c0*[1-(T/T_c)^2]; // Critical field required to destroy superconductivity, Tesla
+printf("\nCritical field required to destroy superconductivity = %6.4f T", H_c);
+
+// Result
+// Critical field required to destroy superconductivity = 0.0415 T
diff --git a/1736/CH9/EX9.10/Ch09Ex10.sce b/1736/CH9/EX9.10/Ch09Ex10.sce new file mode 100755 index 000000000..319a7117c --- /dev/null +++ b/1736/CH9/EX9.10/Ch09Ex10.sce @@ -0,0 +1,11 @@ +// Scilab code Ex9.10 Page:287 (2006)
+clc; clear;
+alpha = 0.5; // Isotopic exponent of Osmium
+T_c = 0.655; // Transition temperature of Osmium, K
+M = 190.2; // Mass of Osmium, amu
+K = T_c*M^alpha; // K is the constant of proportionality
+
+printf("\nThe value of constant of proportionality = %4.2f ", K);
+
+// Result
+// The value of constant of proportionality = 9.03
diff --git a/1736/CH9/EX9.11/Ch09Ex11.sce b/1736/CH9/EX9.11/Ch09Ex11.sce new file mode 100755 index 000000000..8956c214a --- /dev/null +++ b/1736/CH9/EX9.11/Ch09Ex11.sce @@ -0,0 +1,15 @@ +// Scilab code Ex9.11 Page:298 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
+Theta_D = 96; // Debye temperature, kelvin
+N0 = 0.3678; // Density of states at Fermi energy
+V = 1; // Volume of the material, metre cube
+T_c = 1.14*Theta_D*exp(-1/(N0*V)); // Critical temperature of the material, K
+Delta_0 = k*Theta_D/sinh(1/(N0*V)); // Energy gap at absolute zero, J
+printf("\nThe transition temperature of a material = %4.2f K", T_c);
+printf("\nThe energy gap of a material = %5.3e eV", Delta_0/e);
+
+// Result
+// The transition temperature of a material = 7.22 K
+// The energy gap of a material = 1.097e-03 eV
diff --git a/1736/CH9/EX9.12/Ch09Ex12.sce b/1736/CH9/EX9.12/Ch09Ex12.sce new file mode 100755 index 000000000..565c9c25d --- /dev/null +++ b/1736/CH9/EX9.12/Ch09Ex12.sce @@ -0,0 +1,11 @@ +// Scilab code Ex9.12 Page:298 (2006)
+clc; clear;
+Theta_D = 350; // Debye temperature, kelvin
+Lambda = 0.828; // Electron-phonon coupling constant
+mu_prime = 0.1373; // Reduced mass of a superconductor, amu
+T_c = Theta_D/1.45*exp(-1.04*(1+Lambda)/(Lambda-mu_prime*(1+0.62*Lambda))); // Transition temperature of a superconductor using McMillan formula, K
+
+printf("\nThe transition temperature of the superconductor using McMillan formula = %5.2f K", T_c);
+
+// Result
+// The transition temperature of the superconductor using McMillan formula = 11.26 K
diff --git a/1736/CH9/EX9.13/Ch09Ex13.sce b/1736/CH9/EX9.13/Ch09Ex13.sce new file mode 100755 index 000000000..d953164d3 --- /dev/null +++ b/1736/CH9/EX9.13/Ch09Ex13.sce @@ -0,0 +1,11 @@ +// Scilab code Ex9.13 : Page:298 (2006)
+clc; clear;
+Theta_D = 350; // Debye temperature, kelvin
+Lambda = 0.641; // Electron-phonon coupling constant
+mu_prime = 0.143; // Reduced mass of a superconductor, amu
+T_c = Theta_D/1.45*exp(-1.04*(1+Lambda)/(Lambda-mu_prime*(1+0.62*Lambda))); // Superconducting transition temperature of a superconductor using mcMillan's formula, K
+
+printf("\nThe superconducting transition temperature of a superconductor using McMillan formula = %5.3f K", T_c);
+
+// Result
+// The superconducting transition temperature of a superconductor using McMillan formula = 5.043 K
diff --git a/1736/CH9/EX9.15/Ch09Ex15.sce b/1736/CH9/EX9.15/Ch09Ex15.sce new file mode 100755 index 000000000..d07f9c63e --- /dev/null +++ b/1736/CH9/EX9.15/Ch09Ex15.sce @@ -0,0 +1,10 @@ +// Scilab code Ex9.15 Page:314 (2006)
+clc; clear;
+Theta_D = 490; // Debye temperature, Kelvin
+Lambda = 0.8; // wavelength of a superconductor, angstorm
+mu_prime = 0.13; // Reduced mass of a superconductor, amu
+T_c = Theta_D/1.45*exp(-1.04*(1+Lambda)/(Lambda-mu_prime*(1+0.62*Lambda)));
