summaryrefslogtreecommitdiff
path: root/1736/CH4
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1736/CH4
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1736/CH4')
-rwxr-xr-x1736/CH4/EX4.1/Ch04Ex1.sce11
-rwxr-xr-x1736/CH4/EX4.10/Ch04Ex10.sce11
-rwxr-xr-x1736/CH4/EX4.11/Ch04Ex11.sce21
-rwxr-xr-x1736/CH4/EX4.12/Ch04Ex12.sce10
-rwxr-xr-x1736/CH4/EX4.13/Ch04Ex13.sce42
-rwxr-xr-x1736/CH4/EX4.14/Ch04Ex14.sce32
-rwxr-xr-x1736/CH4/EX4.15/Ch04Ex15.sce13
-rwxr-xr-x1736/CH4/EX4.16/Ch04Ex16.sce10
-rwxr-xr-x1736/CH4/EX4.17/Ch04Ex17.sce10
-rwxr-xr-x1736/CH4/EX4.18/Ch04Ex18.sce14
-rwxr-xr-x1736/CH4/EX4.19/Ch04Ex19.sce15
-rwxr-xr-x1736/CH4/EX4.2/Ch04Ex2.sce16
-rwxr-xr-x1736/CH4/EX4.20/Ch04Ex20.sce18
-rwxr-xr-x1736/CH4/EX4.21/Ch04Ex21.sce17
-rwxr-xr-x1736/CH4/EX4.22/Ch04Ex22.sce14
-rwxr-xr-x1736/CH4/EX4.23.1/Ch04Ex23_1a.sce38
-rwxr-xr-x1736/CH4/EX4.23.10/Ch04Ex23_10a.sce21
-rwxr-xr-x1736/CH4/EX4.23.11/Ch04Ex23_11a.sce26
-rwxr-xr-x1736/CH4/EX4.23.12/Ch04Ex23_12a.sce14
-rwxr-xr-x1736/CH4/EX4.23.13/Ch04Ex23_13a.sce10
-rwxr-xr-x1736/CH4/EX4.23.14/Ch04Ex23_14a.sce13
-rwxr-xr-x1736/CH4/EX4.23.15/Ch04Ex23_15a.sce14
-rwxr-xr-x1736/CH4/EX4.23.16/Ch04Ex23_16a.sce26
-rwxr-xr-x1736/CH4/EX4.23.18/Ch04Ex23_18a.sce40
-rwxr-xr-x1736/CH4/EX4.23.2/Ch04Ex23_2a.sce17
-rwxr-xr-x1736/CH4/EX4.23.3/Ch04Ex23_3a.sce16
-rwxr-xr-x1736/CH4/EX4.23.4/Ch04Ex23_4a.sce15
-rwxr-xr-x1736/CH4/EX4.23.5/Ch04Ex23_5a.sce11
-rwxr-xr-x1736/CH4/EX4.23.6/Ch04Ex23_6a.sce13
-rwxr-xr-x1736/CH4/EX4.23.7/Ch04Ex23_7a.sce11
-rwxr-xr-x1736/CH4/EX4.23.8/Ch04Ex23_8a.sce10
-rwxr-xr-x1736/CH4/EX4.23.9/Ch04Ex23_9a.sce15
-rwxr-xr-x1736/CH4/EX4.3/Ch04Ex3.sce17
-rwxr-xr-x1736/CH4/EX4.4/Ch04Ex4.sce18
-rwxr-xr-x1736/CH4/EX4.5/Ch04Ex5.sce17
-rwxr-xr-x1736/CH4/EX4.6/Ch04Ex6.sce16
-rwxr-xr-x1736/CH4/EX4.7/Ch04Ex7.sce14
-rwxr-xr-x1736/CH4/EX4.8/Ch04Ex8.sce20
-rwxr-xr-x1736/CH4/EX4.9/Ch04Ex9.sce11
39 files changed, 677 insertions, 0 deletions
diff --git a/1736/CH4/EX4.1/Ch04Ex1.sce b/1736/CH4/EX4.1/Ch04Ex1.sce
new file mode 100755
index 000000000..a96510c05
--- /dev/null
+++ b/1736/CH4/EX4.1/Ch04Ex1.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex4.1: Page-112 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Charge on an electron, C
+n = 8.5e+028; // Concentration of electron in Cu, per metre cube
+rho = 1.7e-08; // Resistivity of Cu, ohm-m
+t = m/(n*e^2*rho); // Collision time for an electron in monovalent Cu, s
+printf("\nThe collision time for an electron in monovalent Cu = %3.1e s", t);
+
+// Result
+// The collision time for an electron in monovalent Cu = 2.5e-014 s
diff --git a/1736/CH4/EX4.10/Ch04Ex10.sce b/1736/CH4/EX4.10/Ch04Ex10.sce
new file mode 100755
index 000000000..cd58a758e
--- /dev/null
+++ b/1736/CH4/EX4.10/Ch04Ex10.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex4.10: Page-122 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T = 500; // Rise in temperature of Al, K
+EF_0 = 11.63; // Fermi energy of Al, eV
+EF_T = EF_0*(1-%pi^2/12*(k*T/EF_0)^2); // Change in Fermi energy of Al with temperature, eV
+printf("\nThe change in Fermi energy of Al with tempertaure rise of 500 degree celsius = %5.2f eV", EF_T);
+
+// Result
+// The change in Fermi energy of Al with tempertaure rise of 500 degree celsius = 11.63 eV
+
diff --git a/1736/CH4/EX4.11/Ch04Ex11.sce b/1736/CH4/EX4.11/Ch04Ex11.sce
new file mode 100755
index 000000000..c2399614a
--- /dev/null
+++ b/1736/CH4/EX4.11/Ch04Ex11.sce
@@ -0,0 +1,21 @@
+// Scilab Code Ex4.11: Page-122 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Charge on an electron, C
+lambda = 1.0e-09; // Mean free path of electron in metal, m
+v = 1.11e+05; // Average velocity of the electron in metal, m/s
+
+// For Lead
+n = 13.2e+028; // Electronic concentration of Pb, per metre cube
+sigma = n*e^2*lambda/(m*v); // Electrical conductivity of lead, mho per metre
+printf("\nThe electrical conductivity of lead = %4.2e mho per metre", sigma);
+
+// For Silver
+n = 5.85e+28; // Electronic concentration of Ag, per metre cube
+sigma = n*e^2*lambda/(m*v); // Electrical conductivity of Ag, mho per metre
+printf("\nThe electrical conductivity of silver = %4.2e mho per metre", sigma);
+
+// Result
+// The electrical conductivity of lead = 3.35e+007 mho per metre
+// The electrical conductivity of silver = 1.48e+007 mho per metre
+
diff --git a/1736/CH4/EX4.12/Ch04Ex12.sce b/1736/CH4/EX4.12/Ch04Ex12.sce
new file mode 100755
index 000000000..39c2e84ba
--- /dev/null
+++ b/1736/CH4/EX4.12/Ch04Ex12.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex4.12: Page-125 (2006)
+clc; clear;
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Charge on an electron, C
+L = %pi^2/3*(k/e)^2; // Lorentz number, watt-ohm/degree-square
+printf("\nThe Lorentz number = %4.2e watt-ohm/degree-square", L);
+
+// Result
+// The Lorentz number = 2.45e-008 watt-ohm/degree-square
+
diff --git a/1736/CH4/EX4.13/Ch04Ex13.sce b/1736/CH4/EX4.13/Ch04Ex13.sce
