summaryrefslogtreecommitdiff
path: root/1691/CH2/EX2.1
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1691/CH2/EX2.1
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1691/CH2/EX2.1')
-rwxr-xr-x1691/CH2/EX2.1/exmp2_1.sce30
1 files changed, 30 insertions, 0 deletions
diff --git a/1691/CH2/EX2.1/exmp2_1.sce b/1691/CH2/EX2.1/exmp2_1.sce
new file mode 100755
index 000000000..457f479fa
--- /dev/null
+++ b/1691/CH2/EX2.1/exmp2_1.sce
@@ -0,0 +1,30 @@
+//example 2.1
+clc
+disp("From the given information we can write,")
+disp(" A = -16*10^6/j*omega and beta = 10^3/[2*10^3+j*omega]^2")
+disp("To verify the Barkhausen condition means to verify whether |A*beta| = 1 at a frequency for which A*beta = 0 degree. Let us express, A*beta in its rectangluar form.")
+disp(" A*beta = -16*10^6*10^3 / j*omega*[2*10^3+j*omega]^2 = -16*10^9 / j*omega*[4*10^6+4*10^3*j*omega+(j*omega)^2]")
+disp(" = -16*10^9 / j*omega*[4*10^6+4*10^3*j*omega-omega^2] as j*2 = -1")
+disp(" = -16*10^9 / 4*10^6*j*omega+4*10^3*j^2*omega^2-j*omega^3]")
+disp(" = -16*10^9 / j*omega*[4*10^6-omega^2]-[omega^2*4*10^3]")
+disp("Rationalising the denominator function we get,")
+disp(" A*beta = -16*10^9[-omega^2*4*10^3 - j*omega*[4*10^6-omega^2]] / [-[omega^2*4*10^3]-j*omega*[4*10^6-omega^2]]*[-omega^2*4*10^3 - j*omega*[4*10^6-omega^2]]")
+disp("Using (a-b)(a+b) = a^2 - b^2 in the denominator,")
+disp(" A*beta = 16*10^9[omega^2*4*10^3+j*omega*[4*10^6-omega^2]] / [-omega^2*4*10^3]^2 - [j*omega*[4*10^6-omega^2]^2")
+disp(" A*beta = 16*10^9[omega^2*4*10^3+j*omega*[4*10^6-omega^2]] / 16*10^6*omega^4 + omega^2(4*10^6-omega^2)^2")
+disp("Now to have A*beta = 0 degree, the imaginary part of A*beta must be zero. This is possible when,")
+disp("Therefore, omega*(4*10^6 - omega^2) = 0")
+disp("Therefore, omega = 0 or 4*10^6 - omega^2 = 0")
+disp("Therefore, omega^2 = 4*10^6 Neglecting zero value of frequency")
+disp("Therefore, omega = 2*10^3 rad/sec")
+disp("At this frequency |A*beta| can be obtained as,")
+disp(" |A*beta| = 16*10^9[4*10^3*omega^2] / 16*10^6*omega^4+omega^2[4*10^6-omega^2]^2 at omega = 2*10^3")
+ab=(2.56*10^20)/(2.56*10^20)
+disp(ab," |A*beta| =")
+disp("Therefore, At omega = 2*10^3 rad/sec, A*beta = 0 degree as imaginary part is zero while |A*beta| = 1. Thus Barkhausen Criterion is satisfied.")
+disp("The frequency at which circuit will oscillate is the value of omega for which |A*beta| = 1 and A*beta = 0 degree at the same time")
+disp("i.e. omega = 2*10^3 rad/sec")
+disp("But omega = 2*pi*f")
+f=(2*10^3)/(2*%pi) // in Hz
+format(9)
+disp(f,"Therefore, f(in Hz) = omega / 2pi =")