+printf("\nThe superconducting transition temperature of a borocarbide superconductor = %4.1f K", T_c);
+
+// Result
+// The superconducting transition temperature of a borocarbide superconductor = 15.4 K
diff --git a/1736/CH9/EX9.16/Ch09Ex16.sce b/1736/CH9/EX9.16/Ch09Ex16.sce new file mode 100755 index 000000000..7cbdd09f5 --- /dev/null +++ b/1736/CH9/EX9.16/Ch09Ex16.sce @@ -0,0 +1,31 @@ +// Scilab code Ex9.16 Page:314 (2006)
+clc; clear;
+T_c = 16.5; // Transition temperature of a superconductor, K
+Lambda = [0.7 0.8 0.9 1.0]; // Electron-phonon coupling constants at different Tc values
+Theta_D = 503; // Debye temperature, kelvin
+mu_prime = 0.13; // Reduced mass of a superconductor, amu
+Tc = zeros(4);
+printf("\n_____________________");
+printf("\nLambda Tc");
+printf("\n_____________________");
+for i = 1:1:4
+ Tc(i) = Theta_D/1.45*exp(-1.04*(1+Lambda(i))/(Lambda(i)-mu_prime*(1+0.62*Lambda(i))));
+ if abs(Tc(i) - 16.5) < 1.0 then
+ best_Lvalue = Lambda(i);
+ end
+ printf("\n%3.1f %8.1f K", Lambda(i), Tc(i));
+end
+printf("\n_____________________");
+
+printf("\nThe best electron-phonon coupling constant should be slightly above %3.1f ", best_Lvalue);
+
+// Result
+// _____________________
+// Lambda Tc
+// _____________________
+// 0.7 11.1 K
+// 0.8 15.8 K
+// 0.9 20.4 K
+// 1.0 24.9 K
+// _____________________
+// The best electron-phonon coupling constant should be slightly above 0.8
diff --git a/1736/CH9/EX9.17/Ch09Ex17.sce b/1736/CH9/EX9.17/Ch09Ex17.sce new file mode 100755 index 000000000..642bd43fb --- /dev/null +++ b/1736/CH9/EX9.17/Ch09Ex17.sce @@ -0,0 +1,12 @@ +// Scilab code Ex9.17 Page:317 (2006)
+clc; clear;
+T_c = 39.4; // Transition temperature of a superconductor, K
+Lambda = 1; // Electron-phonon coupling constant for a superconductor
+mu_prime= 0.15; // Reduced mass of a superconductor, amu
+// As T_c = Theta_D/1.45*exp(-1.04*(1+Lambda)/(Lambda-mu_prime*(1+0.62*Lambda))), solving for Theta_D
+Theta_D = T_c*1.45*exp(1.04*(1+Lambda)/(Lambda-mu_prime*(1+0.62*Lambda)));
+
+printf("\nThe Debye temperature of a BCS superconductor = %3d K", Theta_D);
+
+// Result
+// The Debye temperature of a BCS superconductor = 891 K
diff --git a/1736/CH9/EX9.2/Ch09Ex2.sce b/1736/CH9/EX9.2/Ch09Ex2.sce new file mode 100755 index 000000000..ae0c971ea --- /dev/null +++ b/1736/CH9/EX9.2/Ch09Ex2.sce @@ -0,0 +1,10 @@ +// Scilab Code Ex9.2 Page:278 (2006)
+clc; clear;
+H0 = 1970; // Critical field at absolute zero, Oe
+T_c = 9.25; // Transition temperature of specimen Nb, Kelvin
+T = 4; // Temperature at which destruction of superconductivity is to be found, Kelvin
+H_c = H0*[1-(T/T_c)^2]; // Limiting magnetic field, Oe
+printf("\nLimiting magnetic field of Nb to serve as superconductor = %4d Oe", round(H_c));
+
+// Result
+// Limiting magnetic field of Nb to serve as superconductor = 1602 Oe
diff --git a/1736/CH9/EX9.3/Ch09Ex3.sce b/1736/CH9/EX9.3/Ch09Ex3.sce new file mode 100755 index 000000000..352335c13 --- /dev/null +++ b/1736/CH9/EX9.3/Ch09Ex3.sce @@ -0,0 +1,11 @@ +// Scilab Code Ex9.3 Page:278 (2006)
+clc;clear;
+T_1 = 14; // Temperature, K
+T_2 = 13; // Temperature, K
+H_c1 = 1.4e+05; // Critical field at T_1, K
+H_c2 = 4.2e+05; // Critical field at T_2, K//As H_c1/H_c2 = (T_c^2-T_1^2)/(T_c^2-T_2^2), solving for T_c
+T_c = sqrt((H_c2/H_c1*T_1^2 - T_2^2)/2); // The superconducting transition temperature of a specimen, K
+printf("\nTransition temperature of a specimen = %5.2f K", T_c);
+
+// Result
+// Transition temperature of a specimen = 14.47 K
diff --git a/1736/CH9/EX9.4/Ch09Ex4.sce b/1736/CH9/EX9.4/Ch09Ex4.sce new file mode 100755 index 000000000..e2b76c7cd --- /dev/null +++ b/1736/CH9/EX9.4/Ch09Ex4.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex9.4 Page:280 (2006)