new file mode 100755
index 000000000..812a52e73
--- /dev/null
+++ b/1736/CH4/EX4.13/Ch04Ex13.sce
@@ -0,0 +1,42 @@
+// Scilab Code Ex4.13: Page-125 (2006)
+clc; clear;
+A = cell(4,4); // Declare a 4X4 cell
+A(1,1).entries = 'Mg';
+A(1,2).entries = 2.54e-05;
+A(1,3).entries = 1.5;
+A(1,4).entries = 2.32e+02;
+A(2,1).entries = 'Cu';
+A(2,2).entries = 6.45e-05;
+A(2,3).entries = 3.85;
+A(2,4).entries = 2.30e+02;
+A(3,1).entries = 'Al';
+A(3,2).entries = 4.0e-05;
+A(3,3).entries = 2.38;
+A(3,4).entries = 2.57e+02;
+A(4,1).entries = 'Pt';
+A(4,2).entries = 1.02e-05;
+A(4,3).entries = 0.69;
+A(4,4).entries = 2.56e+02;
+T1 = 273; // First temperature, K
+T2 = 373; // Second temperature, K
+printf("\n_________________________________________________________________");
+printf("\nMetal sigma x 1e-05 K(W/cm-K) Lorentz number ");
+printf("\n (mho per cm) (watt-ohm/deg-square)x1e-02")
+printf("\n_________________________________________________________________");
+for i = 1:1:4
+ L1 = A(i,3).entries/(A(i,2).entries*T1); L2 = A(i,4).entries;
+ printf("\n%s %4.2f %4.2f %4.2f %4.2f", A(i,1).entries, A(i,2).entries/1e-05, A(i,3).entries, L1/1e+02, L2/1e+02);
+end
+printf("\n_________________________________________________________________");
+
+// Result
+// _________________________________________________________________
+// Metal sigma x 1e-05 K(W/cm-K) Lorentz number
+// (mho per cm) (watt-ohm/deg-square)x1e-02
+// _________________________________________________________________
+// Mg 2.54 1.50 2.16 2.32
+// Cu 6.45 3.85 2.19 2.30
+// Al 4.00 2.38 2.18 2.57
+// Pt 1.02 0.69 2.48 2.56
+// _________________________________________________________________
+
diff --git a/1736/CH4/EX4.14/Ch04Ex14.sce b/1736/CH4/EX4.14/Ch04Ex14.sce
new file mode 100755
index 000000000..a79423a4c
--- /dev/null
+++ b/1736/CH4/EX4.14/Ch04Ex14.sce
@@ -0,0 +1,32 @@
+// Scilab Code Ex4.14: Page-125 (2006)
+clc; clear;
+A = cell(2,2); // Declare a 2X3 cell
+A(1,1).entries = 1.6e+08; // Electrcal conductivity of Au at 100 K, mho per metre
+A(1,2).entries = 2.0e-08; // Lorentz number of Au at 100 K, volt/K-square
+A(2,1).entries = 5.0e+08; // Electrcal conductivity of Au at 273 K, mho per metre
+A(2,2).entries = 2.4e-08; // Lorentz number of Au at 273 K, volt/K-square
+T1 = 100; // First temperature, K
+T2 = 273; // Second temperature, K
+
+printf("\n___________________________________________________________________________");
+printf("\n T = 100 K T = 273 K ");
+printf("\n_________________________________ ___________________________________");
+printf("\nElectrical conductivity) L Electrical conductivity) L ");
+printf("\n mho per metre V/K-square mho per metre V/K-square");
+printf("\n___________________________________________________________________________");
+K1 = A(1,1).entries*T1*A(1,2).entries; K2 = A(2,1).entries*T2*A(2,2).entries;
+ printf("\n%3.1e %3.1e %3.1e %3.1e", A(1,1).entries, A(1,2).entries, A(2,1).entries, A(2,2).entries);
+ printf("\nK = %3d W/cm-K K = %3d W/cm-K", K1, K2);
+printf("\n___________________________________________________________________________");
+
+// Result
+// ___________________________________________________________________________
+// T = 100 K T = 273 K
+// _________________________________ ___________________________________
+// Electrical conductivity) L Electrical conductivity) L
+// mho per metre V/K-square mho per metre V/K-square
+// ___________________________________________________________________________
+// 1.6e+008 2.0e-008 5.0e+008 2.4e-008
+// K = 320 W/cm-K K = 3276 W/cm-K
+// ___________________________________________________________________________
+
diff --git a/1736/CH4/EX4.15/Ch04Ex15.sce b/1736/CH4/EX4.15/Ch04Ex15.sce
new file mode 100755
index 000000000..0538bfea2
--- /dev/null
+++ b/1736/CH4/EX4.15/Ch04Ex15.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex4.15: Page-131 (2006)
+clc; clear;
+e = 1.6e-019; // Electronic charge, C
+a = 0.428e-09; // Lattice constant of Na, m
+V = a^3; // Volume of unit cell, metre cube
+N = 2; // No. of atoms per unit cell of Na
+n = N/V; // No. of electrons per metre cube, per metre cube
+R_H = -1/(n*e); // Hall coeffcient of Na, metre cube per coulomb
+printf("\nThe Hall coefficient of sodium = %4.2e metre cube per coulomb", R_H);
+
+// Result
+// The Hall coefficient of sodium = -2.45e-010 metre cube per coulomb
+
diff --git a/1736/CH4/EX4.16/Ch04Ex16.sce b/1736/CH4/EX4.16/Ch04Ex16.sce
new file mode 100755
index 000000000..82be23e19
--- /dev/null
+++ b/1736/CH4/EX4.16/Ch04Ex16.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex4.16: Page-131 (2006)
+clc; clear;
+e = 1.6e-019; // Electronic charge, C
+n = 24.2e+028; // No. of electrons per metre cube, per metre cube
+R_H = -1/(n*e); // Hall coeffcient of Be, metre cube per coulomb
+printf("\nThe Hall coefficient of beryllium = %4.2e metre cube per coulomb", R_H);
+
+// Result
+// The Hall coefficient of beryllium = -2.58e-011 metre cube per coulomb
+
diff --git a/1736/CH4/EX4.17/Ch04Ex17.sce b/1736/CH4/EX4.17/Ch04Ex17.sce
new file mode 100755
index 000000000..a53d223c9
--- /dev/null
+++ b/1736/CH4/EX4.17/Ch04Ex17.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex4.17: Page-131 (2006)
+clc; clear;
+e = 1.6e-019; // Electronic charge, C
+R_H = -8.4e-011; // Hall coeffcient of Ag, metre cube per coulomb
+n = -3*%pi/(8*R_H*e); // Electronic concentration of Ag, per metre cube
+printf("\nThe electronic concentration of Ag = %3.1e per metre cube", n);
+
+// Result
+// The electronic concentration of Ag = 8.8e+028 per metre cube
+
diff --git a/1736/CH4/EX4.18/Ch04Ex18.sce b/1736/CH4/EX4.18/Ch04Ex18.sce
new file mode 100755
index 000000000..d4f76bfca
--- /dev/null
+++ b/1736/CH4/EX4.18/Ch04Ex18.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex4.18: Page-134 (2006)
+clc; clear;
+// We have from Mattheissen rule, rho = rho_0 + alpha*T1
+T1 = 300; // Initial temperature, K
+T2 = 1000; // Final temperature, K
+rho = 1e-06; // Resistivity of the metal, ohm-m
+delta_rho = 0.07*rho; // Increase in resistivity of metal, ohm-m
+alpha = delta_rho/(T2-T1); // A constant, ohm-m/K
+rho_0 = rho - alpha*T1; // Resistivity at room temperature, ohm-m
+printf("\nThe resistivity at room temperature = %4.2e ohm-m", rho);
+
+// Result
+// The resistivity at room temperature = 1.00e-006 ohm-m
+
diff --git a/1736/CH4/EX4.19/Ch04Ex19.sce b/1736/CH4/EX4.19/Ch04Ex19.sce
new file mode 100755
index 000000000..7f0d3e9fb
--- /dev/null
+++ b/1736/CH4/EX4.19/Ch04Ex19.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex4.19: Page-134 (2006)
+clc; clear;
+// We have from Mattheissen rule, rho = rho_0 + alpha*T1
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+rho_40 = 0.2; // Resistivity of Ge at 40 degree celsius, ohm-m
+E_g = 0.7; // Bandgap for Ge, eV
+T1 = 20+273; // Second temperature, K
+T2 = 40 + 273; // First temperature, K
+rho_20 = rho_40*exp(E_g*e/(2*k)*(1/T1-1/T2)); // Resistivity of Ge at 20 degree celsius, ohm-m
+printf("\nThe resistivity of Ge at 20 degree celsius = %3.1f ohm-m", rho_20);
+
+// Result
+// The resistivity of Ge at 20 degree celsius = 0.5 ohm-m
+
diff --git a/1736/CH4/EX4.2/Ch04Ex2.sce b/1736/CH4/EX4.2/Ch04Ex2.sce
new file mode 100755
index 000000000..36c8cf915
--- /dev/null
+++ b/1736/CH4/EX4.2/Ch04Ex2.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex4.2: Page-112 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Charge on an electron, C
+n = 1e+029; // Concentration of electron in material, per metre cube
+rho = 27e-08; // Resistivity of the material, ohm-m
+tau = m/(n*e^2*rho); // Collision time for an electron in the material, s
+v_F = 1e+08; // Velocity of free electron, cm/s
+lambda = v_F*tau; // Mean free path of electron in the material, cm
+printf("\nThe collision time for an electron in monovalent Cu = %3.1e s", tau);
+printf("\nThe mean free path of electron at 0K = %3.1e cm", lambda);
+
+// Result
+// The collision time for an electron in monovalent Cu = 1.3e-015 s
+// The mean free path of electron at 0K = 1.3e-007 cm
+
diff --git a/1736/CH4/EX4.20/Ch04Ex20.sce b/1736/CH4/EX4.20/Ch04Ex20.sce
new file mode 100755
index 000000000..d10fee7f9
--- /dev/null
+++ b/1736/CH4/EX4.20/Ch04Ex20.sce
@@ -0,0 +1,18 @@
+// Scilab Code Ex4.20: Page-135 (2006)
+clc; clear;
+rs_a0_ratio = 3.25; // Ratio of solid radius to the lattice parameter
+E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level energy of Li, eV
+T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level temperature of Li, K
+V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level velocity of electron in Li, cm/sec
+K_F = 3.63e+08*(rs_a0_ratio)^(-1);
+printf("\nE_F = %4.2f eV", E_F);
+printf("\nT_F = %4.2e K", T_F);
+printf("\nV_F = %4.2e cm/sec", V_F);
+printf("\nK_F = %4.2e per cm", K_F);
+
+// Result
+// E_F = 4.74 eV
+// T_F = 5.51e+004 K
+// V_F = 1.29e+008 cm/sec
+// K_F = 1.12e+008 per cm
+
diff --git a/1736/CH4/EX4.21/Ch04Ex21.sce b/1736/CH4/EX4.21/Ch04Ex21.sce
new file mode 100755
index 000000000..68f2bde39
--- /dev/null
+++ b/1736/CH4/EX4.21/Ch04Ex21.sce
@@ -0,0 +1,17 @@
+// Scilab Code Ex4.21: Page-135 (2006)
+clc; clear;
+n = 6.04e+022; // Concentration of electrons in yittrium, per metre cube
+r_s = (3/(4*%pi*n))^(1/3)/1e-08; // Radius of the solid, angstrom
+a0 = 0.529; // Lattice parameter of yittrium, angstrom
+rs_a0_ratio = r_s/a0; // Solid radius to lattice parameter ratio
+E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level energy of Y, eV
+printf("\nThe Fermi energy of yittrium = %5.3f eV", E_F);
+Ryd = 13.6; // Rydberg energy constant, eV
+E_bs = 0.396*Ryd; // Band structure energy value of Y, eV
+printf("\nThe band structure value of E_F = %5.3f eV is in close agreement with the calculated value of %5.3f eV", E_bs, E_F);