+clc;clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+E_g = 3.4e-04; // Energy gap of aluminium, eV
+v_F = 2.02e+08; // Fermi velocity of aluminium, cm/sec
+h_bar = 1.05e-034; // Planck's constant
+L = h_bar*v_F/(2*E_g*e); // Coherence Length of aluminium, cm
+
+printf("\nThe coherence length of aluminium = %4.2e cm", L);
+
+// Result
+// The coherence length of aluminium = 1.95e-04 cm
diff --git a/1736/CH9/EX9.6/Ch09Ex6.sce b/1736/CH9/EX9.6/Ch09Ex6.sce new file mode 100755 index 000000000..897f6b83a --- /dev/null +++ b/1736/CH9/EX9.6/Ch09Ex6.sce @@ -0,0 +1,14 @@ +// Scilab Code Ex9.6 Page:284 (2006)
+clc; clear;
+h = 6.6e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy eqivalent of 1 eV, eV/J
+k = 0.86e-004; // Boltzmann constant, eV/K
+T_c = 0.56; // Critical temperature for superconducting Zr, K
+E_g = 3.52*k*T_c; // Energy gap of aluminium, J
+c = 3e+08; // Speed of light, m/s
+lambda = h*c/(E_g*e); // Wavelength of photon required to break a Cooper pair, m
+
+printf("\nThe wavelength of photon required to break a Cooper pair = %3.1e m", lambda);
+
+// Result
+// The wavelength of photon required to break a Cooper pair = 7.3e-03 m (Answer given in the textbook is wrong)
diff --git a/1736/CH9/EX9.7/Ch09Ex7.sce b/1736/CH9/EX9.7/Ch09Ex7.sce new file mode 100755 index 000000000..afe7a53d2 --- /dev/null +++ b/1736/CH9/EX9.7/Ch09Ex7.sce @@ -0,0 +1,12 @@ +// Scilab Code Ex9.7 :Page:285 (2006)
+clc; clear;
+Lambda_0 = 390; // Penetration depth at absolute zero, angstorm
+T_c = 7; // Transition temperature of Pb, K
+T = 2; // Givn temperature, K
+Lambda = Lambda_0*[1-(T/T_c)^2]^(-1/2); // London penetration depth in Pb at 2K, angstorm
+printf("\nThe London penetration depth in Pb at 2K = %7.4f angstorm", Lambda);
+printf("\nThe London penetration depth at T = T_c becomes %d", %inf);
+
+// Result
+// The London penetration depth in Pb at 2K = 406.9644 angstorm
+// The London penetration depth at T = T_c becomes Inf
diff --git a/1736/CH9/EX9.8/Ch09Ex8.sce b/1736/CH9/EX9.8/Ch09Ex8.sce new file mode 100755 index 000000000..927740f84 --- /dev/null +++ b/1736/CH9/EX9.8/Ch09Ex8.sce @@ -0,0 +1,21 @@ +// Scilab Code Ex9.8: Page:286 (2006)
+clc; clear;
+M = [199.5 200.7 202.0 203.3]; // Isotopic mass of Hg, amu
+T_c = [4.185 4.173 4.159 4.146]; // Critical temperature of Hg, kelvin
+alpha = 0.5; // Trial value of Isotopic exponent
+// Accroding to isotopic effect, T_c = K*M^(-alpha), solving for K
+K = T_c(1)/M(1)^(-alpha); // Isoptopic coefficent
+Tc = zeros(3);
+for i = 2:1:4
+ Tc(i-1) = K*M(i)^(-alpha);
+ printf("\nTc(%d) = %5.3f", i, Tc(i-1));
+end
+if T_c(2)-Tc(1)<0.001 & T_c(3)-Tc(2)<0.001 & T_c(4)-Tc(3)<0.001 then
+ printf("\nThe isotopic exponent in Isotopic effect of Hg = %3.1f", alpha);
+end
+
+// Result
+// Tc(2) = 4.172
+// Tc(3) = 4.159
+// Tc(4) = 4.146
+// The isotopic exponent in Isotopic effect of Hg = 0.5
diff --git a/1736/CH9/EX9.9/Ch09Ex9.sce b/1736/CH9/EX9.9/Ch09Ex9.sce new file mode 100755 index 000000000..f4fe10d10 --- /dev/null +++ b/1736/CH9/EX9.9/Ch09Ex9.sce @@ -0,0 +1,11 @@ +// Scilab code Ex9.9 Page:286 (2006)
+clc; clear;
+M_1 = 202; // Mass of first isotope of mercury, amu
+M_2 = 199; // Mass of second isotope of mercury, amu
+T_c1 = 4.153; // Transition temperature of first isotope of mercury, K
+//As T_c1/T_c2 = (M_2/M_1)^1/2, solving for T_c2
+T_c2 = sqrt(M_1/M_2)*T_c1; //
+printf("\nThe transition temperature of isotope of Hg whose mass number is %d = %5.3f K", M_2, T_c2);
+
+// Result
+// The transition temperature of isotope of Hg whose mass number is 199 = 4.184 K
|