+
+// Result
+// The Fermi energy of yittrium = 5.608 eV
+// The band structure value of E_F = 5.386 eV is in close agreement with the calculated value of 5.608 eV
+
+
diff --git a/1736/CH4/EX4.22/Ch04Ex22.sce b/1736/CH4/EX4.22/Ch04Ex22.sce
new file mode 100755
index 000000000..2afa025d8
--- /dev/null
+++ b/1736/CH4/EX4.22/Ch04Ex22.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex4.22: Page-137 (2006)
+clc; clear;
+rs_a0_ratio = 2.07; // Solid radius to lattice parameter ratio for Al
+E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level energy of Y, eV
+// According to Jellium model, h_cross*omega_P = E = 47.1 eV *(rs_a0_ratio)^(-3/2)
+E = 47.1*(rs_a0_ratio)^(-3/2); // Plasmon energy of Al, eV
+printf("\nThe plasmon energy of Al = %4.2f eV", E);
+printf("\nThe experimental value is 15 eV");
+
+// Result
+// The plasmon energy of Al = 15.81 eV
+// The experimental value is 15 eV
+
+
diff --git a/1736/CH4/EX4.23.1/Ch04Ex23_1a.sce b/1736/CH4/EX4.23.1/Ch04Ex23_1a.sce
new file mode 100755
index 000000000..115c65da1
--- /dev/null
+++ b/1736/CH4/EX4.23.1/Ch04Ex23_1a.sce
@@ -0,0 +1,38 @@
+// Scilab Code Ex4.1a: Page-137 (2006)
+clc; clear;
+E_F = 1; // For simplicity assume Fermi energy to be unity, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+dE = 0.1; // Exces energy above Fermi level, eV
+T = 300; // Room temperature, K
+E = E_F + dE; // Energy of the level above Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV above E_F
+printf("\nAt 300 K:");
+printf("\n=========");
+printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %7.5f", dE, f_E);
+E = E_F - dE; // Energy of the level below Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV below E_F
+printf("\nThe occupation probability of electron at %3.1f eV below Fermi energy = %7.5f", dE, f_E);
+
+T = 1000; // New temperature, K
+printf("\n\nAt 1000 K:");
+printf("\n=========");
+E = E_F + dE; // Energy of the level above Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV above E_F
+printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %4.2f", dE, f_E);
+E = E_F - dE; // Energy of the level below Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV below E_F
+printf("\nThe occupation probability of electron at %3.1f eV below Fermi energy = %4.2f", dE, f_E);
+
+// Result
+// At 300 K:
+// =========
+// The occupation probability of electron at 0.1 eV above Fermi energy = 0.02054
+// The occupation probability of electron at 0.1 eV below Fermi energy = 0.97946
+
+// At 1000 K:
+// =========
+// The occupation probability of electron at 0.1 eV above Fermi energy = 0.24
+// The occupation probability of electron at 0.1 eV below Fermi energy = 0.76
+
+
diff --git a/1736/CH4/EX4.23.10/Ch04Ex23_10a.sce b/1736/CH4/EX4.23.10/Ch04Ex23_10a.sce
new file mode 100755
index 000000000..4ac96d675
--- /dev/null
+++ b/1736/CH4/EX4.23.10/Ch04Ex23_10a.sce
@@ -0,0 +1,21 @@
+// Scilab Code Ex4.10a: Page-141 (2006)
+clc; clear;
+E_F = 1; // For simplicity assume Fermi energy to be unity, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+dE = 0.5; // Exces energy above Fermi level, eV
+T = 300; // Room temperature, K
+E = E_F + dE; // Energy of the level above Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV above E_F
+printf("\nAt 300 K:");
+printf("\n=========");
+printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %11.9f", dE, f_E);
+E = E_F - dE; // Energy of the level below Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV below E_F
+printf("\nThe occupation probability of electron at %3.1f eV below Fermi energy = %11.9f", dE, f_E);
+
+// Result
+// At 300 K:
+// =========
+// The occupation probability of electron at 0.5 eV above Fermi energy = 0.000000004
+// The occupation probability of electron at 0.5 eV below Fermi energy = 0.999999996
diff --git a/1736/CH4/EX4.23.11/Ch04Ex23_11a.sce b/1736/CH4/EX4.23.11/Ch04Ex23_11a.sce
new file mode 100755
index 000000000..15df6a9d9
--- /dev/null
+++ b/1736/CH4/EX4.23.11/Ch04Ex23_11a.sce
@@ -0,0 +1,26 @@
+// Scilab Code Ex4.9a: Page-141 (2006)
+clc; clear;
+E_F = 1; // For simplicity assume Fermi energy to be unity, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+dE = 0.2; // Exces energy above Fermi level, eV
+T = 0+273; // Room temperature, K
+E = E_F + dE; // Energy of the level above Fermi level, eV
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV above E_F
+printf("\nAt 273 K:");
+printf("\n=========");
+printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %4.2e", dE, f_E);
+T = 100+273; // Given temperature of 100 degree celsius, K
+f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation probability of the electron at 0.1 eV below E_F
+printf("\n\nAt 373 K:");
+printf("\n=========");
+printf("\nThe occupation probability of electron at %3.1f eV above Fermi energy = %4.2e", dE, f_E);
+
+// Result
+// At 273 K:
+// =========
+// The occupation probability of electron at 0.2 eV above Fermi energy = 2.05e-004
+
+// At 373 K:
+// =========
+// The occupation probability of electron at 0.2 eV above Fermi energy = 1.99e-003
diff --git a/1736/CH4/EX4.23.12/Ch04Ex23_12a.sce b/1736/CH4/EX4.23.12/Ch04Ex23_12a.sce
new file mode 100755
index 000000000..af618100b
--- /dev/null
+++ b/1736/CH4/EX4.23.12/Ch04Ex23_12a.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex4.12a: Page-142 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of the electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+r = 1.28e-010; // Atomic radius of Cu, m
+a = 4*r/sqrt(2); // Lattice constant of Cu, m
+tau = 2.7e-14; // Relaxation time for the electron in Cu, s
+V = a^3; // Volume of the cell, metre cube
+n = 4/V; // Concentration of free electrons in monovalent copper,
+sigma = n*e^2*tau/m; // Electrical conductivity of monovalent copper, mho per m
+printf("\nThe electrical conductivity of monovalent copper = %5.3e mho per cm", sigma/100);
+
+// Result
+// The electrical conductivity of monovalent copper = 6.403e+005 mho per cm
diff --git a/1736/CH4/EX4.23.13/Ch04Ex23_13a.sce b/1736/CH4/EX4.23.13/Ch04Ex23_13a.sce
new file mode 100755
index 000000000..cfe8cfa1a
--- /dev/null
+++ b/1736/CH4/EX4.23.13/Ch04Ex23_13a.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex4.13a: Page-142 (2006)
+clc; clear;
+n = 18.1e+022; // Number of electrons per unit volume, per cm cube
+N = n/2; // Pauli's principle for number of energy levels, per cm cube
+E_F = 11.58; // Fermi energy of Al, eV
+E = E_F/N; // Interelectronic energy separation between bands of Al, eV
+printf("\nThe interelectronic energy separation between bands of Al = %4.2e eV", E);
+
+// Result
+// The interelectronic energy separation between bands of Al = 1.28e-022 eV
diff --git a/1736/CH4/EX4.23.14/Ch04Ex23_14a.sce b/1736/CH4/EX4.23.14/Ch04Ex23_14a.sce
new file mode 100755
index 000000000..8a0e7affc
--- /dev/null
+++ b/1736/CH4/EX4.23.14/Ch04Ex23_14a.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex4.14a: Page-142 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of the electron, kg
+h = 6.626e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+E_F = 7; // Fermi energy of Cu, eV
+V = 1e-06; // Volume of the cubic metal, metre cube
+D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*(E_F)^(1/2)*e^(3/2); // Density of states in Cu contained in cubic metal, states/eV
+printf("\nThe density of states in Cu contained in cubic metal = %3.1e states/eV", D_EF);
+
+// Result
+// The density of states in Cu contained in cubic metal = 1.8e+022 states/eV
diff --git a/1736/CH4/EX4.23.15/Ch04Ex23_15a.sce b/1736/CH4/EX4.23.15/Ch04Ex23_15a.sce
new file mode 100755
index 000000000..498d45eb4
--- /dev/null
+++ b/1736/CH4/EX4.23.15/Ch04Ex23_15a.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex4.15a: Page-143 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of the electron, kg
+h = 6.626e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+E_F = 7; // Fermi energy of Cu, eV
+V = 1e-06; // Volume of the cubic metal, metre cube
+D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*(E_F)^(1/2)*e^(3/2); // Density of states in Cu contained in cubic metal, states/eV
+d = 1/(D_EF); // Electronic energy level spacing between successive levels of Cu, eV
+printf("\nThe electronic energy level spacing between successive levels of Cu = %4.2e eV", d);
+
+// Result
+// The electronic energy level spacing between successive levels of Cu = 5.57e-023 eV
diff --git a/1736/CH4/EX4.23.16/Ch04Ex23_16a.sce b/1736/CH4/EX4.23.16/Ch04Ex23_16a.sce
new file mode 100755
index 000000000..eeea1cdb0
--- /dev/null
+++ b/1736/CH4/EX4.23.16/Ch04Ex23_16a.sce
@@ -0,0 +1,26 @@
+// Scilab Code Ex4.16a: Page-143 (2006)
+clc; clear;
+A = cell(4,2); // Declare a 3X2 cell
+A(1,1).entries = 'Li'; //
+A(1,2).entries = -0.4039; // Energy of outermost atomic orbital of Li, Rydberg unit
+A(2,1).entries = 'Na'; //
+A(2,2).entries = -0.3777; // Energy of outermost atomic orbital of Na, Rydberg unit
+A(3,1).entries = 'F'; //
+A(3,2).entries = -1.2502; // Energy of outermost atomic orbital of F, Rydberg unit
+A(4,1).entries = 'Cl'; //
+A(4,2).entries = -0.9067; // Energy of outermost atomic orbital of Cl, Rydberg unit
+cf = 13.6; // Conversion factor for Rydberg to eV
+printf("\n________________________________________");
+printf("\nAtom Energy gap");
+printf("\n%s%s %5.2f eV", A(2,1).entries, A(4,1).entries, (A(2,2).entries-A(4,2).entries)*cf);
+printf("\n%s%s %5.2f eV", A(2,1).entries, A(3,1).entries, (A(2,2).entries-A(3,2).entries)*cf);
+printf("\n%s%s %5.2f eV", A(1,1).entries, A(3,1).entries, (A(1,2).entries-A(3,2).entries)*cf);
+printf("\n________________________________________");
+
+// Result
+// ________________________________________
+// Atom Energy gap
+// NaCl 7.19 eV
+// NaF 11.87 eV
+// LiF 11.51 eV
+// ________________________________________
diff --git a/1736/CH4/EX4.23.18/Ch04Ex23_18a.sce b/1736/CH4/EX4.23.18/Ch04Ex23_18a.sce
new file mode 100755
index 000000000..237bafb2c
--- /dev/null
+++ b/1736/CH4/EX4.23.18/Ch04Ex23_18a.sce
@@ -0,0 +1,40 @@
+// Scilab Code Ex4.18a: Page-144 (2006)
+clc; clear;
+// For Cu
+rs_a0_ratio = 2.67; // Ratio of solid radius to the lattice parameter
+E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level energy of Cu, eV
+T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level temperature of Cu, K
+V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level velocity of electron in Cu, cm/sec
+K_F = 3.63e+08*(rs_a0_ratio)^(-1);
+printf("\nFor Cu :");
+printf("\n========");
+printf("\nE_F = %6.4f eV", E_F);
+printf("\nT_F = %5.3e K", T_F);
+printf("\nV_F = %7.5e cm/sec", V_F);
+printf("\nK_F = %6.4e per cm", K_F);
+rs_a0_ratio = 3.07; // Ratio of solid radius to the lattice parameter
+E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level energy of Nb, eV
+T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level temperature of Nb, K
+V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level velocity of electron in Nb, cm/sec
+K_F = 3.63e+08*(rs_a0_ratio)^(-1);
+printf("\n\nFor Nb:");
+printf("\n========");
+printf("\nE_F = %6.4f eV", E_F);
+printf("\nT_F = %5.3e K", T_F);
+printf("\nV_F = %6.4e cm/sec", V_F);
+printf("\nK_F = %6.4e per cm", K_F);
+
+// Result
+// For Cu :
+// ========
+// E_F = 7.0277 eV
+// T_F = 8.164e+004 K
+// V_F = 1.57303e+008 cm/sec
+// K_F = 1.3596e+008 per cm
+//
+// For Nb:
+// ========
+// E_F = 5.3157 eV
+// T_F = 6.175e+004 K
+// V_F = 1.3681e+008 cm/sec
+// K_F = 1.1824e+008 per cm
diff --git a/1736/CH4/EX4.23.2/Ch04Ex23_2a.sce b/1736/CH4/EX4.23.2/Ch04Ex23_2a.sce
new file mode 100755
index 000000000..b12c13696
--- /dev/null
+++ b/1736/CH4/EX4.23.2/Ch04Ex23_2a.sce
@@ -0,0 +1,17 @@
+// Scilab Code Ex4.2a: Page-138 (2006)
+clc; clear;
+f_E = 0.01; // Occupation probability of electron
+E_F = 1; // For simplicity assume Fermi energy to be unity, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+dE = 0.5; // Exces energy above Fermi level, eV
+E = E_F + dE; // Energy of the level above Fermi level, eV
+// We have, f_E = 1/(exp((E-E_F)*e/(k*T))+1), solving for T
+T = (E-E_F)*e/k*1/log(1/f_E-1); // Temperature at which the electron will have energy 0.1 eV above the Fermi energy, K
+printf("\nThe temperature at which the electron will have energy %3.1f eV above the Fermi energy = %4d K", dE, T);
+
+// Result
+// The temperature at which the electron will have energy 0.5 eV above the Fermi energy = 1261 K
+
+
+
diff --git a/1736/CH4/EX4.23.3/Ch04Ex23_3a.sce b/1736/CH4/EX4.23.3/Ch04Ex23_3a.sce
new file mode 100755
index 000000000..d2376b474
--- /dev/null
+++ b/1736/CH4/EX4.23.3/Ch04Ex23_3a.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex4.3a: Page-139 (2006)
+clc; clear;
+E_F = 10; // Fermi energy of electron in metal, eV
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+m = 9.1e-031; // Mass of an electron, kg
+E_av = 3/5*E_F; // Average energy of free electron in metal at 0 K, eV
+V_F = sqrt(2*E_av*e/m); // Speed of free electron in metal at 0 K, eV
+printf("\nThe average energy of free electron in metal at 0 K = %1d eV", E_av);
+printf("\nThe speed of free electron in metal at 0 K = %4.2e m/s", V_F);
+
+// Result
+// The average energy of free electron in metal at 0 K = 6 eV
+// The speed of free electron in metal at 0 K = 1.45e+006 m/s
+
+
+
diff --git a/1736/CH4/EX4.23.4/Ch04Ex23_4a.sce b/1736/CH4/EX4.23.4/Ch04Ex23_4a.sce
new file mode 100755
index 000000000..70725af93
--- /dev/null
+++ b/1736/CH4/EX4.23.4/Ch04Ex23_4a.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex4.4a: Page-139 (2006)
+clc; clear;
+f_E = 0.1; // Occupation probability of electron
+E_F = 5.5; // Fermi energy of Cu, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+dE = 0.05*E_F; // Exces energy above Fermi level, eV
+E = E_F + dE; // Energy of the level above Fermi level, eV
+// We have, f_E = 1/(exp((E-E_F)*e/(k*T))+1), solving for T
+T = (E-E_F)*e/k*1/log(1/f_E-1); // Temperature at which the electron will have energy 0.1 eV above the Fermi energy, K
+printf("\nThe temperature at which the electron will have energy %1d percent above the Fermi energy %4d K", dE/E_F*100, T);
+
+
+// Result
+// The temperature at which the electron will have energy 5 percent above the Fermi energy 1451 K (The answer given in the textbook is wrong)
diff --git a/1736/CH4/EX4.23.5/Ch04Ex23_5a.sce b/1736/CH4/EX4.23.5/Ch04Ex23_5a.sce
new file mode 100755
index 000000000..0269143dc
--- /dev/null
+++ b/1736/CH4/EX4.23.5/Ch04Ex23_5a.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex4.5a: Page-139 (2006)
+clc; clear;
+T_F = 24600; // Fermi temperature of potassium, K
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+m = 9.1e-031; // Mass of an electron, kg
+E_F = k*T_F; // Fermi energy of potassium, eV
+v_F = sqrt(2*k*T_F/m); // Fermi velocity of potassium, m/s
+printf("\nThe Fermi velocity of potassium = %5.3e m/s", v_F);
+
+// Result
+// The Fermi velocity of potassium = 8.638e+005 m/s
diff --git a/1736/CH4/EX4.23.6/Ch04Ex23_6a.sce b/1736/CH4/EX4.23.6/Ch04Ex23_6a.sce
new file mode 100755
index 000000000..bc5575ac7
--- /dev/null
+++ b/1736/CH4/EX4.23.6/Ch04Ex23_6a.sce
@@ -0,0 +1,13 @@
+// Scilab Code Ex4.6a: Page-139 (2006)
+clc; clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+E_F = 7.0; // Fermi energy of Cu, eV
+f_E = 0.9; // Occupation probability of Cu
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T = 1000; // Given temperature, K
+// We have, f_E = 1/(exp((E-E_F)*e/(k*T))+1), solving for E
+E = k*T*log(1/f_E-1) + E_F*e; // Energy level of Cu for 10% occupation probability at 1000 K, J
+printf("\nThe energy level of Cu for 10 percent occupation probability at 1000 K = %4.2f eV", E/e);
+
+// Result
+// The energy level of Cu for 10 percent occupation probability at 1000 K = 6.81 eV
diff --git a/1736/CH4/EX4.23.7/Ch04Ex23_7a.sce b/1736/CH4/EX4.23.7/Ch04Ex23_7a.sce
new file mode 100755
index 000000000..78459e38e
--- /dev/null
+++ b/1736/CH4/EX4.23.7/Ch04Ex23_7a.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex4.7a: Page-140 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Electronic charge, C
+h = 6.626e-034; // Planck's constant, Js
+E_F = 1.55; // Fermi energy of Cu, eV
+n = %pi/3*(8*m/h^2)^(3/2)*(E_F*e)^(3/2); // Electronic concentration in cesium, electrons/cc
+printf("\nThe electronic concentration in cesium = %5.3e electrons/cc", n);
+
+// Result
+// The electronic concentration in cesium = 8.733e+027 electrons/cc
diff --git a/1736/CH4/EX4.23.8/Ch04Ex23_8a.sce b/1736/CH4/EX4.23.8/Ch04Ex23_8a.sce
new file mode 100755
index 000000000..33950d285
--- /dev/null
+++ b/1736/CH4/EX4.23.8/Ch04Ex23_8a.sce
@@ -0,0 +1,10 @@
+// Scilab Code Ex4.8a: Page-141 (2006)
+clc; clear;
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+E_F = 7; // Fermi energy, eV
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+T_F = E_F*e/k; // Fermi temperature, K
+printf("\nThe Fermi temperature corresponding to Fermi energy = %5.3e K", T_F);
+
+// Result
+// The Fermi temperature corresponding to Fermi energy = 8.116e+004 K
diff --git a/1736/CH4/EX4.23.9/Ch04Ex23_9a.sce b/1736/CH4/EX4.23.9/Ch04Ex23_9a.sce
new file mode 100755
index 000000000..d09b8cbb0
--- /dev/null
+++ b/1736/CH4/EX4.23.9/Ch04Ex23_9a.sce
@@ -0,0 +1,15 @@
+// Scilab Code Ex4.9a: Page-141 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of the electron, kg
+h = 6.626e-034; // Planck's constant, Js
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+s = 0.01; // Side of the box, m
+E = 2; // Energy range of the electron in the box, eV
+V = s^3; // Volume of the box, metre cube
+I = integrate("E^(1/2)", 'E', 0, 2); // Definite integral over E
+D_E = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*I*e^(3/2); // Density of states for the electron in a cubical box, states
+printf("\nThe density of states for the electron in a cubical box = %5.3e states", D_E);
+
+// Result
+// The density of states for the electron in a cubical box = 1.280e+022 states
diff --git a/1736/CH4/EX4.3/Ch04Ex3.sce b/1736/CH4/EX4.3/Ch04Ex3.sce
new file mode 100755
index 000000000..58745dead
--- /dev/null
+++ b/1736/CH4/EX4.3/Ch04Ex3.sce
@@ -0,0 +1,17 @@
+// Scilab Code Ex4.3: Page-112 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Charge on an electron, C
+r = 1.28e-010; // Atomic radius of cupper, m
+a = 4*r/sqrt(2); // Lattice parameter of fcc structure of Cu, m
+V = a^3; // Volume of unit cell of Cu, metre cube
+n = 4/V; // Number of atoms per unit volume of Cu, per metre cube
+tau = 2.7e-04; // Relaxation time for an electron in monovalent Cu, s
+sigma = n*e^2*tau/m; // Electrical conductivity of Cu, mho per cm
+printf("\nThe free electron density in monovalent Cu = %5.3e per metre cube", n);
+printf("\nThe electrical conductivity of monovalent Cu = %5.3e mho per cm", sigma);
+
+// Result
+// The free electron density in monovalent Cu = 8.429e+028 per metre cube
+// The electrical conductivity of monovalent Cu = 6.403e+017 mho per cm
+
diff --git a/1736/CH4/EX4.4/Ch04Ex4.sce b/1736/CH4/EX4.4/Ch04Ex4.sce
new file mode 100755
index 000000000..087a9b363
--- /dev/null
+++ b/1736/CH4/EX4.4/Ch04Ex4.sce
@@ -0,0 +1,18 @@
+// Scilab Code Ex4.4: Page-118 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+h = 6.625e-034; // Planck's constant, Js
+L = 10e-03; // Length of side of the cube, m
+// For nth level
+nx = 1, ny = 1, nz = 1; // Positive integers along three axis
+En = h^2/(8*m*L^2)*(nx^2+ny^2+nz^2)/e; // Energy of nth level for electrons, eV
+// For (n+1)th level
+nx = 2, ny = 1, nz = 1; // Positive integers along three axis
+En_plus_1 = h^2/(8*m*L^2)*(nx^2+ny^2+nz^2)/e; // Energy of (n+1)th level for electrons, eV
+delta_E = En_plus_1 - En; // Energy difference between two levels for the free electrons
+printf("\nThe energy difference between two levels for the free electrons = %4.2e eV", delta_E);
+
+// Result
+// The energy difference between two levels for the free electrons = 1.13e-014 eV
+
diff --git a/1736/CH4/EX4.5/Ch04Ex5.sce b/1736/CH4/EX4.5/Ch04Ex5.sce
new file mode 100755
index 000000000..0b3396b4d
--- /dev/null
+++ b/1736/CH4/EX4.5/Ch04Ex5.sce
@@ -0,0 +1,17 @@
+// Scilab Code Ex4.5: Page-119 (2006)
+clc; clear;
+T = 300; // Room temperature of tungsten, K
+k = 1.38e-023; // Boltzmann constant, J/mol/K
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+E_F = 4.5*e; // Fermi energy of tungsten, J
+E = E_F-0.1*E_F; // 10% energy below Fermi energy, J
+f_T = 1/(1+exp((E-E_F)/(k*T))); // Probability of the electron in tungsten at room temperature at an nergy 10% below the Fermi energy
+printf("\nThe probability of the electron at an energy 10 percent below the Fermi energy in tungsten at 300 K = %4.2f", f_T);
+E = 2*k*T+E_F; // For energy equal to 2kT + E_F
+f_T = 1/(1+exp((E-E_F)/(k*T))); // Probability of the electron in tungsten at an energy 2kT above the Fermi energy
+printf("\nThe probability of the electron at an energy 2kT above the Fermi energy = %6.4f", f_T);
+
+// Result
+// The probability of the electron at an energy 10 percent below the Fermi energy in tungsten at 300 K = 1.00
+// The probability of the electron at an energy 2kT above the Fermi energy = 0.1192
+
diff --git a/1736/CH4/EX4.6/Ch04Ex6.sce b/1736/CH4/EX4.6/Ch04Ex6.sce
new file mode 100755
index 000000000..266bea980
--- /dev/null
+++ b/1736/CH4/EX4.6/Ch04Ex6.sce
@@ -0,0 +1,16 @@
+// Scilab Code Ex4.6: Page-121 (2006)
+clc; clear;
+h = 6.625e-034; // Planck's constant, Js
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+a = 5.34e-010; // Lattice constant of monovalent bcc lattice, m
+V = a^3; // Volume of bcc unit cell, metre cube
+n = 2/V; // Number of atoms per metre cube
+E_F = h_cross^2/(2*m*e)*(3*%pi^2*n)^(2/3); // Fermi energy of monovalent bcc solid, eV
+
+printf("\nThe Fermi energy of a monovalent bcc solid = %5.3f eV", E_F);
+
+// Result
+// The Fermi energy of a monovalent bcc solid = 2.034
+
diff --git a/1736/CH4/EX4.7/Ch04Ex7.sce b/1736/CH4/EX4.7/Ch04Ex7.sce
new file mode 100755
index 000000000..ae410b774
--- /dev/null
+++ b/1736/CH4/EX4.7/Ch04Ex7.sce
@@ -0,0 +1,14 @@
+// Scilab Code Ex4.7: Page-121 (2006)
+clc; clear;
+h = 6.625e-034; // Planck's constant, Js
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+m = 9.11e-031; // Mass of an electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+V = 1e-05; // Volume of cubical box, metre cube
+E_F = 5*e; // Fermi energy, J
+D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2)*e; // Density of states at Fermi energy, states/eV
+printf("\nThe density of states at Fermi energy = %4.2e states/eV", D_EF);
+
+// Result
+// The density of states at Fermi energy = 1.52e+023 states/eV
+
diff --git a/1736/CH4/EX4.8/Ch04Ex8.sce b/1736/CH4/EX4.8/Ch04Ex8.sce
new file mode 100755
index 000000000..a157dfcad
--- /dev/null
+++ b/1736/CH4/EX4.8/Ch04Ex8.sce
@@ -0,0 +1,20 @@
+// Scilab Code Ex4.8: Page-121 (2006)
+clc; clear;
+h = 6.626e-034; // Planck's constant, Js
+h_cross = h/(2*%pi); // Reduced Planck's constant, Js
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+V = 1e-06; // Volume of cubical box, metre cube
+E_F = 7.13*e; // Fermi energy for Mg, J
+D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2); // Density of states at Fermi energy for Cs, states/eV
+E_Mg = 1/D_EF; // The energy separation between adjacent energy levels of Mg, J
+printf("\nThe energy separation between adjacent energy levels of Mg = %5.3e eV", E_Mg/e);
+E_F = 1.58*e; // Fermi energy for Cs, J
+D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2); // Density of states at Fermi energy for Mg, states/eV
+E_Mg = 1/D_EF; // The energy separation between adjacent energy levels of Cs, J
+printf("\nThe energy separation between adjacent energy levels of Cs = %5.3e eV", E_Mg/e);
+
+// Result
+// The energy separation between adjacent energy levels of Mg = 5.517e-023 eV
+// The energy separation between adjacent energy levels of Cs = 1.172e-022 eV
+
diff --git a/1736/CH4/EX4.9/Ch04Ex9.sce b/1736/CH4/EX4.9/Ch04Ex9.sce
new file mode 100755
index 000000000..60545984a
--- /dev/null
+++ b/1736/CH4/EX4.9/Ch04Ex9.sce
@@ -0,0 +1,11 @@
+// Scilab Code Ex4.9: Page-122 (2006)
+clc; clear;
+m = 9.1e-031; // Mass of an electron, kg
+e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
+E_F = 3.2*e; // Fermi energy of sodium, J
+P_F = sqrt(E_F*2*m); // Fermi momentum of sodium, kg-m/s
+printf("\nThe Fermi momentum of sodium = %5.3e kg-m/sec", P_F);
+
+// Result
+// The Fermi momentum of sodium = 9.653e-025 kg-m/sec
+